Table 1: Training configurations of object detection models evaluated on LabInsect-48K-subset. ‘LD’:
learning rate; “WD’: weight decay.

Method Backbone Epochs / Iter. Batch Size Optimizer Hyperparameters

Faster R-CNN HRNetV2-W32 12 epochs 2 SGD LR =0.02, momentum = 0.9, WD = le-4
DETR ResNet-50 40 epochs 2 AdamW LR = le-4, WD = le-4
YOLOX YOLOX-L 20 epochs 8 SGD (Nesterov) LR =0.01, momentum = 0.9, WD = 5e-4
Deformable DETR ResNet-50 30 epochs 16 AdamW LR =2e-4, WD = le-4
DINO-4Scale ResNet-50 12 epochs 2 AdamW LR = le-4, WD = le-4

ViTDet ViT-B 40k iters 4 AdamW LR =1e-4, WD =0.1
DiffusionDet ResNet-50 50k iters 2 AdamW LR =2.5¢-5, WD = le-4

Mask R-CNN ConvNeXt-V2 36 epochs 4 AdamW LR = le-4, WD = 0.05

Table 2: Training configurations of instance segmentation models on LabInsect-48K-subset. ‘LD’:
learning rate.

Method Backbone Epochs /Iter.  Optimizer Hyperparameters

Mask R-CNN Swin-T 12 epochs AdamW LR = le-4, betas = (0.9, 0.999), weight decay = 0.05
Mask R-CNN ConvNeXt-V2 + FPN 36 epochs AdamW LR = le-4, betas = (0.9, 0.999), weight decay = 0.05
BoxInst ResNet-50 + FPN 50k iters SGD LR =0.01, momentum = 0.9, weight decay = le-4
Decoupled SOLO ResNet-50 + FPN 12 epochs SGD LR =0.01, momentum = 0.9, weight decay = le-4
SOLOv2 ResNet-50 + FPN 12 epochs SGD LR =0.01, momentum = 0.9, weight decay = le-4
QuerylInst ResNet-50 + FPN 12 epochs AdamW LR = le-4, weight decay = le-4

ViTDet ViT-B (MAE pretrained) 40k iters AdamW LR = le-4, betas = (0.9, 0.999), weight decay = 0.1

A USE OF LLMS

Large Language Models (LLMs) were used solely to refine the writing of the manuscript. We used
an LLM strictly for linguistic improvements: refining wording, checking grammar, and smoothing
the flow of the manuscript. The LLMs did not participate in the ideation, research methodology, or
experimental design.

B IMPLEMENTATION DETAILS

Fine-grained classification: In the main paper, we primarily adopt ResNet50, HRNet-W32, ViT-
B/16, MobileNetV4-L in fine-grained classification. Each model is trained with Adam optimizer
for 100 epochs. The batch size is 16 and learning rate of 1 x 10~3. All models were initialized
with ImageNet-based pretrained weights, enabling more efficient convergence and leveraging prior
knowledge from large-scale datasets. For CLIP Zero-Shot, we adopt the same configurations in

openai/CLIP|to do the inference.

Object detection: We adopt the MMDetection (Chen et al., [2019) framework to implement and
evaluate some methods in our dataset. We select a diverse set of representative detectors, spanning
both convolutional and transformer-based architectures, to ensure comprehensive evaluation. Most of
our experiments are conducted using the default training configurations provided by MMDetection,
with minor modifications made to certain hyperparameters for specific models. The detailed training
settings for each model are summarized in Table

Instance segmentation: To benchmark on the segmentation task, we also adopt the instance segmen-
tation implementations in MMDetection (Chen et al.,|2019). These models encompass a variety of
design paradigms, including anchor-based, anchor-free, query-based, and transformer-based frame-
works. Their inclusion enables a holistic assessment of segmentation performance under diverse
architectural biases. The detailed training settings for each model are summarized in Table [2]

C DATASET SPLIT

To support fair evaluation across classification, detection, and segmentation tasks, LabInsect-48K is
divided into non-overlapping training, validation, and test sets. Splits are constructed at the species
level to avoid specimen-level leakage. We apply a fixed split ratio of 75%/10%/15% (train/val/test)
within each species, ensuring that all three splits contain examples from each category. This per-class
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Figure 1: Some bad predictions from Mask R-CNN. Left: ground-truth; Right: predictions.

stratified sampling ensures that rare classes are preserved across partitions. The splits also maintain
diversity in terms of insect shape, size and pose.

For the curated LabInsect-48K-subset, we adopt a simplified split strategy. Since the subset is
intended for rapid benchmarking, we divide it into two parts only: 80% for training and 20% for
testing. This split is also performed at the species level to preserve label integrity and maintain



Table 3: Top-1 Accuracy of different backbones on our dataset.

Backbone Top-1 Acc
ResNet50 (ImageNet pretrained) 22.4%
HRNet-W32 (ours) 42.6%
MobileNetV4-L (ours) 48.2%
ResNet50 (ours) 53.7%

consistency with the full dataset. Separate annotation files are provided for each split to support
reproducible experiments.

D GENERALIZE TO UNSEEN CLASSES

To better assess the generalization ability of different models to novel, unseen insect species, we
introduce a few-shot evaluation protocol on the IP102 dataset, which contains insect images captured
in the wild with significant variation in lighting, background, and pose. Specifically, for each unseen
class in IP102, we randomly sample 5 images as the support set, and use the remaining images as the
query set. We extract visual embeddings using our supervised models (ResNet-50, HRNet-W32, and
MobileNetV4-L, trained on our proposed dataset), compute the class prototypes by averaging the
support embeddings per class, and then classify each query sample by retrieving the nearest class
prototype in the embedding space using cosine similarity. We report the top-1 accuracy under this
5-shot setting in Table[3]

As seen above, the performance improves notably compared to ImageNet pretrained model. This new
evaluation demonstrates the models’ capabilities to generalize to newly discovered insect species,
even with very limited labeled examples.

E FAILURE CASES

We show several failure cases when applying existing models to our Lablnsect-48K dataset here.
We take Mask R-CNN (He et al., |2017) for example and visualize its bounding box and mask
predictions in Figure. [I] These cases highlight limitations in both object localization and fine-grained
segmentation in challenging insect images.

Redundant and overlapping bounding boxes: In multiple examples, Mask R-CNN produces
repeated or overlapping bounding boxes for a single insect instance. This is likely due to insufficient
non-maximum suppression (NMS) and high inter-class similarity across insect morphologies.

Incomplete or coarse segmentation masks: An obvious issue is the failure to segment fine structures
such as: antennae, legs, and wing fringes. These elements are critical for biological interpretation
and species-level discrimination. The coarse masks produced by Mask R-CNN are typically biased
toward the body core and tend to miss thin or translucent parts. This can be attributed to: (1) The
model’s default Rol resolution being insufficient for fine details; (2) Loss of features due to aggressive
downsampling in early CNN stages.

Background mis-segmentation: Some masks incorrectly include background regions, especially
when the background contains insect eggs, fragmented body parts, or incomplete tissue from prior
specimens. These visual distractions often confuse the model, causing it to involve parts of the
background into the predicted mask. This compromises segmentation quality and can negatively
affect downstream analyses, such as fine-grained morphological measurements.

Class-specific nature of mask R-CNN masks: Since Mask R-CNN applies a single mask head per
class, rare or morphologically unique species may suffer from poor generalization. Unlike category-
agnostic segmentation models like SAM, Mask R-CNN lacks a mechanism to refine segmentation
based on visual cues and prompts, thus missing some details across categories.

These limitations suggest that traditional instance segmentation methods like Mask R-CNN may
not be sufficient for high-fidelity insect understanding. Future improvements could involve: High-
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Figure 2: Human correction with X-AnyLabeling.

resolution mask heads or multi-scale refinement modules; Vision-language grounding, e.g., GLIP, for
better focus on biologically relevant regions.

F ANNOTATION PIPELINE AND CORRECTION WORKFLOW

Bounding boxes: Initial bounding boxes are generated using the open-vocabulary detector Grounding
DINO. The annotations then go through two refinement stages:

» Stage 1: 10% of the samples are corrected by annotators using the X-AnyLabeling tool,
which allowed precise editing, especially for small, occluded, or cluttered insects (see
Figure2).

 Stage 2: Model-assisted refinement, where a YOLOVS detector trained on Stage 1 results is

used to auto-suggest new boxes, which are further validated or corrected by annotators with
X-AnyLabeling.

Segmentation masks: Similar to bounding boxes, we first generate masks with the Segment Anything
Model (SAM). The bounding boxes obtained before are used as prompts. Then, we perform manual
refinement to ensure accurate outlines of full-body insects and avoid background artifacts.

Quality control: (1) 10% of all annotations are independently double-checked by expert reviewers;
(2) Overall, more than 700 annotation hours are used, involving 3 experienced annotators and 2
reviewers.

G DETAILS ABOUT ORDER AND GENUS

Table ] summarizes the taxonomic structure of the LabInsect-48K dataset at the order and genus
levels. Each insect order is listed alongside its corresponding genus, reflecting the broad taxonomic
diversity covered by the dataset. Notably, the dataset spans major insect orders including Diptera,
Blattodea, Orthoptera, Hymenoptera, Hemiptera, and Lepidoptera. The full genus-to-species mapping
is not shown here since there are too many species. However, this detailed mapping is maintained
within “genus_species_mapping.txt” file in the repository.

H COCO FORMAT SAMPLE ENTRIES

To ensure compatibility with widely used object detection and vision-language models, LabInsect-48K
follows the standard COCO annotation format. This format organizes data into three key components:

images:
{
"id": 0,
"file_name": "20-011286.3jpg",



Table 4: Insect orders and corresponding genus.

Order Genus
Hemiptera Leptocorisa
Diptera Anacanthella, Antissella, Austroplex, Boreoides, Caenoprosopon, Chas-

mia, Chrysomya, Copidapha, Cydistomyia, Dasybasis, Ectenopsis, Ino-
pus, Japenoides, Lilaea, Pseudotabanus, Scaptia, Tabanus, Therevopan-
gonia, Triclista

Blattodea Anamesia, Ataxigamia, Blaberus, Calolampra, Celatoblatta, Cosmo-
zosteria, Desmozosteria, Diploptera, Drymaplaneta, Eppertia, Euzos-
teria, Geoscapheus, Hemelytroblatta, Laxta, Litopeltis, Macrocerca,
Megazosteria, Melanozosteria, Methana, Molytria, Nauphoeta, Neo-
geoscapheus, Neolaxta, Panesthia, Paranauphoeta, Periplaneta, Platyzos-
teria, Polyphagoides, Polyzosteria, Pycnoscelus, Scabina, Temnelytra

Orthoptera Macrotona, Micreola, Sumbilvia, Aiolopus, Austracris, Austroicetes,
Calephorops, Chortoicetes, Froggattina, Gastrimargus, Heteropternis,
Maclystria, Macrazelota, Macrotona, Perloccia, Rusurplia, Schizoboth-
rus, Stenocatantops, Sumbilvia, Tetrix, Theomolpus, Xypechtia

Hymenoptera | Austroplebeia, Austrothurgus, Brachyhesma, Braunsapis, Callohesma,
Ceratina, Coelioxys, Euhesma, Euryglossa, Euryglossina, Euryglossula,
Exoneura, Exoneurella, Homalictus, Hylaeus, Hyleoides, Hyphesma, La-
sioglossum, Lipotriches, Megachile, Meroglossa, Nomia, Pachyprosopis,
Palaeorhiza, Paracolletes, Sphecodes, Thyreus, Xanthesma, Agenioideus,
Anoplius, Batozonellus, Ceropales, Cryptocheilus, Ctenostegus, Episy-
ron, Ferreola, Hemipepsis, Heterodontonyx, Paracyphononyx, Pompilus,
Telostegus, Tetragonula, Turneromyia, Heterodontonyx, Priocnemis,
Turneromyia, Bothriomutilla, Ephutomorpha, Trogaspidia

Lepidoptera Agrotis, Cosmoclostis, Exelastis, Hepalastis, Imbophorus, Megalorhip-
ida, Pterophorinae, Sinpunctiptilia, Sphenarches, Stangeia, Stenoptilia,
Stenoptilodes, Trichoptilus

"width": 5616,
"height": 3744

annotations:

"id" . O,

"image_id": O,

"category_id": O,

"bbox": [x, y, width, height],
"area": 467210.0,
"segmentation": "",

"iscrowd": O

categories:

"id": O,
"name": "Leptocorisa_acuta",
"supercategory": "Hemiptera"



I LICENSE AND DATA USE

All images and annotations in LabInsect-48K are released under the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) license. This means the dataset is freely available
for research and educational purposes. Commercial use is not permitted under this license.

The dataset sources include publicly accessible archives from the Australian National Insect Collection
(ANIC). No private, sensitive, or restricted content is included. By sharing this dataset under a
non-commercial license, we aim to support the academic communities while protecting against
unauthorized commercial exploitation.

Users are encouraged to cite this work when using or adapting the dataset for non-commercial
purposes, including model training, benchmarking, or scientific publication.
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