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Mitigating Social Hazards: Early Detection of Fake News via
Diffusion-Guided Propagation Path Generation

Anonymous Authors

ABSTRACT
The detection of fake news has emerged as a pressing issue in the
era of online social media. To detect meticulously fabricated fake
news, propagation paths are introduced to provide nuanced social
context to complement the pure semantics within news content.
However, existing propagation-enhanced models face a dilemma
between detection efficacy and social hazard. In this paper, we
investigate the novel problem of early fake news detection via
propagation path generation, capable of enjoying the merits of rich
social context within propagation paths while alleviating potential
social hazards. In contrast to previous discriminative detection
models, we further propose a novel generative model, DGA-Fake, by
simulating realistic propagation paths based on news content before
actual spreading. A guided diffusion module is integrated into DGA-
Fake to generate simulated user interaction sequences, guided by
historical interactions and news content. Evaluation across three
datasets demonstrates the superiority of our proposal. Our code is
available in https://anonymous.4open.science/ r/DGA-Fake-1D5F/ .

CCS CONCEPTS
• Information systems→Multimedia information systems.

KEYWORDS
Fake News Detection, Propagation Path Generation, Diffusion

1 INTRODUCTION
Fake news detection has garnered significant attention in recent
years, driven by the rapid development of online social media plat-
forms [14]. The widespread and rapid dissemination of toxic fake
news poses a potentially immeasurable social hazard to both users
and society. Traditional fake news detection methods [4, 18, 22, 26]
generally focus on capturing the semantics within the news content
via deep modeling architectures as illustrated in Figure 1 (a). In
order to evade detection effectively [29], recent fake news is often
meticulously fabricated by skilled malicious publishers, resulting
in their indistinguishability for detection models that solely rely on
semantic patterns [11].

In efforts to bolster detection capabilities, the propagation path is
introduced as a complement to pure semantics [34, 41]. The propa-
gation path encompasses user interactions during the dissemination
of news on social networks [18], reflecting temporal and structural
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Low  Hazard. 

(a) Content-based method: Real  Time. Low Accuracy. 

Content-based FAKE

REAL

(b) Propagation-enhanced method: High Accuracy. High  Hazard. 

Propagation
FAKE

REAL

(c) Our generative DGA-Fake model: High Accuracy. 

Generation

Early Detection

Real PropagationFake News Generation PropagationSocietal Hazard

Figure 1: Comparison of different detection methods.

features of news propagation. Such propagation paths are capable
of providing extra social context to facilitate the detection of fake
news. For example, the propagation paths of fake news tend to be
wider, deeper, and contain more social bots than real news [31],
which is a significant clue to verify the fake news.

While the integration of propagation paths enhances the de-
tection of well-fabricated news, such methods inherently face the
dilemma between detection efficacy and social hazard. The abun-
dant social context within extensive propagation paths is crucial for
successful detection. On the other side of the coin, sufficient propa-
gation paths also indicate that the fake news has already achieved
widespread dissemination, leading to substantial social hazards, as
depicted in Figure 1 (b). Detecting fake news that has already spread
widely and caused significant social damage is somewhat futile. To
mitigate this dilemma and identify fake news at an early stage, vari-
ous forms of social context information have been introduced, such
as user profiling [12, 32], publisher credibility assessment [42], and
user comments analysis [24]. However, the acquisition of additional
auxiliary information is time-consuming and labor-intensive, limit-
ing its applicability in data-sparse scenarios. Moreover, the global
structures and temporal features within the limited propagation
paths remain insufficient.

The incorporation of propagation paths enhances detection per-
formance, albeit accompanied by associated social hazard stemming
from the spread of fake news. This brings us a question: Can we
leverage the rich social context within the propagation paths to en-
hance the early-stage fake news detection? Different from existing
discriminative models, our motivation lies in predicting and gener-
ating the forthcoming propagation paths based on the multimodal

https://anonymous.4open.science/r/DGA-Fake-1D5F/.
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

content and propagation patterns gleaned from previous news. As
illustrated in Figure 1 (c), our objective is to discern the patterns
beneath the news propagation process, which enables the simula-
tion of propagation paths, thereby facilitating the early detection of
emerging news. This generation-based strategy does not necessitate
additional social context and is anticipated to yield rich structural
and temporal propagation features.

However, designing generative models for propagation path gen-
eration is non-trivial due to the two reasons. Firstly, it is challenging
for generative models to accurately represent the distribution of
discrete propagation paths. For example, the GAN-based models of-
ten encounter instability issues [3, 16], while the VAE-based models
are susceptible to posterior collapse [35, 43]. Secondly, the diversity
and complex connections inherent in user interactions within prop-
agation paths pose a challenge for traditional generative models
due to their limited capacity for diverse representation [40].

Based on such desiderata, we resort to denoising diffusionmodels
[9] as solutions, which model discrete user interactions to gener-
ate diverse and high-quality propagation paths. However, directly
applying vanilla denoising diffusion models to the studied task is
undesirable. Firstly, the denoising process lacks controllable condi-
tions. It is non-trivial to regulate the generation process to gener-
ate reasonable and informative propagation paths. Secondly, it is
challenging to integrate multi-condition features and incorporate
them into the generation process. Finally, modeling structural and
temporal features from propagation paths simultaneously while
enhancing detection performance poses significant challenges.

In this paper, we propose a novel Diffusion Guided Propagation
Augmentation Fake News Detection (DGA-Fake) model for multi-
modal fake news detection. Diverging from the prevailing discrimi-
native detection methods, we propose simulating realistic propaga-
tion paths based on news content at the early detection stage. The
simulation of user interaction paths is facilitated by a novel guided
diffusion module. This module aids in stepwise denoising to pro-
duce reasonable next interaction user embeddings from randomly
sampled Gaussian noise. Specifically, the denoising phase is guided
by historical user interaction paths and news content, rendering
it autoregressive in generating long propagation paths. Moreover,
we propose a propagation path enhanced detection module, which
focuses on the user sequence hypergraph to learn temporal depth
information and the propagation directed graph to model propaga-
tion global structures. DGA-Fake is extensively evaluated over three
datasets, and the experimental results demonstrate its superiority.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to investigate
the novel problem of early fake news detection utilizing
propagation path generation, enjoying the merits of rich
social context while alleviating potential social hazards.

• We propose a novel DGA-Fake model to generate reason-
able propagation paths via controllable guided diffusion, and
further integrate propagation global structure and temporal
depth information through a propagation path enhanced
fake news detection module.

• Extensive experiments on three real-world datasets reveal
that our proposal consistently outperforms SOTA fake news
detection baselines.

2 PRELIMINARY
2.1 Problem Definition
Definition 2.1 (Fake News Detection). A news item is represented
as 𝑛 = {𝑛𝑇 , 𝑛𝑉 }, with 𝑛𝑇 and 𝑛𝑉 denoting the textual and vi-
sual content, respectively. The set of users on the social platform
is denoted as 𝑈 = {𝑢1, 𝑢2, · · · , 𝑢 |𝑈 | }. The sequential path 𝑆𝑖 =

{𝑛0, 𝑢1, 𝑢2, · · · , 𝑢𝑚} denotes a single propagation sequence in chrono-
logical order, where 𝑛0 serves as the starting point. All historical
sequential paths of news 𝑛 are combined into the propagation path,
represented as P = {𝑆𝑖 }. The objective of fake news detection is
to learn a probability distribution P(𝑦 |𝑛,P), where 𝑦 = 0 denotes
fake news and 1 stands for real news.

Definition 2.2 (Fake News Early Detection). At the early detection
stage, the existing propagation paths are limited and may even
be nonexistent. Specifically, the sequence 𝑆𝑖 = {𝑛0} signifies a
lack of user interactions for the news item 𝑛. We aim to generate
propagation paths and effectively discriminate fabricated news in
the early stages, which is formalized as follows:

P(𝑦 | 𝑛,P) = P(𝑦 | 𝑛,P′)P(P′ | 𝑛,P), (1)

where P′ is the simulated propagation paths base on news item 𝑛

and historical propagation path P.

2.2 Diffusion Model
In this section, we will introduce the fundamental concept of the
diffusion model [9].

2.2.1 Noising Process. The forward process of diffusion model is a
Markov Chain that gradually adds Gaussian noise to x0:

𝑞

(
x1, · · · , x𝑇 | x0

)
=

𝑇∏
𝑡=1

𝑞

(
x𝑡 | x𝑡−1

)
,

𝑞

(
x𝑡 | x𝑡−1

)
= N

(
x𝑡 ;

√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I

)
,

(2)

where 𝑇 is the number of steps to add noise and [𝛽1, 𝛽2, . . . , 𝛽𝑇 ]
are the variance schedule. It is difficult to learn 𝛽𝑇 directly, so a
reparameterization trick [15] is adopted and transforms the forward
process as follows:

𝑞

(
x𝑡 | x0

)
= N

(
x𝑡 ;

√
𝛼𝑡x0, (1 − 𝛼𝑡 ) I

)
,

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝝐,

(3)

where 𝛼𝑡 = 1− 𝛽𝑡 , 𝛼𝑡 =
∏𝑡
𝑠=1 𝛼𝑠 and 𝝐 ∼ N(0, I). When 𝛼𝑇 ≈ 0, x𝑇

is almost Gaussian in distribution, so we have 𝑞(x𝑇 ) ≈ N (x𝑇 ; 0, I).

2.2.2 Denoising Process. The reverse process aims to recover the
original data sample x0 from the completely noisy x𝑇 ∼ N(0, I).
The reverse process is formulated as:

𝑝𝜃

(
x0, · · · , x𝑇

)
= 𝑝

(
x𝑇

) 𝑇∏
𝑡=1

𝑝𝜃

(
x𝑡−1 | x𝑡

)
,

𝑝𝜃

(
x𝑡−1 | x𝑡

)
= N

(
x𝑡−1; 𝝁𝜃

(
x𝑡 , 𝑡

)
, 𝚺𝜃

(
x𝑡 , 𝑡

) )
,

where 𝝁𝜃
(
x𝑡 , 𝑡

)
and 𝚺𝜃

(
x𝑡 , 𝑡

)
are the mean and the variance pa-

rameterized by 𝜃 .
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Figure 2: The overview framework of the proposed DGA-Fake model.User’s Propagation Sequence
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Figure 3: Dual Conditional Denoiser.

3 METHODOLOGY
Previous early detection models often prioritize integrating addi-
tional social context as a supplement to insufficient propagation
paths. However, such approaches are limited by their reliance on
time-consuming and labor-intensive auxiliary information, particu-
larly in data-sparse scenarios. In this paper, we propose a method
for generating propagation paths in the early stages of news dissem-
ination. To enhance detection capabilities while mitigating social
hazards, we introduce a novel approach called Diffusion Guided
Propagation Augmentation for Fake News Detection (DGA-Fake)
in Figure 2. DGA-Fake generates propagation sequences based on
content features and historical interactions. Following the diffusion
guided propagation generation, we further propose a propagation
path enhanced detection module (depicted in Figure 4) to integrate
propagation global structure and temporal sequence information
and detect the fake news at early stage.

3.1 Diffusion Guided Propagation Generation
At the early stage of news dissemination, the user interaction is
insufficient to provide extra social context, thereby limiting the ef-
ficacy of detection performance. Consequently, we propose a prop-
agation path generator to simulate user interaction by a guided
diffusion module at data sparse situation. In this section, we first
introduce the dual conditional denoiser, a module to integrate con-
trol signals into diffusion, as illustrated in Figure 3. Subsequently,
we describe the training phase (Section 3.1.2) and generation phase
(Section 3.1.3) based on denoising diffusion model.

3.1.1 Dual Conditional Denoiser. The vanilla denoising diffusion
probabilistic model is not feasible to generate reasonable propaga-
tion paths. This is primarily because the generation process lacks
controllable conditions from news content and historical sequences.
To address this issue, we design a dual conditional denoiser module
to integrate the multi-condition features and provide guidance for
propagation path generation, spanning from random noise to user
embedding.

Firstly, we employ the Transformer encoder to encode the se-
quential path, c𝑚−1 = Transformer(𝑛0, 𝑢1, · · · , 𝑢𝑚−1), where the
c𝑚−1 denotes the embedding of the historical sequence.

For the news content input, we embed the textual and visual con-
tent as r𝑚−1 = [n𝑇 | |n𝑉 ], where | | is the concatenation operation.
The one-denoising step guided with dual conditions is as follows:

û𝑡𝑚 =LN(SelfAtt( [ut
m | |𝛽t]) + [ut

m | |𝛽t]),
ĉ𝑚−1 =LN(CrossAtt(ĉm−1, ût

m) + ût
m),

r̂𝑚−1 =LN(CrossAtt(rm−1, ĉm−1) + ĉm−1),
u𝑡−1
𝑚 =LN(FF(r̂m−1) + ût

m)),

where SelfAtt is the self-attention, CrossAtt is the cross-attention,
LN is the layer norm and FF is the feed-forward layer. The user em-
bedding u𝑡𝑚 and step embedding 𝛽t are concatenated firstly. Then
historical sequence embedding r𝑚−1 and news content embedding
c𝑚−1, are integrated by CrossAtt respectively. The u𝑡−1

𝑚 is the de-
noising user embedding from step 𝑡 to step 𝑡 − 1. We integrate
the dual conditions features into noise embedding through cross-
attention operation and control the denoising process to generate
reasonable user embedding.

3.1.2 Conditional Diffusion Training Phase. In the training phase,
rather than applying denoising process from uncontrollable, we
reconstruct it with dual conditional denoiser to incorporate multi-
conditions. With the guide of news content and sequential path,
the denoising process is as follows:

𝑝𝜃 (u𝑡−1
𝑚 |u𝑡𝑚, c𝑚−1, r𝑚−1) =

N(u𝑡−1
𝑚 ;𝒇𝜃 (u𝑡𝑚, c𝑚−1, r𝑚−1, 𝑡), 𝚺𝜃 ),

(4)
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Algorithm 1: Guided Diffusion Training
Input :News dataset {𝑛}, users set{S}
output :Well trained 𝑓𝜃 (u𝑡𝑚, c𝑚−1, 𝑡)

1 Initialize parameters of 𝑓𝜃 ;
2 for each news 𝑛 ∈ {𝑛1, 𝑛2, · · · , 𝑛𝑁 } do

/* Sample and embed the users. */

3 Target user: 𝑢0
𝑚 , {𝑛0,𝑢1,𝑢2, · · · ,𝑢𝑚−1 } ∼ S;

/* Encode dual conditional signals. */

4 c𝑚−1 = Transformer(𝑛0,𝑢1, · · · ,𝑢𝑚−1 ) ;
5 r𝑚−1 = [n𝑇 | |n𝑉 ];

/* Perform no guided training with probability 𝜆 */

6 With probability 𝜆: 𝑓𝜃 (u𝑡𝑚,Φ, 𝑡 ) ;
/* Sample the diffusion step and generate Gaussian noise.

*/
7 𝑡 ∼ Uniform({1, 2, . . . ,𝑇 }) , 𝝐 ∼ N(0, I) ;

/* Diffuse the target user with Gaussian noise. */

8 u𝑡𝑚 =
√
𝛼𝑡u0

𝑚 +
√

1 − 𝛼𝑡 𝝐 ;
/* Take gradient descent step, 𝜇 denotes the step size. */

9 𝜃 = 𝜃 − 𝜇∇𝜃



𝜖 − 𝑓𝜃 (u𝑡𝑚, c𝑚−1, r𝑚−1, 𝑡 )


2 ;

10 end

where the architecture of 𝒇𝜃 (u𝑡𝑚, c𝑚−1, r𝑚−1, 𝑡) is the Dual Condi-
tional Denoiser, 𝑡 is the time step.

Similar to Eq. 2, the forward diffusion is formulated as a Markov
chain of Gaussian transitions:

𝑞(u𝑡𝑚 |u𝑡−1
𝑚 ) = N(u𝑡𝑚 ;

√︁
1 − 𝛽𝑡u𝑡−1

𝑚 , 𝛽𝑡 I), (5)

where the [𝛽1, 𝛽2, . . . , 𝛽𝑇 ] is the variance schedule.
The objective of propagation path generation is to optimize the

variational bound of negative log-likelihood, which equals mini-
mizing the KL-divergence between 𝑞

(
u0:𝑇
𝑚

)
and 𝑝𝜃

(
u0:𝑇
𝑚

)
:

E
[
− log𝑝𝜃 (u0

𝑚)
]

≤ 𝐷𝐾𝐿

(
𝑞

(
u0
𝑚, u

1
𝑚, · · · , u𝑇𝑚

)
∥𝑝𝜃

(
u0
𝑚, u

1
𝑚, · · · , u𝑇𝑚

))
=

𝑇∑︁
𝑡=1

𝐷𝐾𝐿

(
𝑞(u𝑡−1

𝑚 |u𝑡𝑚, u0
𝑚) | |𝑝𝜃 (u𝑡−1

𝑚 |u𝑡𝑚)
)
+𝐶,

where 𝐶 is the constant. For the simplified objective, we randomly
sample a fix number of 𝑡 and minimize the KL-divergence in each
iteration, which can be expressed as follows:

𝐿simple (𝜃 ) =

Eu0
𝑚,𝝐

[


𝜖 − 𝒇𝜃

(√
𝛼𝑡u0

𝑚 +
√

1 − 𝛼𝑡𝝐, c𝑚−1, r𝑚−1, 𝑡
)


2

]
.

More detail about the optimization is displayed in Appendix A.1.
The algorithm for conditional diffusion training is presented in
Algorithm 1. The procedure starts with encoding the historical se-
quence c𝑚−1 and news content r𝑚−1 in lines 1-5. Next, the Gaussian
noise is generated from the sampled step 𝑡 and the target user em-
bedding is diffused by noise in lines 6-8. Finally, the parameter 𝜃 in
𝒇𝜃 is optimized by gradient descent in line 9.

3.1.3 Propagation Path Generation Phase. In the generation phase,
we target to generate reasonable and informative propagation paths,
given the news content and historical sequence. Inspired by [6], we
jointly introduce an additional unconditional model using classifier-
free guidance scheme [10]. Specially, the guidance conditions c𝑚−1
and r𝑚−1 are replaced randomly by a dummy token Φ with the
probability 𝜆 to represent as the unconditional diffusion model.

Algorithm 2: Propagation Generation
Input :News 𝑛 and propagation path P.
output :The augment propagation P′.

1 Number of data augmentation executed 𝐷 ;
2 for 𝑑 = 𝐷,𝐷 − 1, . . . , 1 do

/* Sample user sequence and noise */

3 {𝑛0,𝑢1, · · · ,𝑢𝑚−1 } ∼ P, u𝑇𝑚 ∼ N(0, I) ;
/* Encode dual conditional signals. */

4 c𝑚−1 = Transformer(𝑛0,𝑢1, · · · ,𝑢𝑚−1 ) ;
5 r𝑚−1 = [n𝑇 | |n𝑉 ];
6 for 𝑡 = 𝑇,𝑇 − 1, . . . , 1 do

/* Control guidance strength. */

7 𝑓𝜃 (u𝑡𝑚, c𝑛−1, r𝑛−1, 𝑡 ) =
(1 + 𝑤 ) 𝑓𝜃 (u𝑡𝑚, c𝑛−1, r𝑛−1, 𝑡 ) − 𝑤 𝑓𝜃 (u𝑡𝑚,Φ, 𝑡 ) ;

/* Denoising for one step. */

8 û𝑡−1
𝑚 =

√
�̄�𝑡−1𝛽𝑡
1−�̄�𝑡 𝑓𝜃 (u𝑡𝑚, c𝑛−1, 𝑡 ) +

√
𝛼𝑡 (1−�̄�𝑡−1 )

1−�̄�𝑡 u𝑡𝑚 +
√︃
𝛽𝑡 z;

9 end
10 Retrieve u0

𝑚 with Top-K nearest embedding and generate K sequences
to update P;

11 end

To manipulate the influence of the guidance conditions, the 𝒇𝜃
is modified as the following format:

𝒇𝜃 (u𝑡𝑚, c𝑚−1, r𝑚−1, 𝑡) =
(1 +𝑤) 𝒇𝜃 (u𝑡𝑚, c𝑚−1, r𝑚−1, 𝑡) −𝑤 𝒇𝜃 (u𝑡𝑚,Φ, 𝑡),

where 𝑤 is a hyperparameter to control the influence of condi-
tions. A higher𝑤 can enhance conditional guidance, but it could
potentially undermine diffusion generalization, consequently dete-
riorating the quality of the generated user embeddings. The one-
denoising step process is as follows:

u𝑡−1
𝑚 =

√
𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

𝑓𝜃 (u𝑡𝑚, c𝑚−1, r𝑚−1, 𝑡)+
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
u𝑡𝑚 +

√︃
𝛽𝑡 z,

(6)

where z ∼ N(0, I). After the propagation generation phase, the
user embedding u0

𝑚 is generated by denoising the Gaussian noise
sample u𝑇𝑚 ∼ N(0, I) for 𝑇 steps.

We further simplify the above conditional diffusion generation
process as u0

𝑚 = Diff-GEN(𝑛, {𝑛0, 𝑢1, 𝑢2, · · · , 𝑢𝑚−1}), where u0
𝑚 is

the generated next user embedding. To identify the particular user
within the user set, we utilize an inner product measurement for
retrieving the K-nearest users from the candidate set. This process
results in the generation of K new sequential paths. Subsequently,
the propagation path set P is updated by incorporating the newly
generated sequential paths. And then we randomly sample the
candidate user sequence path as 𝑆𝑖+1 = {𝑛0, 𝑢1, · · · , 𝑢 |𝑆𝑖+1 | }, where
|𝑆𝑖+1 | denotes the sequence length, and the Diff-GEN(𝑛, 𝑆𝑖+1) is ap-
plied autoregressively to generate the next user embedding𝑢 |𝑆𝑖+1 |+1.
This generation process is iteratively repeated, resulting in the re-
fined news propagation path set P′.

The algorithm for propagation generation is in Algorithm 2.
The procedure starts with sampling the sequence and encoding
conditions in lines 1-5. Next, denoising steps are taken for 𝑇 times
in lines 6-9. Finally, the u0

𝑚 is retrieved with Top-K user embeddings
and the set P is updated in line 10.
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3.2 Propagation Path Enhanced Detection
After the augmentation propagation paths are generated by denois-
ing phase, we target to learn the propagation global structure and
temporal depth features from the sufficient simulation propaga-
tion information. Here, we introduce a propagation path enhanced
detection module (depicted in Figure 4), which models the propaga-
tion path set P′ into the directed graph and sequence hypergraph
to capture the structure and temporal features respectively.

3.2.1 Learning of Temporal Sequence . To learn the propagation
temporal depth information, a sequence hypergraph is modeled
from the generation propagation path. The news propagation path
set is denoted as P′ = {𝑆1, 𝑆2, . . . , 𝑆 | P′ | }. We adopt a hypergraph
𝐻 = (𝑈𝐻 , 𝐸𝐻 ) to represent each sequential path 𝑆𝑖 as a hyperedge.
Formally, each hyperedge 𝑒𝑖 ∈ 𝐸𝐻 connects all users that in the
same sequence 𝑆𝑖 = {𝑢0, 𝑢1, . . . , 𝑢 |𝑆𝑖 | }. After modeling the sequen-
tial path into a hyperedge, we use a hypergraph attention network
(Hyper-GAT) with two stage aggregation to learn the temporal
depth information [7].

Node-to-edge Attention. The hyperedge ei is represented by
aggregating all connected nodes:

𝛼𝑖𝑘 =
exp(aT

1 û𝑘 )∑
𝑢𝑝 ∈𝑒 𝑗 exp(aT

1 û𝑝 )
, û𝑘 = ReLU(W1u𝑙−1

𝑘
),

e𝑙𝑖 =𝜎

( ∑︁
𝑢𝑘 ∈𝑒𝑖

𝛼𝑖𝑘W1u𝑙−1
𝑘

)
,

where 𝜎 is the activation function,W1 is trainable weight matrix,
a1 is the weight vector. 𝛼𝑖𝑘 is the attention coefficient, 𝑙 is the layer
of Hyper-GAT.

Edge-to-node Attention. Then we integrate all hyperedges E𝑖
participated by user 𝑢𝑖 to update the user node representation:

𝛽𝑖 𝑗 =
exp(aT

2 ê𝑗 )∑
𝑒𝑝 ∈E𝑖

exp(aT
2 ê𝑝 )

, ê𝑗 = ReLU( [W2e𝑙𝑗 | |W3u𝑙−1
𝑖 ]),

u𝑙𝑖 =𝜎
( ∑︁
𝑒 𝑗 ∈E𝑖

𝛽𝑖 𝑗W2e𝑙𝑗

)
,

where a2 is weight vector. W2 and W3 are trainable weight matrix.

3.2.2 Learning of Propagation Structure. To learn the global propa-
gation structure, a directed propagation graph is constructed from
propagation paths, which is denoted as 𝐺 = (𝑈𝐺 , 𝐸𝐺 ). Each edge
𝑒𝑖 ∈ 𝐸𝐺 connects two users in a single sequence. Graph attention
network [37] is applied to learn global structure features:

𝛼𝑖𝑘 =
exp(aT

3 û𝑘 )∑
𝑘∈N(𝑖 ) exp(aT

3 û𝑘 )
, û𝑘 = ReLU(W4u𝑙−1

𝑘
| |W4u𝑙−1

𝑖 )

u𝑙𝑖 =𝜎
©­«

∑︁
𝑢𝑘 ∈N𝑖

𝛼𝑖𝑘W4u𝑙−1
𝑘

ª®¬,
where a3 is the weight vector andW4 is the trainable weight matrix.

3.2.3 Optimization. To generate the graph level features, we pool
the node features from hypergraph and directed graph. Then two
types of graph features are concatenated with news content feature
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Figure 4: Propagation Path Enhanced Fake News Detection.

and fed into a prediction layer to make the final decision:

u𝐻 = readout(U𝐻 ), u𝐺 = readout(U𝐺 ),

P(𝑦 | 𝑛,𝐺,H) = sigmod(W𝑃 [u𝐻 ∥u𝐺 ∥r] + b),

where uH is pooled graph level feature as temporal depth feature
and uG is the global structure feature. The readout is applied by
mean pool. Finally, the cross-entropy loss is calculated as:

L = −𝑦 · 𝑙𝑜𝑔(P(𝑦)) − (1 − 𝑦) · 𝑙𝑜𝑔(1 − P(𝑦)) . (7)

4 EXPERIMENT
4.1 Experimental Settings
Datasets. We conduct experiments on three datasets: PolitiFact,
GossipCop [30], and Pheme [25], which contain 484, 5,526 and
3,506 news, respectively. The dataset is randomly split into training,
validation, and testing sets with a ratio of 7:1:2 [38]. More dataset
statistics are presented in the Appendix A.2.
Baselines. Two types of SOTA baselines are adopted, including
content-based: BERT [5],MVAE [14], EANN [38], CAFE [4], LLAMA2
[36] and Detect-GPT [2]. Propagation-enhanced: CSI [28], Bi-GCN
[1], UPFD [8] and MFAN [44]. More detailed descriptions about
baselines are listed in the Appendix A.3.
Implementation Details. We employ AdamW [20] as the op-
timizer, and the batch size is set at 16. The hidden size of user
embedding is set to 128. More details about the implementation
and hyper-parameter are demonstrated in Appendix A.4.

4.2 Quantitative Evaluation
Each detection model is executed five times, and the average re-
sults are reported in Table 1 and 2. We conduct full propagation
paths comparison with propagation-enhanced methods in Table 1.
With sufficient propagation information, the propagation-enhanced
methods improve detection capabilities. It indicates that propaga-
tion paths are capable of providing extra social context to facilitate
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Category Method
PolitiFact GossipCop PHEME

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Propagation
Enhanced

CSI 0.753 0.834 0.742 0.758 0.782 0.823 0.783 0.808 0.771 0.825 0.831 0.828
Bi-GCN 0.788 0.834 0.742 0.758 0.890 0.928 0.848 0.890 0.827 0.840 0.834 0.835
UPFD 0.904 0.923 0.857 0.889 0.879 0.906 0.931 0.918 – – – –
MFAN 0.872 0.841 0.881 0.860 0.862 0.903 0.910 0.906 0.887 0.871 0.856 0.862

Proposed DGA-Fake 0.926 0.927 0.904 0.915 0.882 0.913 0.927 0.920 0.834 0.875 0.874 0.875
Table 1: Performance with full propagation paths. Best results are in bold and second best results are underlined.

Category Method
PolitiFact GossipCop PHEME

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Content
Based

BERT 0.781 0.766 0.838 0.800 0.836 0.872 0.829 0.850 0.801 0.798 0.776 0.786
MVAE 0.812 0.803 0.835 0.819 0.782 0.802 0.751 0.776 0.776 0.734 0.722 0.728
EANN 0.804 0.808 0.794 0.781 0.796 0.812 0.765 0.788 0.771 0.714 0.701 0.704
CAFE 0.848 0.857 0.850 0.853 0.832 0.804 0.903 0.851 – – – –
LLAMA2 0.848 0.865 0.780 0.820 0.825 0.811 0.872 0.840 – – – –
Detect-GPT 0.858 0.888 0.780 0.831 0.831 0.833 0.884 0.858 – – – –

Propagation
Enhanced

CSI 0.734 0.774 0.571 0.658 0.753 0.748 0.764 0.756 0.754 0.799 0.839 0.819
Bi-GCN 0.745 0.696 0.762 0.727 0.826 0.871 0.881 0.876 0.771 0.825 0.831 0.828
UPFD 0.862 0.892 0.786 0.835 0.822 0.860 0.891 0.875 – – – –
MFAN 0.840 0.846 0.787 0.815 0.822 0.861 0.888 0.875 0.802 0.853 0.846 0.850

Proposed
DGA-Fake 0.904 0.923 0.857 0.889 0.867 0.898 0.922 0.910 0.821 0.859 0.874 0.866
Imp.(%) +4.2 +3.1 +0.7 +3.6 +3.5 +2.7 +3.1 +3.4 +1.9 +0.6 +2.8 +1.6

Table 2: Performance with early propagation paths. Best results are in bold and second best results are underlined.

Abaltion Categoty Method
PolitiFact GoosipCop Pheme

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Proposed DGA-Fake 0.926 0.927 0.904 0.915 0.882 0.913 0.927 0.920 0.834 0.875 0.874 0.875

Conditional
Diffusion

w/o all condition 0.893 0.921 0.833 0.875 0.859 0.895 0.916 0.905 0.815 0.865 0.853 0.859
w/o news content 0.904 0.923 0.857 0.889 0.864 0.887 0.933 0.909 0.823 0.873 0.857 0.865
w/o user sequence 0.914 0.927 0.857 0.891 0.870 0.895 0.932 0.913 0.820 0.870 0.857 0.863

Dual Conditional
Denoiser

cross-attention 0.904 0.923 0.857 0.889 0.879 0.906 0.932 0.919 0.831 0.868 0.877 0.873
concat+MLP 0.883 0.918 0.810 0.861 0.867 0.904 0.914 0.909 0.818 0.875 0.846 0.860

Propagation Path
Enhanced Module

w/o directed graph 0.914 0.927 0.857 0.889 0.863 0.886 0.933 0.909 0.828 0.871 0.868 0.870
w/o hypergraph 0.904 0.923 0.857 0.899 0.875 0.895 0.939 0.917 0.821 0.868 0.862 0.864
sequnce encoder 0.893 0.921 0.833 0.875 0.851 0.888 0.911 0.899 0.819 0.862 0.865 0.864

Table 3: Ablation studies of DGA-Fake on three datasets.

the detection of fake news. The DGA-Fake achieves the compet-
itive results with propagation-enhanced baselines. Specially, our
proposal outperforms all baselines on PolitiFact dataset. It demon-
strates that generated propagation paths are capable of providing
more context information even in the data sufficient scenarios.

In order to evaluate the detection capabilities of DGA-Fake at
early propagation stage, we conduct the comparison with early de-
tection baselines in Table 2. To simulate early detection scenarios in
the test dataset, we remain the early user engagements in the range
of 3 to 5 randomly as the accessible propagation paths. One can
clearly see that the performances of propagation-enhancedmethods
decline a lot and even performworse than some content-basedmeth-
ods (CAFE). This indicates insufficient propagation paths are diffi-
cult to capture the complex global structure and temporal sequence

information. Besides, we further compare with content-based large
language model baselines LLAMA2 [36] and Detect-GPT [2], which
is deployed through the zero-shot prompt engineering. Notably, the
LLM-based approaches performs worse than propagation-enhanced
methods (in Table 1) and our DGA-Fake. It indicates that the tex-
tual features alone prove insufficient in adequately verifying the
veracity of news. After introducing generated propagation paths by
DGA-Fake, detection performance is further improved, revealing
the pivotal role of sufficient propagation paths. Specially, DGA-Fake
consistently outperforms all baselines over three datasets, achieving
+4.2% on PolitiFact, +3.5% on GossipCop, and +1.9% on Pheme in
terms of accuracy. Our proposal generates propagation paths based
on news content, causing low social hazard while outperforming
propagation-enhanced methods in early stage detection.
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Figure 5: Parameter sensitivity analysis.

Method
PolitiFact GossipCop Pheme

Acc F1 Acc F1 Acc F1

C-VAE 0.851 0.841 0.803 0.859 0.795 0.847
C-GAN 0.872 0.860 0.843 0.901 0.813 0.854

Proposed 0.926 0.915 0.882 0.920 0.834 0.875

Table 4: Comparison between generative models.

4.3 Ablation Study
The ablation studies are conducted to investigate the importance
of different modules in Table 3.

Conditional Diffusion. We aim to study the influence of differ-
ent conditions. “w/o news content”, “w/o user history”, and “w/o
all conditions” stand for without news content, user sequence, and
both. (1) The performance declines more with “w/o news content”,
revealing that news content is more important than user history. (2)
Without all conditions, performance declines significantly, proving
both conditions are crucial to improve performance.

Dual Conditional Denoiser. Here we focus on investigating
the effectiveness of dual conditional denoiser. “cross-attention” and
“concat+MLP” denote to replace the conditional transformer-based
denoising structure. (1) After replacing with “concat+MLP”, model
performance presents a significant decline, verifying that simple
concatenation operationmay not learn two conditional signals effec-
tively. (2) Compared with “cross-attention”, our proposal achieves
better performance, revealing that multi-stacks of transformer struc-
ture are capable of capturing the content condition and user se-
quence simultaneously.

Propagation Path Enhanced Detection. “w/o directed graph”,
“w/o hypergraph” are implemented without directed propagation
graph and user hypergraph. The “sequence encoder” is denoted as
to replace with user sequence encoder. (1) Both modules are crucial
to achieving desirable detection performance as “w/o hypergraph”
and “w/o directed graph” only achieve degraded results. It demon-
strates both global structure feature and sequence depth feature
are beneficial for detection performances. (2) Without the both two
graph modules, performance declines significantly due to sequence
information can not reflect the propagation temporal and structure
information effectively.

4.4 Parameter Sensitivity Analysis
Here we conduct hyper-parameter sensitivity analysis on two pa-
rameters: the number of diffusion step𝑇 and the guidance strength
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Figure 6: Case studies on Pheme dataset.

𝑤 . In Figure 5(a), with the increase of𝑇 , model performance first in-
creases and then significantly drops. A greater number of diffusion
steps are required to obtain more refinement, while the generated
embeddings do not fit the distribution of real propagation paths if𝑇
is too small. Figure 5(b) shows that with the increase of conditional
guidance strength𝑤 , model performance first improves and then
drops. This demonstrates that too much conditional signal may
hurt the quality of the user embedding.

4.5 Generative Model Analysis
In this section, different generative models are compared in Ta-
ble 4. We take the deep generative model C-VAE [23] and C-GAN
[17] as baselines. The proposed DGA-Fake outperforms the genera-
tive models over three datasets. Due to the diffusion-guided model
generating diverse and high-quality propagation paths, our pro-
posal is capable of capturing the temporal and structural features
to facilitate the detection.

4.6 Case Study
Figure 6 presents the case of generated propagation path. One can
clearly see that the generated paths are similar to the ground-truth
in terms of high-frequency user, initial spreading user, propagation
sequence and sub-graph structure. It demonstrates that our proposal
learns the real propagation feature in the user community, capturing
the temporal and structural features during news spreading.

5 RELATEDWORK
We divide detection methods into two categories. Content-based:
manymethods focus on content features for detection [13, 21, 22, 33,
39]. Some recently works deploy large language model by prompt
engineering [2, 36]. Propagation-enhanced: some studies apply
propagation path to detect fake news [8, 27, 31, 44]. Besides, some
researchers integrate auxiliary information for early detection [19,
24, 32, 42]. More details about related work are in Appendix A.5.

6 CONCLUSION
In this paper, we propose a novel Diffusion Guided Propagation Aug-
mentation Fake News Detection model. We generate the propaga-
tion paths via conditional diffusion module and further incorporate
them with news content feature for fake new detection. Experi-
mental results evaluated on three popular datasets demonstrate the
superiority of our proposal.
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