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A APPENDIX
A.1 The optimization of diffusion model
The optimization of the underlying data generating distribution
𝑝𝜃 (x0) is performed by optimizing the variational bound of negative
log-likelihood. The objective function can be written as the KL
divergence between 𝑞

(
x0:𝑇

)
and 𝑝𝜃

(
x0:𝑇

)
:

E
[
− log𝑝𝜃 (x0 )

]
≤ 𝐷𝐾𝐿 (𝑞 (x0, x1, · · · , x𝑇 ) ∥𝑝𝜃 (x0, x1, · · · , x𝑇 ) )

= E𝑞

[
− log𝑝 (x𝑇 ) −

𝑇∑︁
𝑡=1

log
𝑝𝜃 (x𝑡−1 | x𝑡 )
𝑞 (x𝑡 | x𝑡−1 )

]
+𝐶1

=

𝑇∑︁
𝑡=1

𝐷𝐾𝐿

(
𝑞 (x𝑡−1 |x𝑡 , x0 ) | |𝑝𝜃 (x𝑡−1 |x𝑡 )

)
︸                                           ︷︷                                           ︸

:=𝐿𝑡−1

+𝐶2,

(1)

where𝐶1 and𝐶2 are constants that are independent of themodel pa-
rameter𝜃 . Using Bayes’ theorem, the posterior distribution𝑞(x𝑡−1 |x𝑡 , x0)
could be solved in closed form:

𝑞

(
x𝑡−1 | x𝑡 , x0

)
= N

(
x𝑡−1; 𝝁̃𝑡

(
x𝑡 , x0

)
, 𝛽𝑡 I

)
, (2)

where
𝝁̃𝑡

(
x𝑡 , x0

)
=

√
𝛼𝑡−1𝛽𝑡
1 − 𝛼𝑡

x0 +
√
𝛼𝑡 (1 − 𝛼𝑡 )

1 − 𝛼𝑡
x𝑡 ,

𝛽𝑡 =
1 − 𝛼𝑡−1
1 − 𝛼𝑡

𝛽𝑡 .

(3)

Further reparameterizing 𝝁𝜃
(
x𝑡 , 𝑡

)
as:

𝝁𝜃
(
x𝑡 , 𝑡

)
=

1
√
𝛼𝑡

(
x𝑡 − 1 − 𝛼𝑡√

1 − 𝛼𝑡
𝝐𝜃

(
x𝑡 , 𝑡

) )
. (4)

The training objective in Eq. 1 is simplified as:

𝐿 =E𝑞

[
1

2𝜎2
𝑡

∥𝜇̃𝑡 (x𝑡 , x0) − 𝝁𝜃 (x𝑡 , 𝑡)∥2
]

=Ex0,𝝐

[


𝝐 − 𝝐𝜃

(√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝝐, 𝑡

)


2
]
.

(5)

A.2 Datasets Details.
We conduct experiments on three real-world datasets, Pheme[25],
PolitiFact and GossipCop[28]. Pheme is collected from Twitter, a
widely used social media platform. PolitiFact and GossipCop are
collected from fact-check websites which are created to verify the
authenticity of published news. We conduct data cleaning on all
three datasets and Table 1 presents the basic information.

A.3 Baselines.
We compare our model in two categories of baselines, a total of ten
models.

The content-based fake news detection models:
• BERT [7] is a pretrained model to extract text features.

Dataset Pheme PolitiFact GossipCop
#. total news 3,506 484 5,526
#. fake news 1,142 297 1,935
#. real news 2,364 187 3,591
#. words per news 13.8 1546.1 578.6

Table 1: Statistics of the datasets

• MVAE [15] comprises an encoder, a decoder, and a detector
to classify fake news.

• EANN [34] designs a multi-task learning framework to de-
tect fake news and classify events simultaneously.

• CAFE [6] aggregates unimodal features and cross-modal
correlations to help detection.

• LLAMA2 [32] applies a straightforward prompt engineering
such as "Is it true that x? Yes or no?", where ’x’ represents
news text content.

• Detect-GPT [2] develops a zero-shot prompt engineering
for text content fake news detection.

The propagation-enhanced detection methods:
• CSI [27] employs LSTM to encode the news content, and
utilizes the group behavior of users for detection.

• Bi-GCN [1] uses a Bidirectional Graph Convolutional Net-
work to learn the propagation patterns of misinformation.

• UPFD [8] learns user preferences through their past engaged
posts, and combines content with graph modeling.

• MFAN [43] integrates textual, visual, and social graph fea-
tures in one unified framework for rumor detection.

A.4 Implementation Details.
We employ AdamW [18] as the optimizer, and the batch size is set
at 16. The initial learning rate is set to 5𝑒−3. The hidden size of user
embedding is set to 128. The selection parameter Top-𝐾 is set as
5. The unconditional training probability 𝜆 as 0.1 [10]. The total
diffusion step 𝑇 is searched in the range of [100, 200, 300, 400, 500,
600], while the conditional guidance strength𝑤 is in the range of
[1,2,3,4,5,6,7,8].

A.5 Related work
Content-based. In recent years, there has been widespread atten-
tion on the automated detection of fake news in social media. Some
early research endeavors seek to detect fake news by extracting fea-
tures from the textual content of the news articles [4, 9, 14, 19, 22].
For instance,Wawer et al. [35] utilizes textual and linguistic features
from websites, based on bag-of-words vector space and psycholin-
guistic dimensions, to predict the credibility of websites. Vaibhav
et al. [33] proposes a model based on graph neural networks to
capture the interaction among sentences in the content of fake
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news. Meanwhile, some researchers propose novel approaches uti-
lizing cross-modal features in news to enhance the accuracy of fake
news detection [6, 13, 30, 34, 36]. Khattar et al. [15] proposes the
MVAE model which consists of three components: an encoder, a
decoder, and a fake news classifier. The encoder is used to encode
a shared representation of features, the decoder reconstructs the
data from multi-modal representations, and the fake news clas-
sifier categorizes news into true or false categories. Zhou et al.
[44] proposes the SAFE method by computing the correlation be-
tween textual information and visual information, defining it as a
modified cosine similarity to detect fake news. Wu et al. [39] uses
multiple co-attention layers to learn the relationship between text
and images.

Recently, researchers start exploring the utilization of Large Lan-
guage Models (LLMs) for fake news detection. Some studies focus
on directly prompting various LLMs such as GPT-3 [2], ChatGPT-
3.5 [3, 11] and GPT-4 [5] for misinformation detection. For instance,
Chen et al. [5] investigates ChatGPT-3.5 and GPT-4 using both stan-
dard prompting strategies and zero-shot chain-of-thought prompt-
ing strategies for detecting human-written misinformation. Pan
et al. [24] introduces a program-guided fact-checking framework
leveraging the contextual learning ability of LLMs to generate rea-
soning programs guiding veracity verification.Wu et al. [37] applies
GPT-3.5 as a feature extractor to identify out-of-context images.
However, existing LLM-based fake news detection methods pri-
marily rely on textual semantics, often insufficient for effectively
considering user behaviors during news dissemination. Textual
features alone may not adequately verify the veracity of news items
in certain situations.
Propagation-enhanced. Different from methods that rely on
the content of news for fake news detection, Propagation Graph-
enhanced fake news detection approaches aim to improve accuracy
by leveraging differences in the propagation processes between real
and fake news [20, 26, 29, 38, 45]. Jin et al. [12] applies epidemio-
logical models to characterize information cascades triggered by
both real and fake news on Twitter. Wu et al. [38] proposes a graph
kernel-based SVM classifier to detect fake news by learning high-
order propagation patterns. Ma et al. [21]designes a model based
on Recursive Neural Network (RNN) to represent features of news
by integrating both the propagation structure and content features
of the news. Zhang et al [41]. proposes a deep diffusive Network
model that can simultaneously learn latent representations and
infer the accuracy of news articles, creators, and topics. Ma et al.
[20] proposes a graph kernel-based SVM classifier that captures
high-order patterns distinguishing different types of fake news by
evaluating the similarity between their propagation tree structures.
Liu et al. [16] conducts authenticity assessment of news based on
user profile information within the news propagation network

Due to the potential impact of misinformation on a large au-
dience and its negative consequences during dissemination, the
early detection of fake news has become a crucial research focus
within the field of fake news detection. Zhao et al.[42] posit that
false information is more likely to arouse user suspicion. They
propose aggregating relevant articles using specific phrases and
subsequently employing a cluster-based classifier for early detec-
tion of false news propagation.Yang et al. [40] endeavor to utilize
convolutional neural networks for extracting linguistic and user

features from news content and employ these features for the early
detection of fake news. Nguyen et al.[23] emploies deep neural
networks to automatically capture features at a posterior level,
achieving superior performance in fake news early detection. Liu
et al. [17] proposes a novel deep neural network that integrates
crowd response features and user reactions, effectively enabling
early detection of misinformation. Song et al. [31] introduces the
concept of trust checkpoints, suggesting collecting every 10 posts
along the timeline as a time step for the Recurrent Neural Network
(RNN) and making predictions at each step.

A.6 Analysis of Generation User Number
We evaluate detection performance on the various number of gen-
eration users in Figure 7. With the increase of generation users,
the model performance first increases and then levels off. This
demonstrates that the performance does not increase after a certain
amount of propagated information.
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Figure 1: Performance with different generation users.

A.7 Complexity Analysis
The time complexity of diffusion guided generation is O(𝑇 ), where
𝑇 is the times of diffusion step. The time complexity of directed
propagation graph is O(|𝑈H |2) and user hypergraph is O(|𝑈𝐺 |2).
The space complexity of the whole model is O(𝑁 2 |𝑈 |2), where 𝑁
is the hidden size of user embedding.
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