
Appendix: Logical Specifications-guided Dynamic
Task Sampling for Reinforcement Learning Agents

Anonymous submission

A LSTSct - Detailed Algorithm
A detailed algorithm for LSTSct is described in Algo. 1.
While the overall algorithm is similar to LSTS (described in
Section 4), LSTSct differs from LSTS in lines 9-29. In LSTS,
while learning a policy for the task Task(q, p), which corre-

sponds to the transition q
ϕ(q,p)−−−→ p, we reinitialize the en-

vironment to a state s ∈ S0 once the agent reaches a state
where the propositions for p hold true.

Instead of reinitializing the environment after reaching
such a state where the propositions for p hold true, we let
the Teacher agent sample a task (let’s say Task(p, r)) from
the set X [p]\ DT, where X is the adjacency matrix for the
graph, and DT is the set of Discarded Tasks, as defined in
Algo. 1. This helps the agent continue its training by at-
tempting to learn a policy π(p,r) for Task(p, r) while si-
multaneously learning a separate policy π(q,p) for the task
Task(q, p). If the agent fails to satisfy Task(p, r), we reini-
tialize the environment from s ∼ S0. Otherwise, the agent
continues its training until it satisfies the high-level objective
ϕ.

B Convergence criteria for a trajectory to
satisfy the high-level objective

Given the ordered list of policies Π∗
list, we can generate a

trajectory ζ in the task M with Prζ∈Z [ζ satisfies ϕ] ≥ η
A trajectory ζ is defined as a sequence of state sequences

(s0, s1, . . .) where the transitions are defined by the MDP
transition function P : p(s′|s, a).

We define that a trajectory ζ satisfies the high-level objec-
tive ϕ if the initial state of agent in the trajectory s0 satisfies
the propositions corresponding to the node q0 of the DAG
Gϕ that represents ϕ, and the agent reaches a state sf that
satisfies the propositions corresponding to a node that lies in
the set of accepting nodes qf ∈ F of the DAG Gϕ.

Prζ∈Z [ζ satisfies ϕ] denotes the probability with which a
trajectory ζ ∈ Z will satisfy ϕ. The set of all trajectories
Z are generated by the agent starting in a state s ∼ S0 and
following trajectories given by the policies in Π∗

list.
Since Π∗

list = [π(q1,q2), π(q2,q3), . . . , π(qf−1,qf)], and the
list of MDP states visited by the trajectory ζ is given by ζs :
(s0, s1, . . .).

The trajectory ζ satisfies the DAG Gϕ if for
the sequence of states in the trajectory ζs :

(ζs[0], . . . , ζs[k1], . . . , ζs[k2], . . . , . . . , ζs[kf]):

• ζs[0] ∼ S0

• ζ0
L(ζs[k1])−−−−−−→ ζ1

L(ζs[k2])−−−−−−→ ζ2, . . . , ζf−1
L(ζs[kf])−−−−−−→ ζf

• L(ζs[kf]) ∈ F

Thus, ζs contains states ζs[ki]) that triggers transitions of
the agent’s high-level state in the DAG Gϕ from the node
qi to the node qj . Additionally, the initial state of the agent
ζs[0] lies in the set of starting states S0 of the MDP M cor-
responding to the node q0 and final state of the agent ζs[kf]
lies in the set of final states Sf of the MDP M corresponding
to the node qf ∈ F .

As defined in Section 4, the convergence criteria for a task
Task(qi, qi+1) ensures that the successful policy π(qi,qi+1) ∈
Π∗

list achieves Prζ∈Z [ζ satisfies Task(qi, qi+1)] ≥ η for all
i ∈ 1, . . . , f − 1.

Thus, convergence criteria for π(q0,q1) ensures that:

Prζ∈Z [ζs[0 : i] satisfies Task(q0, q1)] ≥ η

Next, the convergence criteria for π(q1,q2) ensures that:

Prζ∈Z [ζs[0 : i] satisfies Task(q0, q1)∧
ζs[i : i+ j] satisfies Task(q1, q2)] ≥ η (1)

Following this procedure inductively. the convergence cri-
teria for πqf−1,σf−1

ensures that:

Prζ∈Z [ζs[0 : i] satisfies Task(q0, q1) ∧ ζs[i : f]

satisfies Task(q1, q2), . . . ,Task(qf−1, qf) ≥ η (2)

We also know that:

Prζ∈Z [ζ satisfies Gϕ] := Prζ∈Z [ζs[0 : i] satisfies Task(q0, q1)∧
ζs[i : k] satisfies Task(q1, q2), . . . ,Task(qf−1, qf)] (3)

Combining the above two equations:

Prζ∈Z [ζ satisfies Gϕ] ≥ η

Thus,
Prζ∈Z [ζ satisfies ϕ] ≥ η

Algorithm 1: LSTS (Gϕ,M, η, x)
Output: Set of learned policies : Π∗, Edge-Policy Dictionary P

1: Placeholder Initialization:
2: Set of Active Tasks: AT← ∅; Set of Learned Tasks: LT← ∅; Set of Discarded Tasks: DT← ∅
3: Edge-Policy Dictionary P : e→ π {Mapping an edge (a task) e to a randomly initialized policy}
4: Teacher Q-Value Dictionary: Q : e→ −∞ {Initialize all Teacher Q-Values to −∞}
5: Algorithm:
6: X ← Adjacency Matrix (Gϕ) {Get the adjacency matrix from the DAG representation}
7: AT← AT ∪ {X [q0]} {Add all outgoing edges from q0 to AT}
8: Q[e] = 0 ∀ e ∈ AT {Initialize Q-values to 0 for all tasks from the initial node q0}
9: while True do

10: e← Sample(Q,AT) {Sample an edge (a task) from AT according to the Teacher Q-Values}
11: g = []
12: for y ∈ x do
13: task outcome,P[e], g ← Learn Episode(M,Gϕ, e,P) {Learn task e for 1 episode}
14: g.append(g)
15: EAT ← Next Tasks (X , e, DT)
16: if task outcome = Success and |EAT | ≠ 0 then
17: while True do
18: ẽ← Sample(Q,EAT) {Sample a task from EAT }
19: task outcome, P[ẽ], g ← Learn Episode(M,Gϕ, ẽ,P)
20: Update Teacher(Q, ẽ, g) {Update the Teacher Q-Values}
21: EAT ← Next Tasks (X , ẽ, DT)
22: if task outcome = Success and |EAT | ≠ 0 then
23: continue
24: else
25: break
26: end if
27: end while
28: end if
29: end for
30: Update Teacher(Q, e, mean(g)) {Update the Teacher Q-Values}
31: if Convergence(Q, e, g, η) then
32: Π∗ ← Π∗ ∪ P[e] ; LT← LT ∪{e} ; AT← AT \{e} {Update the sets. ‘\’→ set-minus}
33: Q[e] = −∞ {Set Q-Value for the learned task to −∞ so it is not sampled anymore}
34: EDT ← Discarded Tasks(X , e) {Find any tasks that need to be discarded}
35: DT← DT ∪ EDT {Add the identified tasks that need to be discarded to DT}
36: ∀ e ∈ EDT : Q[e] = −∞ {Set Teacher Q-Value for the discarded tasks to −∞}
37: EAT ← Next Tasks (X , e, DT) {Find new tasks that can be sampled}
38: if |EAT | = 0 then
39: break {break once we reach q ∈ F}
40: end if
41: ∀ e ∈ EAT : Q[e] = 0 {Set Teacher Q-Value for new tasks = 0 so they can be sampled}
42: AT← AT ∪ EAT {Add the new tasks to the set of Active Tasks AT }
43: end if
44: end while
45: return Π∗,P

C Baselines
In this section, we present details on how the baseline ap-
proaches used in the paper are implemented.

C.1 DIRL and DIRLc

DIRL (Jothimurugan et al. 2021) interleaves a high-level
planning algorithm to guide the agent to learn those policies
on which the agent shows the highest learning rate. The aim
is to start from the inital node of the graphical representa-
tion of the high-level objective, and learning policies for all
tasks (edges) from the initial node. Once the agent spends
K interactions on each of the edge, the approach finds out
which policy yields the highest success rate, and then the
agent attempts to learn the policies from all edges from the
current node. This process goes on iteratively, where the al-
gorithm uses Dijkstra’s algorithm to find out paths to a node
that have the highest success rate, and the agent explores all
edges from that node. This process goes on iteratively until
the agent reaches the final node. In this approach, the value
for K needs to be manually determined, which depends on
having an estimate of how many interactions are needed to
learn the task. For our approach, we manually set this value
to 20000 episodes of 100 interactions each. This is because
for certain seeds, the task did not show any success if the
value for K was less than 20000. The policy for the edge

q0
Key2−−−→ q2 requires 20000 episodes of 100 interactions

to achieve a successful policy of 95% success rate. While
DIRL experiments with a number of different values for K
and plots for the mean, we could have increased the value
for K but that would have only increased the number of in-
teractions needed to get a successful policy for the final task.

We also implemented a custom implementation of DIRL,
which we call DIRLc, where we did not explore the task
any further once the agent achieved a mean success rate
of 95% and if the policy did not improve any further on
that task. This helped the agent save costly interactions on
the tasks where a successful policy was achievable in much
fewer than 20000 episodes (tasks corresponding to the edges
q2

Door−−−→ q3, q2
Door−−−→ q3 and q3

Goal−−−→ q4). However, the
agent did spend all those interactions on the unpromising
task corresponding to the edge q1

Door−−−→ q3, and our pro-
posed LSTS was able to move ahead in the graph without
having to spend all those interactions on the unpromising
task. We call ths approach DIRLc where ‘c’ refers to con-
verged.

C.2 Teacher-Student Curriculum Learning
The Teacher-Student Curriculum Learning approach (Mati-
isen et al. 2020) assumes a Teacher agent optimizing the se-
quence of the tasks in the curriculum for the Student. The
Teacher proposes those tasks for which the Student shows
the highest potential in learning, i.e. the tasks for which the
Student learns the quickest. The ability of a Student to learn
a task is given by its slope of the curve of plotted reward
function. The steeper the slope, the quicker the Student is
able to learn the task. One limitation of this approach is that
it assumes the source tasks of the curriculum are defined.

This is difficult in settings where the parameters of the task
are continuous. We used the same PPO network (Hyperpa-
rameters in Section E) for Teacher-Student curriculum learn-
ing approach as we did for our proposed approach LSTS. We
initialized 3 source tasks and one target task, with varying
parameters for each source task. The tasks were: (1) Collect
Key1; (2) Collect Key2; (3) Open Door; (4) Final task of
reaching Goal. For each task, the agent starts from an initial
state of the environment, and attempts a task proposed by
the Teacher agent. For a fair comparison, the number of in-
teractions allocated for this task is 500 to acknowledge the
difficulty of the entire task.

For the tabular results in the paper, the performance of the
agent in the final target task is displayed. The agent was not
able to learn a successful policy for the entire task.

In Teacher-Student curriculum learning, the sunk cost of
the algorithm is the interactions in the source task. The sunk
cost is very high when the interactions are costly, as for our
robotic environments.

C.3 Q-Learning for Reward Machines
QRM (Icarte et al. 2018) decomposes the task into sub-goals
and intends to learn one q-value function for each state in the
automaton. As an example, consider the automaton shown in
Fig.1(b), each of the nodes in the automaton will have a cor-
responding q-value function. At all times during the training,
the agent keeps track of its state in the automaton. While
choosing an action given the current observation, the agent
chooses an action depending on its current state in the Re-
ward Machine. For example, if the agent is in node q1, it
will choose an action given by the q-value function qq1 cor-
responding to the node q1. While updating the q-value func-
tion, we use the Reward Machine to determine the reward
the agent would have received had it been in the reward state
given by the action chosen, i.e. to update

qq
α←− r(s, a, s′) + γmax

a′
qp(s

′, a′)

Here, the maximization is over the qp that determines the
new reward state of the machine. For our implementation,
all transitions in the Reward Machine achieve a reward of 0,
and any transition that achieves a goal state q ∈ F achieves
a reward of 1. For a fair comparison, the number of interac-
tions allocated for this task is 500 to acknowledge the diffi-
culty of the entire task.

We implemented this approach for the grid-world domain
with the SPECTRL objective:

(Key1|Key2) & X (Door & X (Goal)) (4)

C.4 Guiding Search via Reward Shaping
GSRS (Camacho et al. 2018) shapes the reward inversely
proportional to the distance from the accepting node in the
automaton. The reward shaping is given by: R′(s, a, s′) =
R(s, a, s′)+F (s, a, s′) where R is the original reward func-
tion and F is the shaping function. Here, F is given by:

F (s, a, s′) = γq(s′)− q(s)

Here, F does not depend on the previous 2 states, but the last
two states visited in the Reward Machine. This ensures that

Parameter Value
discount factor γ 0.99
learning rate α 1× 10−3

Optimizer Adam
PPO clipping parameter 0.2

GAE λ 0.95
Entropy regularization coefficient 0.001
Entropy regularization coefficient 0.001

Action distribution Categorical with 6 bins

Network architecture
2 Conv layers of [64, 64]
followed by 2 linear
layers with relu activation

Table 1: Parameters used for training the Proximal policy
optimization

a positive shaping reward is given to transitions that make
progress toward the goal state in the automaton. We shape
the reward incrementally from the start state in the automa-
ton until the accepting state, such that everytime the agent
takes an action that triggers a transition in the automaton
to a different state, a positive reward is given that is higher
than the previous reward. In the end, to preserve optimal-
ity, we subtract the shaped reward from the sum of rewards
gained. For a fair comparison, the number of interactions
allocated for this task is 500 to acknowledge the difficulty
of the entire task. This approach tends to reach local optima
as the states with Key1 and Key2 will have similar reward
settings, however reaching Key1 makes the problem harder
to solve as the path from Key1 to the Door requires a much
longer trajectory.

D Statistical Significance
To demonstrate that the average convergence rate of LSTS
is consistently higher than the baseline approaches, we per-
form an unpaired t-test (Kim 2015). For the experiment, we
consider a confidence interval of 95% and evaluate the p-
value between LSTS approach and the best-performing base-
line approach by comparing the success rates of the two
approaches on 100 episodes after training for 107 interac-
tions. Thus, through the results, we see that our proposed
approach, LSTS has a consistent performance in the conver-
gence rate. The results are always statistically significant. In
all the experiments, LSTS has a much more sample-efficient
performance. Thus, LSTS not only achieves a better success
rate, but also adapts to converges quicker.

E Hyperparameters
Table 1 summarizes the hyperparameters for the
PPO (Schulman et al. 2017) used for the gridworld
and the TurtleBot navigation experiments.

All the experiments were conducted using a 64-bit Linux
Machine, having Intel(R) Core(TM) i9-9940X CPU @
3.30GHz processor, 126GB RAM memory and an Nnidia
2080 GPU. The maximum duration for running the experi-
ments was set at 24 hours.

For training the Panda arm environment, we used the de-

fault implementation of DDPG-HER from OpenAI base-
lines (Dhariwal et al. 2017; Gallouédec et al. 2021).

F Search-and-Rescue Task
In the search-and-rescue domain, the task of the agent is
open a door using a key, then collect a fire extinguisher to
extinguish the fire, and then find and rescue stranded sur-
vivors. The exact order in which the tasks are accomplished
does not matter, however the environment is configured in
such a way that certain sub-tasks are considerably harder for
the RL agent. For example, in the path from the fire extin-
guisher to the fire, the agent will witness survivors. If the
task of the agent is to extinguish fire, it will not rescue the
survivors, and will learn policies that result in sub-optimal
path. Hence, the correct path in the DAG will encourage the
agent to rescue survivors initially before moving on to other
aspects of the task objective.

The setup of the environment is similar to the Door-Key
environment, with the agent acting in a grid of 14× 14. The
agent has access to additional actions such as extinguish that
extinguishes the fire object if the agent has picked up the fire
extinguisher in its inventory. Additionally, the agent has ac-
cess to rescue actions that rescues the survivors if the agent
is near the survivors and facing them.

The aim of the experiment was to show that even with
increasing task complexity, and bigger state and action
spaces, our proposed approach, LSTS achieves sample-
efficient learning as compared to the baseline appraoches.
Our approach is effective in finding unpromising tasks based
on the learning progress of the agent and discard them. This
helps the agent to attain successful policies for solving the
task in fewer environmental interactions.

References
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A.
2018. Non-Markovian rewards expressed in LTL: Guiding
search via reward shaping (extended version). In GoalsRL,
a workshop collocated with ICML/IJCAI/AAMAS.
Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert,
M.; Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; and
Zhokhov, P. 2017. OpenAI Baselines. https://github.com/
openai/baselines.
Gallouédec, Q.; Cazin, N.; Dellandréa, E.; and Chen, L.
2021. panda-gym: Open-Source Goal-Conditioned Environ-
ments for Robotic Learning. 4th Robot Learning Workshop:
Self-Supervised and Lifelong Learning at NeurIPS.
Icarte, R. T.; Klassen, T.; Valenzano, R.; and McIlraith, S.
2018. Using reward machines for high-level task specifica-
tion and decomposition in reinforcement learning. In Intl.
Conf. on Machine Learning, 2107–2116.
Jothimurugan, K.; Bansal, S.; Bastani, O.; and Alur, R. 2021.
Compositional reinforcement learning from logical specifi-
cations. Neural Information Processing Systems.
Kim, T. K. 2015. T test as a parametric statistic. Korean
journal of anesthesiology, 68(6): 540–546.
Matiisen, T.; Oliver, A.; Cohen, T.; and Schulman, J. 2020.
Teacher-Student Curriculum Learning. IEEE Trans. Neural
Networks Learn. Syst., 31(9): 3732–3740.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR.

