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Abstract

The reliable identification of the “best” arm while keeping the sample complexity
as low as possible is a common task in the field of multi-armed bandits. In the
multi-dueling variant of multi-armed bandits, where feedback is provided in the
form of a winning arm among a set of k chosen ones, a reasonable notion of best
arm is the generalized Condorcet winner (GCW). The latter is an arm that has
the greatest probability of being the winner in each subset containing it. In this
paper, we derive lower bounds on the sample complexity for the task of identifying
the GCW under various assumptions. As a by-product, our lower bound results
provide new insights for the special case of dueling bandits (k = 2). We propose
the Dvoretzky–Kiefer–Wolfowitz tournament (DKWT) algorithm, which we prove
to be nearly optimal. In a numerical study, we show that DKWT empirically
outperforms current state-of-the-art algorithms, even in the special case of dueling
bandits or under a Plackett-Luce assumption on the feedback mechanism.

1 Introduction

The standard multi-armed bandit (MAB) problem describes a sequential decision scenario, in which
one of finitely many choice alternatives must be selected in each time step, resulting in the observation
of a numerical reward of stochastic nature. One important and extensively studied variant of the
MAB setting is the dueling bandits problem, where a duel consisting of two arms is chosen in each
time step and one of the duelling arms is observed as the winner [4]. Recently, the multi-dueling
bandits setting has been introduced [7, 40, 31] as a generalization with multiple practically relevant
applications, such as algorithm configuration [13] or online retrieval evaluation [36]. Instead of
pairs of arms, in this generalization a set consisting of k ≥ 2 arms can be chosen in each time
step. These arms compete against each other and determine a single winner, which is observed as
feedback by the learner. The outcomes of the (multi-)duels in the (multi-)dueling bandit scenario
are typically assumed to be of time-stationary stochastic nature in the sense that whenever arms
a1, . . . , ak compete against each other, then ai wins with some underlying (unknown) ground-truth
probability P(ai|{a1, . . . , ak}).

One often targeted learning task in the context of multi-armed bandits and its variants is the problem
of identifying the best among all arms. While for standard MABs, the canonical definition of the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



“best arm” is the arm with highest expected reward, the picture is less clear for its variants. In the
realm of dueling bandits, any arm that is likely to win (i.e., with probability > 1/2) in each duel
against another arm is called the Condorcet winner (CW). This notion dates back to the 18th century
[8] and also appears in the social choice literature [16, 17], where the data is typically assumed to be
available in the form of a list containing total rankings over all alternatives from different voters. In
practice, the Condorcet winner does not necessarily exist due to the presence of preferential cycles in
the probabilistic model in the sense that ai is likely to win against aj , aj against ak, and ak against
ai. For the theoretical analysis of the best-arm-identification problem, this issue is overcome in
the literature either by the consideration of alternative optimality concepts such as Borda winner or
Copeland winner, which are guaranteed to exist, or by simply assuming the existence of the CW.

In this paper, we focus on finding a generalized variant of the CW in the multi-dueling bandits setting
under the assumption that it exists. There have been several suggestions for generalizations of the
CW in social choice. For example, a weighted variant is introduced in [30], where the weights control
the relevance given to the ranking positions of the alternatives, while in [25] the notion of a k-winner
is defined as an alternative that (in some appropriate sense) outperforms all other arms among any k
alternatives. In contrast to our work, these papers focus on offline learning tasks and suppose full
rankings over all alternatives to be given. In this paper, we adapt the notion of generalized Condorcet
winner (GCW) as in [1], i.e., a GCW is an arm ai that outperforms each arm aj in every query set S
containing both ai and aj , in the sense that P(ai|S) ≥ P(aj |S).

Regarding the dueling bandits setting as the multi-dueling setting where the allowed multi-duels S
are exactly those with |S| = 2, the GCW is indeed a generalization of the Condorcet winner. We
analyze the sample complexity of (probabilistic) algorithms that are able to identify the GCW with
high probability under the assumption of mere existence as well as more restrictive assumptions.
We provide upper and lower bounds for this task, which depend on the desired confidence, the
total number m of alternatives, the size k of allowed query sets as well as the underlying unknown
preference probabilities P(ai|S).

We start in Section 2 with a brief literature overview on the multi-dueling bandits scenario. Section 3
introduces the basic formalism and a precise definition of the considered GCW identification problem.
It also gives a rough, simplified overview of the sample complexity bounds obtained in this paper. In
Section 4, we discuss the special case m = k, in which the GCW identification problem essentially
boils down to the task of finding the mode of a categorical distribution. We provide solutions to this
problem and prove their sample complexity to be optimal up to logarithmic factors in the worst-case
sense. Section 5 focuses on lower bounds for the general case m ≥ k, and in Section 6, we discuss
several upper bounds. In Section 7, we empirically compare the algorithms discussed before, prior
to concluding in Section 8. For the sake of convenience, detailed proofs of all theoretical results
presented in the paper are deferred to the supplemental material.

2 Related Work

Initially, the multi-dueling bandit problem was studied intensively in the case of pairs as actions of the
learner, which is also better known as dueling bandits [42]. The extension to the scenario considered
in this paper, where more general sets as pairs of arms are selectable as an action, has been the focus
of recent work. Part of these works model the feedback process by essentially tracing it back to the
dueling bandit case [7, 40, 31]. The majority of papers, however, assume latent utility values for the
arms and model the feedback process using a random utility model (RUM) [3] based on these utility
values. Thanks to the latent utility values, an ordering of the arms is obtained quite naturally, which
in turn makes it easy to define an objective such as the optimal arm or the top-k arms. Under these
assumptions, the PB-MAB problem was investigated with respect to various performance metrics
such as the regret [32, 5, 1] or the sampling complexity in an (ε, δ)-PAC setting [33, 34, 35].

In [1] a different approach is taken by generalizing the concept for the naturally optimal arm in the
dueling bandit case, namely the Condorcet winner (CW), under the term generalized Condorcet
winner (GCW). The optimal arm defined in this way coincides with the optimal arm if latent utility
values for the arms and a RUM for the feedback process are assumed. While in [1] the problem for
finding this GCW is investigated in a regret minimization scenario, we are interested in the minimum
sampling complexity. In light of this, the work by [35] is the most related to ours, although the
authors assume a PL model (a special case of a RUM).
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If we restrict the learner’s actions to pairs of arms in our more general setting, i.e., the dueling bandits
case, the GCW and the CW coincide. This special case of our problem setting has been dealt with by
[26], [20] and [29].

Finally, it remains to mention that there are a number of similar problem scenarios, namely the
Stochastic click model (SCM) [43], the dynamic assortment problem (DAS) [9] and the best-of-k-
bandits [39]. However, all these scenarios take into account other specific aspects in the modelling
such as the order of the arms in the action subset (SCM), known revenues associated with the
arms (DAS) or a so-called “no-choice option" (all three). Accordingly, these problem scenarios
are fundamentally different from our learning scenario (see also Sec. 6.6 in [4] for a more detailed
discussion). The same is true for combinatorial bandits [10], which also allow subsets of arms as
actions, but differ fundamentally in the nature of feedback (quantitative vs. qualitative feedback).

3 The GCW Identification Problem

For adequately stating our results, we introduce in the following some basic terminology and notations
used throghout this paper. For the sake of convenience, Table 1 summarizes the most frequently used
notations.

3.1 The Notion of a GCW

If not explicitly stated otherwise, we suppose throughout the paper the total number of arms m, the
query set size k ∈ {2, . . . ,m}, a desired confidence 1 − γ ∈ (0, 1) and a complexity parameter
h ∈ (0, 1) to be arbitrary but fixed. We write [m] := {1, . . . ,m} and [m]k := {S ⊆ [m] | |S| = k}.

Parameter spaces of categorical distributions. For any subset of size k, i.e., S ∈ [m]k, define
∆S := {p = (pj)j∈S ∈ [0, 1]|S| |

∑
j∈S pj = 1} as the set of all possible parameters for a

categorical random variable X ∼ Cat((pj)j∈S), i.e., P(X = j) = pj for any j ∈ S. For p ∈ ∆S ,
we write mode(p) := arg maxj∈S pj and in case |mode(p)| = 1 we denote by mode(p) — with a
slight abuse of notation — also the unique element in mode(p). Let us define for h ∈ (0, 1] the sets

∆h
S :=

{
p ∈ ∆S | ∃i ∈ S s.t. pi ≥ maxj∈S\{i} pj + h

}
,

and with this ∆0
S :=

⋃
h∈(0,1) ∆h

S . These sets are nested in the sense that ∆h
S ⊆ ∆h′

S ⇔ h ≥ h′. If
p ∈ ∆S is fixed, the value h(p) := max{h ∈ [0, 1] |p ∈ ∆h

S} is well-defined and we have p ∈ ∆h
S

iff h ≤ h(p). Obviously, the equivalence |mode(p)| = 1⇔ p ∈ ∆0
S holds for all p ∈ ∆S .

Probability models on [m]k. A family P = {P(· |S)}S∈[m]k of parameters P(· |S) ∈ ∆S ,
S ∈ [m]k, is called a probability model (short: PM) on [m]k. We write PMm

k for the set of all
probability models on [m]k and define the following subsets of PMm

k :

PMm
k (∆0) := {P = {P(· |S)}S∈[m]k

∣∣ ∀S ∈ [m]k : P(· |S) ∈ ∆0
S},

PMm
k (∆h) := {P = {P(· |S)}S∈[m]k

∣∣ ∀S ∈ [m]k : P(· |S) ∈ ∆h
S },

PMm
k (PL) := {{P(· |S)}S∈[m]k

∣∣ ∃θ ∈ (0,∞)m ∀S ∈ [m]k : P(i |S) = θi/(
∑
j∈S θj)}.

Note that PMm
k (PL) denotes the set of all probability models P consistent with a Plackett-Luce

(PL) model [27, 23]. Let h(P) := maxh∈[0,1]{P ∈ PMm
k (∆h)} = minS∈[m]k h(P(· |S)), then it

is easy to see that P ∈ PMm
k (∆h) iff h ≤ h(P).

An element i ∈ [m] is called a generalized Condorcet Winner (short: GCW) of P if

∀S ∈ [m]k with i ∈ S, ∀j ∈ S : P(i |S)−P(j |S) ≥ 0

and we write GCW(P) for the set of all GCWs of P. With this, we define the following subsets of
PMm

k related to the concept of the GCW:

PMm
k (∃GCW) := {P = {P(· |S)}S∈[m]k

∣∣GCW(P) 6= ∅},
PMm

k (∃GCW∗) := {P = {P(· |S)}S∈[m]k

∣∣ |GCW(P)| = 1},
PMm

k (∃hGCW) := {{P(· |S)}S∈[m]k

∣∣ ∃i : ∀S ∈ [m]k, j ∈ S \ {i} : P(i |S)−P(j |S) ≥ h}.
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Table 1: A list of frequently used notation

m the total number of arms
k the query set size
γ the desired error rate bound
[m] the set {1, . . . ,m}
[m]k the set of all subsets of [m] of size k
1A indicator function, which is 1 if A is a true statement and 0 otherwise; also denoted by 1{A}
S an element from [m]k

PMm
k set of all parameters {P(·|S)}S∈[m]k ⊆ [0, 1](

m
k ) with

∑
j∈S P(j|S) = 1 ∀S ∈ [m]k

PMm
k (X) the set of all P, which fulfill the condition(s) X

PMm
k (X ∧ Y ) the set PMm

k (X) ∩ PMm
k (Y)

P an element from PMm
k

GCW(P) set of all GCWs of P; if |GCW(P)| = 1 it denotes the only element in GCW(P)
∆h,∆0,PL,∃GCW,∃hGCW and ∃GCW∗, cf. Section 3.1

∆S set of all w = (wi)i∈S ∈ [0, 1]|S| with
∑
i∈[m] wi = 1; here, S is a finite set

∆h
S set of all w ∈ ∆S , for which i ∈ S exists with ∀j ∈ S \ {i} : wi ≥ wj + h

∆k,∆h
k ∆[k] resp. ∆h

[k]

p an element from ∆k or an element from ∆S for some S ∈ [m]k
mode(p) arg maxi∈[k] pi for p = (p1, . . . , pk); the term mode(P(·|S)) is defined accordingly
h(p) max{h ∈ [0, 1] |p ∈ ∆h

k} for p ∈ ∆k

h(P) max{h ∈ [0, 1] |P ∈ PMm
k (∆h)}

A an algorithm
D(A) the return value of A
TA the sample complexity of A, i.e., the number of samples observed by A before termination
A(x1, . . . , xl) An algorithm A called with the parameters x1, . . . , xl
Pm,γk (X) Problem of finding for any P ∈ PMm

k (X) with error prob. ≤ γ the GCW, cf. Def. 3.1

Clearly, it holds that PMm
k (∃GCW∗) =

⋃
h>0 PM

m
k (∃hGCW) and every probability model

P ∈ PMm
k (∃GCW) has at least one GCW, while for a probability model P ∈ PMm

k (∃GCW∗) the
GCW is unique.

(∃GCW)

(∃GCW∗)

(∃hGCW)

(PL)

(∆0)

(∆h)

The figure on the right illustrates the relationships
between the introduced subsets of PMm

k . For the
sake of convenience, we write simply (X) instead
of PMm

k (X), where

X ∈ {∃GCW,∃GCW∗,∃hGCW,∆0,∆h,PL}.
This convention will be used several times in the
course of the paper.

3.2 Problem Formulation

We are interested in algorithms A able to find the GCW of some P = {P(· |S)}S∈[m]k ∈ PMm
k ,

which is unknown and only observable via sampling from P. More precisely, we suppose that at each
time step t ∈ N, such an algorithm A is allowed to choose one query set St ∈ [m]k, for which it
then observes a sample St 3 Xt ∼ Cat(P(· |St)). At some time, A may decide to make no more
queries and output a prediction D(A) ∈ [m] for the GCW. We write TA ∈ N ∪ {∞} for the sample
complexity of A, i.e., the total number of queries made by A before termination. Note that both
D(A) and TA are random variables w.r.t. the sigma-algebra generated by the stochastic feedback
mechanism. We write PP for the probability measure corresponding to the stochastic feedback
mechanism if the unknown ground-truth PM is given by P.
Definition 3.1 (The GCW Identification Problem). Let (X) be any of the assumptions from above
with PMm

k (X) ⊆ PMm
k (∃GCW), and let γ ∈ (0, 1) be fixed. An algorithm A solves the problem

Pm,γk (X) if PP

(
D(A) ∈ GCW(P)

)
≥ 1− γ holds for any P ∈ PMm

k (X).

3.3 Overview of Results

In this paper, we provide several upper and lower sample complexity bounds for solutions to the
GCW identification problem Pm,γk (X) under different assumptions (X). We start in Section 4 with
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the discussion of the special case m = k, in which Pk,γk (X) can simply be thought of as finding the
mode of a categorical distribution on [k]. In Sections 5 and 6, we discuss lower and upper bounds for
the general case m ≥ k, respectively.

Table 2 summarizes the obtained worst-case sample complexity bounds1 of solutions to Pm,γk (X),
where the worst-case is meant w.r.t. PMm

k (X ∧ Y), for different choices of X and Y, and the
Bachmann-Landau notations Ω(·) and O(·) are to be understood w.r.t. m, k, h−1 and γ−1. In
addition, we also provide instance-wise bounds in Theorems 5.2 and E.1.

Table 2: Sample complexity bounds of solutions to Pm,γk (X)

(X) (Y) Type Asymptotic bounds References

(PL) (∃hGCW) in exp. Ω( m
h2k

( 1
k + h) ln 1

γ ) Thm. 5.1
(∆h ∧ ∃GCW) (∆h) in exp. Ω( m

h2k
ln 1
γ ) Thm. 5.2

(PL ∧ ∃GCW∗) (∃hGCW) w.h.p. O( m
h2k

( 1
k + h) ln( kγ ln 1

h )) Thm. 6.1
(∃GCW ∧∆0) (∆h) w.h.p. O( m

h2k
ln(mk )(ln ln 1

h + ln 1
γ )) Thm. 6.2

(∃hGCW ∧∆0) (∃hGCW) a.s. O( m
h2k

ln( mkγ )) Thm. E.2

Due to PMm
k (∆h∧∃GCW) ( PMm

k (∃hGCW) ( PMm
k (∃GCW), Thm. 5.2 implies in particular

that any solution A to Pm,γk (∃GCW) fulfills supP∈PMm
k (∃hGCW) EP[TA] ∈ Ω( m

kh2 ln(γ−1)). As
Thm. 6.1 and Thm. 6.2 indicate that the bounds in Thm. 5.1 and Thm. 5.2 are asymptotically sharp up
to logarithmic factors, the GCW identification problem seems to be easier under the PL assumption
by a factor 1/k + h.

4 The Single Bandit Case m = k

In this section, we address the problem Pm,γk (X) for the special case k = m. For sake of convenience,
we abbreviate ∆k := ∆[k] and similarly ∆h

k := ∆h
[k] for any h ∈ [0, 1]. Due to [k]k = {[k]}, any

probability model P ∈ PMk
k is completely characterized by P(·|[k]) and the GCW of P is simply

mode(P(·|[k])). Since the latter one always exists, we have PMk
k ⊆ PMk

k (∃GCW). Note that
Pk,γk (∆0) = Pk,γk (∃GCW∗) as well as Pk,γk (∆h) = Pk,γk (∃hGCW) are fulfilled trivially – i.e.,
we do not have to distinguish between the assumptions ∆0 and ∃GCW∗ resp. ∆h and ∃hGCW
throughout this section. For the sake of convenience we will identify P = {P(·|[k])} ∈ PMk

k with
p := (p1, . . . , pk) := (P(1|[k]), . . . ,P(k|[k])) ∈ ∆k. Due to h(P) = h(p), the set PMk

k (∆h)

is identified with ∆h
k this way for any h ∈ [0, 1], and thus an algorithm A solves Pk,γk (∆h) for

h ∈ [0, 1] iff it fulfills Pp(D(A) = mode(p)) ≥ 1− γ for any p ∈ ∆h
k .

4.1 Lower Bounds

Based on Wald’s identity, the optimality of the sequential probability ratio test and a result by [14] we
are able to prove the following two results, each of which are proven in Section C. In the appendix,
we state with Prop. C.1 a more explicit but technical version of Prop. 4.1.

Proposition 4.1. For any γ0 ∈ (0, 1/2) and h0 ∈ (0, 1) there exists a constant c(h0, γ0) > 0 with
the following property: Whenever h ∈ (0, h0), γ ∈ (0, γ0) and A is a solution to Pk,γk (∆h), then

∀p ∈ ∆h
k : Ep[TA] ≥ 2c(h0, γ0)(h(p))−2 ln(γ−1) (1/k + h) .

In particular, supp∈∆h
k
Ep[TA] ≥ 4c(h0, γ0)h−2 ln(γ−1).

Proposition 4.2. Let γ ∈ (0, 1/2) be fixed and suppose A is a solution to Pk,γk (∆0). Let p ∈ ∆0
k be

arbitrary, i := mode(p) and j := arg maxj∈[k]\{i} pj . Then, the family {p(h)}h∈(0,pi−pj) ⊆ ∆0
k

defined via (p(h))i := (pi+pj+h)/2, (p(h))j := (pi+pj−h)/2 and (p(h))l := pl for l ∈ [k] \ {i, j}
fulfills p(h) ∈ ∆h

k as well as

lim suph→ 0
Ep(h)[T

A]/(h−2 ln lnh−1) ≥ (1− 2γ)(pi + pj) > 0.

1Here, “in exp.” means in expectation, “w.h.p.” means with prob. ≥ 1− γ and “a.s.” with prob. 1.
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[37] have recently proven a result similar to Proposition 4.1. In contrast to theirs, our bound provides
as additional information also the asymptotical behavior as k → ∞. Moreover, our proof is based
on the optimality of the Sequential Probability Ratio Test [41, 38] instead of a measure-changing
argument [21].

4.2 Upper Bounds and Further Prerequisites

To construct a solution A to Pk,γk (∆h), we have to decide in a sequential manner at each time t,
whether we want to make a further query St ∈ [k]k resulting in a sample Xt or to output an answer
D(A) ∈ [k]. As [k]k = {[k]}, we can only choose St = [k] in each time step t, upon which
we observe as feedback Xt ∼ Cat(p), i.e., Pp(Xt = i) = pi for any i ∈ [k]. Having observed
X1, . . . , Xt, a straightforward idea for a prediction D(A) would be to use the mode of the empirical
distribution p̂t := (p̂t1, . . . , p̂

t
k) given by p̂ti := 1

t

∑
t′≤t 1{Xt=i}. As the Dvoretzky-Kiefer-Wolfowitz

(DKW) inequality assures us that

Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > ε

)
≤ 4e−tε

2/2 (1)

holds for any ε > 0 (Lem. D.1), we can infer that p̂t is close to p with high confidence for large
values of t. Hence, if t is large enough, predicting the mode of p̂t would be the correct prediction for
mode(p) with high probability. In the following we show which choice of t is sufficient to assure a
confidence ≥ 1− γ.

Let us first consider the case p ∈ ∆h
k . It can be shown that

(∃i : p̃i −maxj 6=i p̃j ≥ ε and pi 6= maxj pj) ⇒ ||p̃− p||∞ ≥ (h+ ε)/2

holds for any h ∈ [0, 1], ε ∈ (−h, 1],p ∈ ∆h
k and p̃ ∈ ∆k (Lemma D.2). This result is optimal in the

sense that the term (h+ ε)/2 therein cannot be improved (Remark D.3). Choosing ε = 0 and p̃ = p̂t

shows us that ||p̂t − p||∞ > h/2 is necessary for mode(p̂t) 6= mode(p). Combining this with (1)
based on the DKW inequality, we could simply query St = [k] for T = d8 ln(4/γ)h−2e many times
and return the mode of p̂T as the decision. This (non-sequential) strategy solves Pk,γk (∆h) and
terminates after exactly d8 ln(4/γ)h−2e time steps (Proposition D.4). Note that according to Prop.
4.1, this strategy is asymptotically optimal.

Next, we intend to solve the more challenging problem Pk,γk (∆0). Note that any solution to Pk,γk (∆0)

is also a solution to Pk,γk (∆h) for any h > 0, whence Prop. 4.1 shows that Pk,γk (∆0) cannot be
solved by any non-sequential algorithm, i.e., one which decides a priori the number of samples it
observes. To construct a solution, we make use of Alg. 1, which also tackles the problem of finding
the mode of p in a non-sequential manner but is allowed to return UNSURE as an indicator that it
is not confident enough for its prediction. In other words, the algorithm is allowed to abstain from
making a decision. Since

∀i : p̃i ≤ maxj 6=i p̃j + h ⇒ ||p− p̃||∞ ≥ h.

holds for any h > 0, p ∈ ∆3h
k and p̃ ∈ ∆k (Lem. D.5), Alg. 1 can be shown to return with probability

at least 1− γ the correct mode in case p ∈ ∆3h
k is fulfilled. The constraint p ∈ ∆3h

k in the statement
above is sharp in the sense that we show in Lem. D.6 for any h ∈ (0, 1/8) that

inf
{
s > 0

∣∣∣ ∀p ∈ ∆sh
k ∀p̃ ∈ ∆k : (∀i : p̃i ≤ maxj 6=i p̃j + h ⇒ ||p− p̃||∞ ≥ h)

}
= 3.

Algorithm 1 DKW mode-identification with abstention
Input: γ ∈ (0, 1), h ∈ (0, 1), access to iid samples Xt ∼ Cat(p)

1: T ← d8 ln(4/γ)/h2e
2: Observe samples X1, . . . , XT

3: Calculate p̂T = (p̂T1 , . . . , p̂
T
k ) as p̂Ti := 1

T

∑T
t=1 1{Xt=i}, i ∈ [k]

4: Choose i∗ ∈ mode(p̂T )
5: if p̂Ti∗ > maxj 6=i∗ p̂

T
j + h then return i∗

6: else return UNSURE
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Lemma 4.3. A := Alg. 1 initialized with parameters γ, h ∈ (0, 1) fulfills TA = d8 ln(4/γ)/h2e,
∀p ∈ ∆k : Pp(D(A) ∈ [k] and pD(A) < maxj∈[k] pj) ≤ γ, (2)

∀p ∈ ∆0
k : Pp(D(A) ∈ {mode(p),UNSURE}) ≥ 1− γ, (3)

∀p ∈ ∆3h
k : Pp(D(A) = mode(p)) ≥ 1− γ. (4)

Lemma 4.3 (proven in Section D) reveals that Alg. 1 has a low failure rate (2) by appropriate choice
of γ, while in turn by an appropriate choice of h, namely h ≤ 1

3h(p), the correct decision will be
returned (4) with high probability. However, there are two problems arising: Alg. 1 can also abstain
from making a decision (3) and more importantly, the value of h(p) is unknown. As a remedy, we
could run Alg. 1 successively with appropriately decreasing choices for γ and h until a (real) decision
is returned. This approach is followed by Alg. 2 and the following proposition shows that it is indeed
a solution to Pk,γk (∆0); its proof is an adaptation of Lem. 11 in [28] and given in Section D.

Algorithm 2 DKW mode-identification – Solution to Pk,γk (∆0)

Input: γ ∈ (0, 1), sample access to Cat(p)

Initialization: Ã := Alg. 1, s← 1, ∀r ∈ N : γr := 6γ
π2r2 , hr := 2−r−1

1: feedback← UNSURE
2: while feedback is UNSURE do
3: feedback← Ã(γs, hs, sample access to Cat(p))
4: s← s+ 1
5: return feedback

Proposition 4.4. A := Alg. 2 initialized with the parameter γ ∈ (0, 1) solves Pk,γk (∆0) s.t.

Pp(TA <∞) = 1 and Pp

(
D(A) = mode(p) and TA ≤ t0(γ, h(p))

)
≥ 1− γ

for any p ∈ ∆0
k, where t0(γ, h) is mon. decr. w.r.t. h with t0(γ, h) ∈ O

(
h−2

(
ln lnh−1 + ln γ−1

))
.

The sample complexity of A in Proposition 4.4 improves upon the existing alternative solution for
Pk,γk (∆0) in Theorem 2 in [37] with respect to two essential aspects: First, its sample complexity
bound is constant instead of increasing in k and second, the dependence on the hardness parameter
h(p) is h(p)−2 ln lnh(p)−1 instead of h(p)−2 lnh(p)−1.

5 Lower Bounds on the General GCW Identification Problem

In this section we provide lower sample complexity bounds for solutions to the GCW identification
problem for arbitrary 2 ≤ k ≤ m. The following theorem is based on a result by [35], which we state
as Thm. B.1 in the appendix.
Theorem 5.1. Any solution A to Pm,γk (PL) fulfills

supP∈PMm
k (PL∧∃hGCW) EP

[
TA
]
∈ Ω (m(1/k+h) ln(1/γ)/(kh2)) . (5)

One of the key ingredients for proving Thm. B.1 and thus for Thm. 5.1 is a change-of-measure
argument by [21]. By means of the latter technique, we are also able to show the following instance-
based as well as worst-case lower bounds for any solution to Pm,γk (∆h ∧ ∃GCW), which is proven
in Section F.
Theorem 5.2. Suppose A solves Pm,γk (∆h ∧ ∃GCW) and let P ∈ PMm

k (∆h ∧ ∃GCW) be
arbitrary with minS∈[m]k minj∈S P(j|S) > 0. For S ∈ [m]k write mS := mode(P(·|S)) and for
any l ∈ S \ {mS} define P[l](·|S) ∈ ∆S via

P[l](l|S) := P(mS |S), P[l](mS |S) := P(l|S), ∀j ∈ S \ {l,mS} : P[l](j|S) := P(j|S).

Then,

EP

[
TA
]
≥ ln((2.4γ)−1)/(k−1)

∑
l∈[m]\{GCW(P)}

minS∈[m]k:l∈S\{mS}
1/KL(P(·|S),P[l](·|S)),

where KL(P(·|S),P[l](·|S)) denotes the Kullback-Leibler divergence between two categorical dis-
tributions X ∼ Cat(P(·|S)) and Y ∼ Cat(P[l](·|S)). Moreover, we have

supP∈PMm
k (∆h∧∃GCW) EP

[
TA
]
≥ m(1−h2) ln((2.4γ)−1)/(4kh2).
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In the special case of dueling bandits (k = 2), the instance-dependent lower bound is a novel result,2
it actually leads to a slightly larger worst-case lower bound than the worst-case bound in Theorem
5.2 for the dueling bandit case (Cor. F.4). For k ≥ 3, the worst-case bound in Theorem 5.2 is not a
consequence of the instance-wise version (Rem. F.3), instead it requires a more involved proof than
the latter. For m = k, the instance-wise lower bound underlying Prop. 4.1 is apparently larger than
that of Thm. 5.2 (Rem. F.5). The reason is that the proof for the instance-wise bound in Theorem 5.2
is tailored to the problem class PMm

k (∆h∧∃GCW) and consequently has to deal with combinatorial
issues arising in case k < m.

6 Upper Bounds on the General GCW Identification Problem

In [35] the PAC-WRAPPER algorithm is introduced, which is an algorithm able to identify the GCW
under the Plackett-Luce assumption with (up to logarithmic terms) optimal instance-wise sample
complexity, see Section B. By translating the sample complexity result of PAC-WRAPPER into
our setting, we obtain the following result (see Section B for its proof), which is also by Thm. 5.1
suggested to be optimal up to logarithmic factors.
Theorem 6.1. There exists a solution A to Pm,γk (PL ∧ ∃GCW∗) s.t.

infP∈PMm
k (PL∧∃hGCW) PP

(
D(A) ∈ GCW(P) and TA ≤ t′(m,h, k, γ)

)
≥ 1− γ

holds with t′(h,m, k, γ) ∈ O (m(1/k+h) ln(k/γ ln(1/h))/(kh2)).

Algorithm 3 DVORETZKY–KIEFER–WOLFOWITZ TOURNAMENT – Solution toPm,γk (∃GCW∧∆0)

Input: k,m ∈ N, γ ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k

Initialization: Ã := Alg. 2, choose S1 ∈ [m]k arbitrary, F1 ← [m], γ′ ← γ
dm/(k−1)e , s← 1

. Ss : candidates in round s, Fs : remaining elements in round s, is : output of Ã in round s
1: while s ≤ d m

k−1e − 1 do
2: is ← Ã(γ′, sample access to P(·|Ss))
3: Fs+1 ← Fs \ Ss
4: Write Fs+1 = {j1, . . . , j|Fs+1|}.
5: if |Fs+1| < k then
6: Fix distinct j|Fs+1|+1, . . . , jk−1 ∈ [m] \ Fs+1.
7: Ss+1 ← {is, j1, . . . , jk−1}
8: s← s+ 1
9: is ← Ã(γ′, sample access to P(·|Ss))

10: return is

Next, we consider the problem class Pm,γk (∃GCW ∧ ∆0), for which we propose the DVORET-
ZKY–KIEFER–WOLFOWITZ TOURNAMENT (DKWT) algorithm (see Alg. 3). DKWT is a simple
round-based procedure eliminating in each round those arms from a candidate set of possible GCWs
that have been discarded by Alg. 2 with high confidence as being the GCW. In the following theorem
we derive theoretical guarantees for DKWT, while a more sophisticated sample complexity bound is
provided in Thm. E.1.
Theorem 6.2. A := DKWT initialized with the parameter γ ∈ (0, 1) solves Pm,γk (∃GCW ∧∆0)
s.t.

PP

(
D(A) ∈ GCW(P) and TA ≤ T ′(h(P),m, k, γ)

)
≥ 1− γ

holds for all P ∈ PMm
k (∃GCW ∧∆0) with T ′(h,m, k, γ) ∈ O

(
m
kh2 ln

(
m
k

) (
ln ln 1

h + ln 1
γ

))
.

The result stated in Table 2 for (X) = (∃GCW ∧∆0) and (Y) = (∆h) follows from this by noting
that h(P) ≥ h holds for any P ∈ PMm

k (∃hGCW ∧∆h). Regarding Prop. 4.2, the additional factor

2So far, existing lower sample complexity bounds for solutions to Pm,γ2 (∆h ∧ ∃GCW) are either restricted
to worst-case scenarios [6] or to the special case where P belongs to a Thurstone model [29] or a Plackett-Luce
model [35].
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Table 3: Comparison of DKWT with PAC-WRAPPER (PW) on θ = (1, 0.8, 0.6, 0.4, 0.2)

TA Accuracy

k DKWT PW DKWT PW

3 44293 (3695.6) 1631668498 (1453661392.0) 1.0 1.0
4 32427 (2516.2) 263543687 (127401593.7) 1.0 1.0

ln lnh−1 in the upper bounds from Thm. 6.1 and Thm. 6.2 appears indispensable. Since PMm
k (PL∧

∃GCW∗) 6⊆ PMm
k (∃GCW ∧ ∆0) and PMm

k (PL ∧ ∃GCW∗) 6⊆ PMm
k (∃GCW ∧ ∆0) hold, a

solution to Pm,γk (PL∧∃GCW∗) is in general not comparable with a solution to Pm,γk (∃GCW∧∆0),
i.e., neither Thm. 6.1 nor Thm. 6.2 implies the other one.

Replacing ∃GCW ∧ ∆0 with the more restrictive assumption ∃hGCW ∧ ∆0 (as an assumption
on P) makes the GCW identification task much easier. This is similar to the case of Pk,γk (∆h)

and Pk,γk (∆0) discussed in Section 4.2. For Pm,γk (∃hGCW ∧∆0) we can modify Alg. 3 in order
to incorporate the knowledge of h as follows: choose in round s a query set Ss ⊆ Fs (filled up
with |Fs| − k further elements from [m] \ Fs if |Fs| < k) and execute Alg. 1 with parameters h

3 ,
γ

dm/(k−1)e and sample access to P(·|Ss). In case Alg. 1 returns as decision an element i ∈ Ss,
we let Fs+1 = Fs \ (Ss \ {i}), and otherwise Fs+1 = Fs. Then we proceed with the next round
s+ 1. We repeat this procedure until |Fs| = 1, and return the unique element in Fs as the prediction
for the GCW. In Sec. E we provide detailed a pseudocode for this algorithm (Alg. 5) and show
that it indeed solves Pm,γk (∃hGCW ∧∆0) with the guarantee that it terminates almost surely for
any P ∈ PMm

k (∃hGCW ∧∆0) before some time t′(m, k, h, γ) ∈ O (m ln(m/(kγ))/(kh2)) (see Thm.
E.2). A look at Thm. 5.2 reveals that this solution to Pmk (∃hGCW ∧∆0) is asymptotically optimal
up to logarithmic factors in a worst-case sense w.r.t. PMm

k (∃hGCW ∧∆0).

7 Empirical Evaluation

In the following, we present experimental results on the performance of our GCW identification
solution.3 We restrict ourselves in the main paper to DKWT, which is our solution of the most
general problem Pm,γk (∃hGCW∧∆0). Throughout all experiments, if not specified differently in the
pseudocode, every choice of an element within a specific set made by DKWT is performed uniformly
at random. All experiments were conducted on a machine with an Intel® Core™ i7-4700MQ
Processor, executing all experiments (including those in the supplemental material) with only one
CPU core in use took less than 72 hours.

At first, we compare DKWT with PAC-WRAPPER (PW), which is the solution to Pm,γk (PL) in [35]
underlying Thm. 6.1 and so far the only solution in the literature to the best of our knowledge for
identifying the GCW in multi-dueling bandits with an error probability at most γ. Table 3 shows the
results of both algorithms when started on an instance P ∈ PM5

k (PL) with underlying PL-parameter
θ = (1, 0.8, 0.6, 0.4, 0.2) and γ = 0.05, for different values of k. The observed termination time
TA, the corresponding standard error (in brackets) and the accuracy are averaged over 10 repetitions.

Both algorithms achieve the desired accuracy ≥ 95% in every case, but DKWT requires far less
samples than PW to find the GCW. Further experiments in the appendix (cf. Section G) demonstrate
the superiority of DKWT over PW also for other values of m, θ and γ, including the problem
instances considered in [35]. Note that the observed extremely large sample complexity of PW
appears to be consistent with the experimental results in [35] and is supposedly caused by multiple
runs of a costly procedure PAC-BEST-ITEM, which does not exploit the DKW inequality but is rather
based on applications of Chernoff’s bound.

In the case k = 2, the GCW identification problem coincides with the Condorcet winner (CW)
identification problem in dueling bandits. Thus, we can compare DKWT to state-of-the art solutions
for finding the CW if it exists: SELECT [26], SEEBS4 [29] and EXPLORE-THEN-VERIFY (EtV)
[20]. Formally, SELECT requires h ∈ (0, 1) as a parameter as it solves Pm,γ2 (∃GCW ∧ ∆h),

3Our implementation is provided at https://github.com/bjoernhad/GCWidentification.
4We include SEEBS even though it techniqually requires P to fulfill strong stochastic transitivity and the

stochastic triangle inequality, cf. Sec. G.2.
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Table 4: Comparison of DKWT, SEEBS and EXPLORE-THEN-VERIFY (EtV)

TA

m h DKWT SEEBS EtV

5 0.20 6010 (293.2) 7305 (432.1) 8601 (589.2)
5 0.15 8874 (460.0) 13393 (904.5) 11899 (986.9)
5 0.10 15769 (1457.1) 19802 (1543.2) 260171 (210678.1)
5 0.05 31454 (4127.4) 36855 (3533.2) 156534 (115903.1)

10 0.20 14334 (492.8) 16956 (617.9) 26115 (969.2)
10 0.15 18563 (734.5) 27527 (1126.7) 32548 (2514.6)
10 0.10 33040 (1625.1) 47330 (2138.2) 68858 (11304.5)
10 0.05 78660 (6517.2) 83877 (5842.6) 220098 (92484.9)

while DKWT, SEEBS and EtV solve the more challenging problem Pm,γ2 (∃GCW ∧ ∆0). As a
consequence, we compare here only the latter three algorithms on probability models P sampled
uniformly at random from PMm

k (∃GCW ∧ ∆h) for various values of h without providing these
algorithms with the explicit value of h. We also compare SELECT with the three considered
algorithms in Section G. Without great surprise, it turns out that SELECT has a much smaller sample
complexity due to its advantage of knowing the explicit value of h.

Table 4 reports the observed sample complexities, together with the standard errors in brackets,
obtained for γ = 0.05 and different choices of m and h, the numbers are averaged over 100
repetitions. Every algorithm achieves an accuracy of 1 in each case. DKWT clearly outperforms
SEEBS and EtV in any case, which is consistent with similar results for larger values of m in the
appendix. Overall, these results show that DKWT is also well suited for the dueling bandit case.

We complement our empirical study in Section G.3 with a comparison of DKWT with Alg. 5 showing
that the latter outperforms the former in the case where h(P) is small and P ∈ PMm,γ

k (∃h′GCW ∧
∆0) for some a priori known h′ > h(P).

8 Conclusion

We investigated the sample complexity required for identifying the generalized Condorcet winner
(GCW) in multi-dueling bandits within a fixed confidence setting. We provided lower bound
results, which as a special case yield a novel instance-wise lower sample complexity bound for
identifying the Condorcet winner in the realm of dueling bandits. We introduced DVORETZKY-
KIEFER-WOLFOWITZ TOURNAMENT (DKWT), an algorithmic solution to the GCW identification
task with asymptotically nearly optimal worst-case sample complexity. In our experiments, DKWT
outperformed competing state-of-the art algorithms, even in the special case of dueling bandits. Last
but not least, we pointed out that and to which extent incorporating a Plackett-Luce assumption
on the feedback mechanism makes the GCW identification problem asymptotically easier w.r.t. the
worst-case required sample complexity.

There are several directions in which this work could be extended. First, one could investigate the
GCW identification problem in the so-called probably approximately correct (PAC) setting and search
not for the GCW but instead for an arm that outperforms any other arm only with some margin ε > 0.
Secondly, one may generalize this problem to the identification of the GCW without assuming its
existence, where one has to check on-the-fly whether a GCW exists, i.e., a testification (test and
identify) problem as in [19] in the dueling bandit case for the Condorcet Winner. Moreover, one may
also extend our problem to the case where query sets up to size k are allowed at each time step. This
variant has already been discussed in a regret minimization scenario [32, 1] or a PAC setting [33].
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A Relationships between the Probability Models

Lemma A.1. For any k,m ∈ N and h ∈ (0, 1) we have the implications

PMm
k (∃hGCW) ( PMm

k (∃GCW∗) ( PMm
k (∃GCW),

PMm
k (∆h) ( PMm

k (∆0),

PMm
k (PL) ( PMm

k (∃GCW),

PMm
k (∆h) ∩ PMm

k (∃GCW) ( PMm
k (∃hGCW),

PMm
k (∆0) ∩ PMm

k (∃GCW) ( PMm
k (∃GCW∗).

Proof. This is a direct consequence of the definitions.

B GCW Identification under the Plackett-Luce Assumption

In this section, we prove the lower and upper bounds of solutions to the GCW identification problem
under the Plackett-Luce assumption stated in Theorems 5.1 and 6.1. For θ ∈ (0,∞)m we denote by
P(θ) ∈ PMm

k (PL) the corresponding PM, which is consistent with the Plackett-Luce model with
parameter θ on Sm, i.e., P(θ) = {P(θ)(·|S)}S∈[m]k is defined via

P(θ)(i|S) :=
θi∑
a∈S θa

for any S ∈ [m]k and i ∈ S.

As P(xθ) = P(θ) holds for any x > 0 and θ ∈ (0,∞)m, we may restrict ourselves w.l.o.g. to those
P(θ) with maxi∈[m] θi = 1.

In [35], the following lower resp. upper sample complexity bounds for solutions to Pm,γk (PL) resp.
Pm,γk (PL ∧ ∃GCW∗) depending on the ground-truth Plackett-Luce parameter have been proven.
Theorem B.1. Any solution A to Pm,γk (PL) fulfills

EP(θ)

[
TA
]
∈ Ω

(
max

(∑m

j=2

θj
(1− θj)2

ln
1

γ
,
m

k
ln

1

γ

))
for any θ ∈ (0, 1]m with 1 = θ1 > maxj≥2 θj .

Proof. Confer Theorem 7 in [35].

Theorem B.2. There is a solution A to Pm,γk (PL ∧ ∃GCW∗), which fulfills for any θ ∈ (0, 1]m

with 1 = θ1 > maxj≥2 θj the estimate

PP(θ)

(
D(A) ∈ GCW(P) and TA ≤ t′(θ, k, γ)

)
≥ 1− γ

with

t′(θ, k, γ) ∈ O
(

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

)))
and Θ[k] := maxS∈[m]k

∑
a∈S θa.

Proof. Confer Theorem 3 in [35] and note that minj≥2(1 − θj)−2 ≥ 1 holds for any θ ∈ (0, 1]m

with 1 = θ1 > maxj≥2 θj .

To translate the preceding results into our setting, we need a better understanding of the set
PMm

k (PL ∧ ∃hGCW). This is achieved by means of the following observation. For the sake
of completeness, we also provide a characterization of PMm

k (PL ∧∆h).
Lemma B.3. For θ ∈ (0,∞)m with θ1 ≥ · · · ≥ θm we have

P(θ) ∈ PMm
k (∃hGCW)⇔ ∀j ∈ {2, . . . , k} : h(θ1 + · · ·+ θk) + θj − θ1 ≤ 0

⇔ h(θ1 + · · ·+ θk) + θ2 − θ1 ≤ 0

and

P(θ) ∈ PMm
k (∆h)⇔ ∀i ∈ [m− k] : h(θi + · · ·+ θi+k−1) + θi+1 − θi ≤ 0.

14



Proof. This follows directly from the definitions.

From this, we obtain the following result, which is not explicitly needed anywhere but rather stated
for the sake of completeness.
Corollary B.4. For any h ∈ (0, 1) and m, k ∈ N with k ≤ m we have PMm

k (PL ∧ ∃hGCW) ⊇
PMm

k (PL ∧∆h) 6= ∅.

Proof. Note that PMm
k (PL ∧ ∃hGCW) ⊇ PMm

k (PL ∧ ∆h) is a direct consequence from the
definitions. To see PMm

k (PL ∧∆h) 6= ∅ we fix x > 1 with h+ h
x ≤ 1 and define θ ∈ (0, 1]m via

θj := hj

(kx)j for any j ∈ [m]. Then,

h(θi + · · ·+ θi+k−1) + θi+1 − θi

=
hi+1

(kx)i
+

(
hi+2

(kx)i+1
+ · · ·+ hi+k

(kx)i+k−1
+

hi+1

(kx)i+1

)
− hi

(kx)i

≤ hi+1

(kx)i
+

khi+1

(kx)i+1
− hi

(kx)i
=

hi

(kx)i

(
h+

h

x
− 1

)
≤ 0

holds for any i ∈ [m− k] and thus P(θ) ∈ PMm
k (PL ∧∆h) follows from Lemma B.3.

Proof of Theorem 5.1. Define θ ∈ (0, 1]m via θ1 := 1 and θj := 1−h
h(k−1)+1 for 2 ≤ j ≤ m. Then,

h
∑k

j=1
θj + θ2 − θ1 = h

(
1 +

(k − 1)(1− h)

h(k − 1) + 1

)
+

1− h− h(k − 1)− 1

h(k − 1) + 1

=
h(h(k − 1) + 1 + (k − 1)(1− h))− hk

h(k − 1) + 1
= 0

shows with regard to Lemma B.3 that P(θ) ∈ PMm
k (∃hGCW) is fulfilled. Moreover, for j ∈

{2, . . . ,m} we have 1− θj = hk
h(k−1)+1 and thus

θj
(1− θj)2

=
(h(k − 1) + 1)(1− h)

h2k2
=
hk(1− h) + (1− h)2

h2k2
,

which is in Θ( 1
hk + 1

h2k2 ) = Θ
(

1
kh2

(
1
k + h

))
, since 1− h ∈ Θ(1) as h↘ 0. In particular,

m∑
j=2

θj
(1− θj)2

∈ Θ

(
m

kh2

(
1

k
+ h

))
and thus the statement follows from Theorem B.1.

Proof of Theorem 6.1. Suppose γ ∈ (0, 1), h ∈ (0, 1) and m, k ∈ N≥2 with k ≤ m to be arbitrary
but fixed for the moment and let A be the solution to Pm,γk (PL ∧ ∃GCW∗) from Theorem B.2. For
l ∈ {2, . . . , k} define gl : [0, 1]m → R via gl(θ) := h(1 + θ2 + · · ·+ θk) + θl − 1 and denote by
B the set

{θ ∈ (0, 1]m | 1 = θ1 > θ2 ≥ · · · ≥ θm and ∀l ∈ {2, . . . , k} : gl(θ) ≤ 0}.

According to Lemma B.3, any P ∈ PMm
k (PL) with GCW(P) = 1 fulfills P ∈ PMm

k (∃hGCW)
iff P = P(θ) for some θ ∈ B. Consequently, it is with regard to Theorem B.2 sufficient to show that

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

))
≤ 6m

kh2

(
1

k
+ h

)
ln

(
k

γ
ln(h−1)

)
(6)

holds for any θ ∈ B. We prove this in several steps.

Claim 1: For any θ ∈ B we have∑k

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ 3(1 + hk)

h2
. (7)
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Proof of Claim 1: Let B′ be the set of all θ = (1, θ2, . . . , θk) with 1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 and
gl(θ) ≤ 0 for all l ∈ {2, . . . , k}. As (1, θ2, . . . , θk) ∈ B′ holds for any (1, θ2, . . . , θm) ∈ B, it is
sufficient to show that (7) holds for any θ = (1, θ2, . . . , θk) ∈ B′.

Claim 1a: For any θ ∈ B′ and l ∈ {2, . . . , k} we have θl ≤ 1− h.
Proof: For θ = (1, θ2, . . . , θk) ∈ B′ and l ∈ {2, . . . , k} we have

0 ≥ gl(θ) = h(1 + θ2 + · · ·+ θk) + θl − 1 ≥ h+ θl − 1,

and thus θl ≤ 1− h. ♣

According to Claim 1a, B′ is a compact subset of {1} × [0, 1− h]k−1. Consequently, the continuous
function f : B′ → R, f(θ) :=

∑k
j=2

1+θ2+···+θk
(1−θj)2 is well-defined and takes its maximum on B′ in

a point θ∗ ∈ B′.

Claim 1b: There is some j ∈ {2, . . . , k} s.t. g2(θ∗) = · · · = gj(θ
∗) = 0 and θ∗j+2 = · · · = θ∗k = 0.

Proof: To show indirectly the existence of some j ∈ {2, . . . , k} with gj(θ
∗) = 0 assume on

the contrary that gl(θ∗) < 0 for any l ∈ {2, . . . , k}. Then, if ε > 0 is small enough, θε :=
(1, θ∗2 + ε, θ∗3 , . . . , θ

∗
k) is an element of B′. Since

∂f

∂θ2
(θ) =

2θ2(1 + θ2 + · · ·+ θk)

(1− θ2)3
+
∑k

l=2

1

(1− θl)2
> 0

holds for any θ in the interior of B′, we would obtain f(θε) > f(θ∗) in contradiction to the
optimality of θ∗. Hence, there has to be a j ∈ {2, . . . , k} with gj(θ∗) = 0. In case j ≥ 3, we may
infer from gj−1(θ∗)− gj(θ∗) = θ∗j−1 − θ∗j ≥ 0 inductively 0 = gj−1(θ∗) = · · · = g2(θ∗).
It remains to prove θ∗j+2 = · · · = θ∗k = 0. Assume this was not the case, i.e., j ≤ k − 2 and
j′ := max{l ∈ {2, . . . , k} | θ∗l > 0} ≥ j + 2. By definition of j we have gj(θ∗) < 0. Consequently,

θ′ε := (1, θ∗2 , . . . , θ
∗
j , θ
∗
j+1 + ε, θ∗j+2, . . . , θ

∗
j′ − ε, 0, . . . , 0)

is for small values of ε ≥ 0 an element of B′. Using
∑k
l=2(θ′ε)k =

∑k
l=2 θ

∗
l we see that

d

dε
f(θ′ε) =

2

(1− θ∗j+1 − ε)3
− 2

(1− θ∗j′ + ε)3
,

which is due to θ∗j+1 ≥ θ∗j′ positive for small values of ε > 0. In particular, f(θ′ε) > f(θ′0) = f(θ∗)

holds for small ε > 0, which contradicts the optimality of θ∗. This completes the proof of Claim 1b.
♣

According to Claim 1b we may fix some j ∈ {2, . . . , k} with g2(θ∗) = · · · = gj(θ
∗) = 0 and

θ∗j+2 = · · · = θ∗k = 0. Since gl(θ∗) − gl′(θ∗) = θ∗l − θ∗l′ = 0 holds for any l, l′ ∈ {2, . . . , k}, we
have θ∗2 = · · · = θ∗j . From 0 ≥ g2(θ∗) ≥ h(1 + (j − 1)θ∗2) + θ∗2 − 1 we infer

θ∗2 = · · · = θ∗j ≤
1− h

1 + (j − 1)h
= 1− hj

1 + h(j − 1)
.

Together with θ∗j ≥ θ∗j+1 ≥ 0 = θ∗j+2 = · · · = θ∗k we obtain

1 + θ∗2 + · · ·+ θ∗k
(1− θ∗2)2

≤ 1 + jθ∗2
(1− θ∗2)2

≤ (1 + h(j − 1))2

h2j2

(
1 +

j(1− h)

1 + h(j − 1)

)
=

(1 + h(j − 1))(1− h+ j)

h2j2
≤ 2

(
1

h2j
+
h(j − 1)

h2j

)
≤ 2

h2

(
1

j
+ h

)
,
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where we have used that 1− h+ j ≤ 2j holds trivially. Combining this with the fact that g2(θ∗) ≤ 0

implies (1 + θ∗2 + · · ·+ θ∗k) ≤ 1−θ∗2
h ≤ 1

h yields

f(θ∗) =
∑k

l=2

1 + θ∗2 + · · ·+ θ∗k
(1− θ∗l )2

≤ (1 + θ∗2 + · · ·+ θ∗k)

(∑j+1

l=2

1

(1− θ∗2)2
+
∑k

l=j+2
1

)
≤ 2j

h2

(
1

j
+ h

)
+
k − j − 1

h
≤ 3(1 + hk)

h2
.

Since θ∗ was a maximum point of f in B′, Claim 1 follows. �

Claim 2: For any θ ∈ B we have
∑m
j=2

1
(1−θj)2 ≤

m−1
k−1

∑k
j=2

1
(1−θj)2 .

Proof of Claim 2: Using 1 ≥ θ2 ≥ · · · ≥ θm, this follows directly from comparing the
(m − 1)(k − 1) summands in (k − 1)

∑m
j=2

1
(1−θj)2 =

∑m
j=2

1
(1−θj)2 + · · · +

∑m
j=2

1
(1−θj)2 with

those in (m− 1)
∑k
j=2

1
(1−θj)2 . �

Claim 3: Inequality (6) holds for any θ ∈ B.
Proof of Claim 3: Let θ ∈ B be fixed and note that Θ[k] = 1 + θ2 + · · · + θk holds. From

1 ≥ θ2 ≥ · · · ≥ θm ≥ 0 we get Θ[k] ∈ [1, k]. Together with 1−θ2
Θ[k]

=
hΘ[k]−g2(θ)

Θ[k]
≥ h this shows

1 − θj ≥ 1 − θ2 ≥ h and in particular ln(1/(1 − θj)) ≤ ln(h−1) for each j ∈ {2, . . . ,m}. In
combination with Claims 1 and 2 this allows us to conclude

Θ[k]

k

∑m

j=2

1

(1− θj)2
ln

(
k

γ
ln

(
1

1− θj

))
≤ 1

k
ln

(
k

γ
ln(h−1)

)∑m

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ m− 1

k(k − 1)
ln

(
k

γ
ln(h−1)

)∑k

j=2

1 + θ2 + · · ·+ θk
(1− θj)2

≤ 3(m− 1)(1 + hk)

k(k − 1)h2
ln

(
k

γ
ln(h−1)

)
≤ 6m

kh2

(
1

k
+ h

)
ln

(
k

γ
ln(h−1)

)
,

where we have used that m−1
k−1 ≤

2m
k holds due to k ≥ 2. This completes the proof of Claim 3 and of

the theorem.

C Proofs for Section 4.1

Proposition C.1 (Detailed version of Proposition 4.1). Let 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1

be fixed. Suppose A solves Pk,γk (∆h), let p ∈ ∆h
k be arbitrary and write i := mode(p). Then,

Ep

[
TA
]
≥
f
(

pi−pj
2(pi+pj)

, γ
)

pi + pj

holds for all j ∈ [k] \ {i} with f(z, γ) := 1−2γ
2z

⌈
ln((1−γ)/γ)

ln((1/2+z)/(1/2−z))

⌉
, which fulfills ∀z ∈ (0, h0/2) :

f(z, γ) ≥ c(h0, γ0)z−2 ln(γ−1) for some appropriate constant c(h0, γ0) > 0 that does not depend
on γ or h. In particular, we obtain the worst-case bound

supp∈∆h
k
Ep[TA] ≥ 4c(h0, γ0)h−2 ln(γ−1) (8)
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and the instance-wise bound

∀p ∈ ∆h
k : Ep[TA] ≥ 2c(h0, γ0)(h(p))−2 ln(γ−1)

(
1

k
+ h

)
. (9)

We prepare the proof of Proposition C.1 with sample complexity lower bounds of solutions to
P2,γ

2 (∆h). For the sake of convenience, we write p for (p, 1− p) ∈ ∆2. Note that solving P2,γ
2 (∆h)

resp. P2,γ
2 (∆0) reduces to deciding with error probability ≤ γ

H0 : p > 1/2 vs. H1 : p < 1/2 (10)

based on iid samples X1, X2, · · · ∼ Ber(p) for any p ∈ [0, 1] with |p−1/2| ≥ h resp. |p−1/2| > 0.
Lemma C.2. Let 0 < γ < γ0 < 1/2 and 0 < h < h0 < 1/2 and suppose A is able to decide (10)
with confidence ≥ 1− γ for any p ∈ {1/2± h}, i.e.,

P1/2+h(D(A) = 0) ≥ 1− γ and P1/2−h(D(A) = 1) ≥ 1− γ.

There exists a constant c(h0, γ0) > 0, which does not depend on γ or h s.t.

E1/2±h[TA] =
1− 2γ

2h

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
≥ c(h0, γ0)h−2 ln(γ−1).

Proof. Let A′ be the corresponding Sequential Probability Ratio Test (cf. [41]) for (10), i.e. it
samples X1, X2, . . . until the first time n, where 1

n

∑n
k=1Xk 6∈ [1/2± Ch,γ(n)] with Ch,γ(n) :=

1
2n

⌈
ln((1−γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
and decides for 0 in case 1

n

∑n
k=1Xk > 1/2 + Ch,γ(n) and for 1 in case

1
n

∑n
k=1Xk < 1/2− Ch,γ(n). On p.10–15 in [38] it is shown that A′ fulfills

P1/2+h(D(A′) = 0) ≥ 1− γ and P1/2−h(D(A′) = 1) ≥ 1− γ,

as well as

E1/2±h[TA
′
] =

1− 2γ

2h

⌈
ln((1− γ)/γ)

ln((1/2+h)/(1/2−h))

⌉
=: g(h, γ).

According to pages 19–22 in [38] or [15, Theorem 2, p. 365] or the original proof from [41], A′ is a
testA′′ with error ≤ γ (on any instance p ∈ {1/2± h}) for (10), for which E1/2±h[TA

′′
] is minimal.

In particular, we have
E1/2±h[TA] ≥ E1/2±h[TA

′
] ≥ g(h, γ).

Since w : (0, 1) → R, γ 7→ ln((1−γ)/γ)·(1−2γ)
ln(1/γ) fulfills w(1/2) = 0 and

w′(γ) =
(1− 2γ) ln(γ−1)− (γ − 1) ln(γ−1 − 1)(2γ + 2γ ln(γ−1)− 1))

(γ − 1)γ ln2(γ−1)
< 0

for every γ ∈ (0, 1/2), there exists some c′(γ0) > 0 with ln((1− γ)/γ)(1− 2γ) ≥ c′(γ0) ln(1/γ)
for each γ ∈ (0, γ0). Moreover, as ln(1 + x) < x for x > −1, we obtain for h ∈ (0, h0) the
inequality

ln

(
1/2 + h

1/2− h

)
= ln

(
1 +

4h

1− 2h

)
<

4h

1− 2h
<

4h

1− 2h0
.

Combining these estimates, we get g(h, γ) ≥ c(h0, γ0)h−2 ln(γ−1) with c(h0, γ0) := c′(γ0)(1−2h0)
8 .

Before proving Proposition C.1, we state two further auxiliary lemmata. The first one is a simplified
version of Walds identity (cf. e.g. Thm. 17.7 in [2]), which we shortly prove for the sake of
convenience. The second lemma is only required for the instance-wise bound in Proposition C.1.
Lemma C.3. Let k ∈ N and (p1, . . . , pk) ∈ ∆k be fixed. Suppose {Xt}t∈N to be an iid family of
random variables Xt ∼ Cat(p1, . . . , pk) on some joint probability space (Ω,F ,P) and {Ft}t∈N ⊆
F to be a filtration, such that {Xt}t is {Ft}t-adapted and ∀t : Xt⊥⊥Ft−1, e.g. Ft = σ(X1, . . . , Xt).
If τ is an {Ft}t-stopping time, then the random variables

Ti(τ) :=
∑

t≤τ
1{Xt=i}, i ∈ [k],
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fulfill E[Ti(τ)] = piE[τ ] for each i ∈ [k]. In particular, we obtain

E[τ ] =

∑
i∈I E[Ti(τ)]∑

i∈I pi

for any I ⊆ [k] with
∑
i∈I pi > 0.

Proof. Since {t ≤ τ} = {t > τ}c = {τ ≤ t− 1}c ∈ Ft−1 holds for any t ∈ N and Xt⊥⊥Ft−1, we
obtain

E
[
1{Xt=i}1{t≤τ}

]
= E

[
E
[
1{Xt=i}1{t≤τ}

∣∣Ft−1

]]
= E[1{t≤τ}E[1{Xt=i}|Ft−1]] = piE[1{t≤τ}].

Via an application of the monotone convergence theorem we infer

E [Ti(τ)] = limT →∞ E[Ti(τ ∧ T )]

= limT →∞
∑

t≤T
E
[
1{Xt=i}1{t≤τ}

]
= pi limT →∞

∑
t≤T

E
[
1{t≤τ}

]
= pi limT →∞ E[τ ∧ T ] = piE[τ ].

and thus in particular
∑
i∈I E[Ti(τ)] = E[τ ]

∑
i∈I pi.

Lemma C.4. Suppose p ∈ ∆h
k \ ∆h̃

k for some 0 < h < h̃ < 1 and let i := mode(p) and
j ∈ arg maxl∈[k]\{i} pl. Then, we have pi + pj ≥ 2+(k−2)h

k and pi − pj < h̃.

Proof. From p ∈ ∆h
k and mode(p) = i we infer that pl ≤ pi − h holds for each l ∈ [k] \ {i}. Thus,

1 =
∑

l∈[k]
pl ≤ pi +

∑
l 6=i

(pi − h) = kpi − (k − 1)h

shows us that pi = 1+(k−1)h
k +ε for some ε ≥ 0. Due to

∑
l 6=i pl = 1−pi and pj = maxl∈[k]\{i} pl,

we have

pj ≥
1− pi
k − 1

=
1− 1+(k−1)h

k − ε
k − 1

=
1 + h

k
− ε

k − 1
.

Consequently,

pi + pj ≥
1 + (k − 1)h

k
+ ε+

1 + h

k
− ε

k − 1

=
2 + (k − 2)h

k
+

(k − 2)ε

k − 1

≥ 2 + (k − 2)h

k
.

Moreover, p 6∈ ∆h̃
k assures the existence of some j′ ∈ [m] \ {i} with pi < pj′ + h̃. Since the choice

of j guarantees pj′ + h̃ ≤ pj + h̃, this implies pi − pj < h̃.

Proof of Proposition C.1. We may suppose w.l.o.g. i = 1 and fix j = 2. Let us define a := p1
p1+p2

and suppose we have a coin C ∼ Ber(p) with p ∈ {a, 1− a}. By simulating A, we will construct an
algorithm A′ for testing

H′0 : p = a H′1 : p = 1− a
in the following way: WheneverA makes a query at time t, we generate an independent sample Ut ∼
U([0, 1]). Then, we return the feedback Xt = i′ ∈ {3, . . . , k} iff Ut ∈ (

∑
j′≤i′−1 pj′ ,

∑
j′≤i′ pj′ ]

and in case Ut ∈ [0, p1 + p2] we generate an independent sample Ct ∼ Ber(p) from our coin C and
return

Xt =

{
1, if Ct = 1,

2, if Ct = 0.
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As soon asA terminates, we terminate and return D(A′) = 0 if D(A) = 1 and D(A′) = 1 otherwise.
By our construction, we have Pp(Xt = i) = pi for each i ∈ {3, . . . , k}

Pa(Xt = 1) = (p1 + p2)P(Ct = 1) = p1, Pa(Xt = 2) = (p1 + p2)P(Ct = 0) = p2

and similarly P1−a(Xt = 1) = p2 and P1−a(Xt = 2) = p1. Thus if p = a, A behaves as started
on p and if p = 1 − a, A behaves as started on p′ := (p2, p1, p3, . . . , pk) ∈ ∆h

k . Since A solves
Pk,γk (∆h), we obtain

Pa(D(A′) = 0) = Pp (D(A) = 1) ≥ 1− γ

and (due to 2 = arg maxj′∈[k] p
′
j)

P1−a(D(A′) = 1) = Pp′(D(A) 6= 1) ≥ Pp′(D(A) = 2) ≥ 1− γ,

i.e., A′ is able to decide H′0 versus H′1 with error probability ≤ γ. From Lemma C.2 we infer that it
has to throw the coin C (in both cases p ∈ {a, 1− a}) in expectation at least f(a− 1/2, γ) times for
this. Regarding that C is thrown in our construction iff we return as feedback an element from {1, 2},
we get that

Ep[T1(TA) + T2(TA)] ≥ f(a− 1/2, γ) where Ti(TA) :=
∑

t≤TA
1{Xt=i}.

An application of Lemma C.3 yields

Ep[TA] ≥ f(a− 1/2, γ)

p1 + p2
=
f
(

p1−p2
2(p1+p2) , γ

)
p1 + p2

,

which completes the proof of the first statement.

The worst-case bound (8) then follows from the just proven bound via

supp∈∆h
k
Ep[TA] ≥ E( 1+h

2 , 1−h2 ,0,...,0)[TA] ≥ f(h/2, γ) ≥ 4c(h0, γ0)h−2 ln(γ−1)

for some c(h0, γ0) > 0, that is assured to exist by Lemma C.2. To prove (9) suppose at first h̃ ∈ (h, 1)

and p ∈ ∆h
k \∆h̃

k to be fixed and write i := mode(p). Lemma C.4 reveals that there exists some
j ∈ [k] \ {i} with pi + pj ≥ 2+(k−2)h

k and pi − pj < h̃. Consequently, the above proven bound and
the estimate f(h, γ) ≥ c(h0, γ0)h−2 ln(γ−1) yield

Ep[TA] ≥
f
(

pi−pj
2(pi+pj)

, γ
)

pi + pj
≥ 4c(h0, γ0)

pi + pj
(pi − pj)2

ln(γ−1)

≥ 4c(h0, γ0)h̃−2 ln(γ−1)
2 + (k − 2)h

k

≥ 2c(h0, γ0)h̃−2 ln(γ−1)

(
1

k
+ h

)
.

Since p ∈ ∆
h(p)
k \

(⋃
h̃>h(p) ∆h̃

k

)
=
⋂
h̃>h(p)(∆

h(p)
k \∆h̃

k) for any p ∈ ∆h
k , (9) can be inferred

from this by taking the limit h̃↘ h(p).

From Lemma C.2 we can infer that any solution A to P2,γ
2 (∆0) fulfills limh→ 0 E1/2±h[TA] ∈

Ω(h−2) as h → 0. The following lemma improves upon this bound and is the key ingredient for the
proof of Proposition 4.2.
Lemma C.5. Let γ ∈ (0, 1/2) be fixed and suppose A to be an algorithm, which terminates a.s. for
any p 6= 1/2 and is able to decide (10) for any p 6= 1/2 with confidence ≥ 1− γ, i.e.,

∀p > 1/2 : Pp(D(A) = 0) ≥ 1− γ and ∀p < 1/2 : Pp(D(A) = 1) ≥ 1− γ.

Then,

lim sup
h→ 0

E1/2±h
[
TA
]

h−2 ln lnh−1
≥ 1

2
P1/2(TA =∞) ≥ 1

2
(1− 2γ) > 0.
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Proof. This is stated in Theorem 1 in [14]. To verify this, note that | ln | ln |h|||−1 = (ln lnh−1)−1

holds for h < 1
e and also confer the remark directly after Theorem 1 therein.

Proof of Proposition 4.2. We suppose w.l.o.g. (i, j) = (1, 2) throughout the proof. For h ∈ (0, p1 −
p2) we have (p(h))1 > (p(h))2 > (p(h))l for every l ∈ {3, . . . , k} and together with |(p(h))1 −
(p(h))2| = h this shows p(h) ∈ ∆h

k . Suppose we have a coin C ∼ Ber(p) for p 6= 1/2. By
simulating A as in the proof of Proposition 4.1 we obtain an algorithm A′ for testing H0 : p > 1/2
versus H1 : p < 1/2, which has (due to the theoretical guarantees of A) an error probability ≤ γ for
every p 6= 1/2. Consequently, Lemma C.5 guarantees the existence of a sequence {h′l}l∈N ⊆ (0, e−4)
with

∀l ∈ N :
E1/2±h′l [T

A′ ]

h′l
−2 ln lnh′l

−1 ≥
1− 2γ

2
− ε > 0

for some arbitrarily small but fixed ε ∈ (0, 1−2γ
2 ). If we choose hl := 2(p1 + p2)h′l, then the

corresponding bias of the coin C in the reduction (cf. the proof of Proposition 4.1) is exactly

(p(hl))1

(p(hl))1 + (p(hl))2
=

p1+p2
2 + hl

2

p1 + p2
=

1

2
+

hl
2(p1 + p2)

=
1

2
+ h′l

Hence, if A′ is started on 1/2 + h′l, its internal method A works as if started on p(hl). From
hl ≤ e−4 we obtain 4 = (1/2)−2 ≤ ln(h−1

l ) and thus −2 ln(1/2) ≤ ln ln(h−1
l ), i.e., ln(1/2) ≥

−1/2 ln ln(h−1
l ) ≥ −1/2 ln(h−1

l ). Consequently,

ln lnh′−1
l = ln ln

(
h−1
l

2(p1 + p2)

)
≥ ln

(
ln(1/2) + ln(h−1

l ))
)
≥ ln

(
1

2
ln(h−1

l )

)
= ln(1/2) + ln ln(h−1

l ) ≥ 1

2
ln ln(h−1

l )

holds, and we obtain similarly as in the proof of Proposition 4.1

Ep(hl)[T1(TA) + T2(TA)] ≥ E1/2+h′l
[TA

′
] ≥

(
1

2
(1− 2γ)− ε

)
h′l
−2

ln lnh′l
−1

≥ 2(p1 + p2)2

(
1

2
(1− 2γ)− ε

)
h−2
l ln lnh−1

l

Regarding that his holds for arbitrarily small ε > 0, Lemma C.3 shows5 that

Ep(hl)[T
A]

h−2
l ln lnh−1

l

≥ (1− 2γ)(p1 + p2)

holds for every l ∈ N, which completes the proof.

D Proofs of Section 4.2

Our upper bounds for both the cases m = k and m ≥ k rely on the Kiefer-Dvoretzky-Wolfowitz
inequality, which we state in the following for convenience only for categorical random variables.
Lemma D.1. Suppose X1, X2, . . . to be iid random variables Xn ∼ Cat(p) for some p ∈ ∆k. For
t ∈ N let p̂t be the corresponding empirical distribution after the t observations X1, . . . , Xt, i.e.,
p̂ti = 1

t

∑t
s=1 1{Xs=i} for all i ∈ [k]. Then, we have for any ε > 0 and t ∈ N the estimate

P
(∣∣∣∣p̂t − p

∣∣∣∣
∞ > ε

)
≤ 4e−tε

2/2.

Proof. Confer [12, 24] as well as Theorem 11.6 in [22]. Moreover, note that the cumulative dis-
tribution functions F resp. F̂ t of X1 ∼ Cat(p) resp. p̂t fulfill pj = F (j) − F (j − 1) and
p̂tj = F̂ t(j)− F̂ t(j − 1) and thus

|p̂tj − pj | ≤ |F̂ t(j)− F (j)|+ |F̂ t(j − 1)− F (j − 1)|.
for each j ∈ [k].

5Note here that (p(h))1 + (p(h))2 = p1 + p2.
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Lemma D.2. For h ∈ [0, 1], ε ∈ (−h, 1],p ∈ ∆h
k and p̃ ∈ ∆k we have

(∃i : p̃i −maxj 6=i p̃j ≥ ε and pi 6= maxj pj) ⇒ ||p̃− p||∞ ≥ (h+ ε)/2.

Proof. Suppose there is some i ∈ [k] s.t. p̃i −maxj 6=i p̃j ≥ ε and pi 6= maxj pj hold. Then, there
exists some j ∈ [k] \ {i} with

pj ≥ pi + h and p̃i ≥ p̃j + ε

and we conclude

2 ||p̃− p||∞ ≥ |pj − p̃j |+ |p̃i − pi| ≥ (pj − pi) + (p̃i − p̃j) ≥ h+ ε.

Remark D.3. The bounds from Lemma D.2 are sharp: Consider e.g. p ∈ ∆h
k and p̃ ∈ ∆k defined

via

pi =


1/2− h/2, if i = 1,

1/2 + h/2, if i = 2,

0, otherwise
and p̃i =


1/2 + ε/2, if i = 1,

1/2− ε/2, if i = 2,

0, otherwise.

Then, we have p̃1 −maxj 6=1 p̃j = ε and p1 6= maxj∈[k] pj and at the same time ||p− p̃||∞ = h+ε
2 .

For sake of convenience, we give a pseudo-code for the straightforward strategy described in Section
4.2 for solving Pk,γk (∆h) .

Algorithm 4 DKW mode identification – (non-sequential) solution to Pk,γk (∆h)

Input: γ ∈ (0, 1), h ∈ (0, 1), k ∈ N, access to iid samples Xt ∼ Cat(p)

1: Let T ← d8 ln(4/γ)h−2e
2: Observe X1, . . . , XT ∼ Cat(p)

3: return mode(p̂T ) = arg maxi∈[k]

∑T
t=1 1{Xt=i}

As a direct consequence of Lemma D.1 and Lemma D.2 we obtain the following result.
Proposition D.4. For any k ∈ N, h ∈ (0, 1) and γ ∈ (0, 1), Algorithm 4 called with parameters
γ, h, k solves Pk,γk (∆h) and terminates after exactly d8 ln(4/γ)h−2e time steps.

Lemma D.5. Let h > 0, p ∈ ∆3h
k and p̃ ∈ ∆k be fixed. Then,

∀i : p̃i ≤ maxj 6=i p̃j + h ⇒ ||p− p̃||∞ ≥ h.

Proof. To prove the contraposition, we suppose ||p− p̃||∞ < h to be fulfilled. Let i := mode(p) ∈
[k] and fix some arbitrary j ∈ [k] \ {i}. Since p ∈ ∆3h

k assures pi ≥ pj + 3h, we obtain

p̃i − p̃j = pi + (p̃i − pi) + (pj − p̃j)− pj ≥ pi − pj − 2 ||p− p̃||∞
> pi − pj − 2h ≥ h.

As j was arbitrary, we conclude that p̃i > maxj 6=i p̃j + h, which completes the proof.

Lemma D.6. For any h ∈ (0, 1/8), ε ∈ (0, 1/3) and k ∈ N≥3 there exist p ∈ ∆
(3−ε)h
k and p̃ ∈ ∆k

such that

∀i ∈ [k] : p̃i ≤ maxj 6=i p̃j + h and ||p− p̃||∞ < h.

Proof. Suppose h ∈ (0, 1/8), ε ∈ (0, 1/3) and k ∈ N≥3 to be fixed. Now, define p ∈ ∆k and
p̃ ∈ ∆k via

pj :=


1
2 + h, if j = 1,
1
2 − (2− ε)h, if j = 2,
(1−ε)h
k−2 , if j ≥ 3,
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and

p̃j :=


p1 − (1− ε

4 )h = 1
2 + εh

4 , if j = 1,

p2 + (1− ε
4 )h = 1

2 + ( 3ε
4 − 1)h, if j = 2,

(1−ε)h
k−2 , if j ≥ 3.

From h < 1/8 we infer 1/2− (2− ε)h > 1/2− 2h > 1/4 and thus

∀j ≥ 3 :
(k − 2)pj

p2
=

(1− ε)h
1/2− (2− ε)h

< 4(1− ε)h < 4h < 1/2 < k − 2.

This shows p1 − (3 − ε)h = p2 > maxj≥3 pj and consequently p ∈ ∆
(3−ε)h
k . Since p̃j = pj is

fulfilled for each j ≥ 3, we have p̃1 > p̃2 > p2 > maxj≥3 p̃j , and together with

p̃1 − p̃2 =
εh

4
− 3εh

4
+ h =

(
1− ε

2

)
h < h

we see that p̃i ≤ maxj 6=i p̃j + h holds for each i ∈ [m]. Finally ||p− p̃||∞ < h follows from
|p1 − p̃1| = (1− ε

4 )h = |p2 − p̃2| as well as pj = p̃j for all j ≥ 3.

Proof of Lemma 4.3. Let p ∈ ∆k be fixed, and note that Algorithm 1 terminates after exactly
d8 ln(4/γ)h−2e time steps. Lemma D.2 and Lemma D.1 let us directly infer

Pp

(
D(A) ∈ [k] and pD(A) < maxj∈[k] pj

)
= P

(
∃i ∈ [k] : p̂ti −maxj 6=i p̂

t
j > h and pi 6= maxj∈[k] pj

)
≤ P

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > h/2

)
≤ γ. (11)

Next, suppose p ∈ ∆0
k and let i′ := mode(p) ∈ [k]. Again, Lemma D.2 yields

{D(A) ∈ [k] \ {i′}} =
{
∃i 6= i′ : p̂ti −maxj 6=i p̂

t
j > h and pi′ > maxj 6=i′ pj

}
⊆
{∣∣∣∣p̂t − p

∣∣∣∣
∞ > h/2

}
, (12)

and thus

Pp(D(A) 6∈ {i′,UNSURE}) ≤ Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > h/2

)
≤ γ

follows from Lemma D.1 and the choice of t. Now, let us suppose p ∈ ∆3h
k . A look at Lemma D.5

reveals

{D(A) = UNSURE} =
{
∀i ∈ [k] : p̂ti ≤ maxj 6=i p̂

t
j + h

}
⊆
{∣∣∣∣p̂t − p

∣∣∣∣
∞ > h

}
,

and combining this with (12) yields

Pp(D(A) 6= mode(p)) = Pp (D(A) ∈ [k] \ {i′} or D(A) = UNSURE)

≤ Pp

(∣∣∣∣p̂t − p
∣∣∣∣
∞ > h/2

)
≤ γ,

where the last estimate is again due to Lemma D.1.

We proceed with the proof of Proposition 4.4.

Proof of Proposition 4.4. Let p ∈ ∆0
k be fixed and abbreviate h := h(p). Moreover, denote by

D(As) the output of the instance of Algorithm 1 with parameters γs, hs that is called in iteration s of
the while loop of A (Algorithm 2). Let us define for each s ∈ N the set

Es1 := {hs > h/3 and D(As) ∈ {UNSURE,mode(p)}},
Es2 := {hs ≤ h/3 and D(As) = mode(p)}

and

E :=
⋃

s∈N
(Es1 ∪ Es2 )

c
.
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From the equivalence h′ ≤ 1
3h(p)⇔p ∈ ∆3h′

k and Lemma 4.3 we infer

Pp ((Es1 ∪ Es2 )
c
) =

{
Pp ((Es1 )

c
) , if hs > h/3

Pp ((Es2 )
c
) , if hs ≤ h/3

}
≤ γs

and therefore

Pp(E) ≤
∑

s∈N
γs =

∑
s∈N

6γ

π2s2
= γ. (13)

Now, let s0 := s0(h) ∈ N be such that hs0 ≤ h/3 < hs0−1 and note that

Ec ⊆ Es02 ⊆ {D(As0) 6= UNSURE}
⊆ {A terminates at latest after the s0-th iteration of the while loop}. (14)

In particular, A terminates almost surely on Ec. Regarding the construction6 of A we also have

Ec =
⋂

s∈N
(Es1 ∪ Es2 ) ⊆

⋂
s∈N
{D(As) ∈ {UNSURE,mode(p)}}

⊆ {D(A) = mode(p)} . (15)

Since A makes in its s-th iteration of the while loop (according to Algorithm 1) exactly
d8 ln(4/γs)h

−2
s e queries, combining (13), (14) and (15) yields

Pp

(
D(A) = mode(p) and TA ≤ t0(h, γ)

)
≥ Pp (Ec) ≥ 1− γ,

with t0(h, γ) :=
∑
s≤s0(h)d8 ln(4/γs)h

−2
s e. As the choice of s0 = s0(h) guarantees h

3 < hs0−1 =

2−s0 and thus s0 < log2(3h−1), we obtain with regard to the choices of hs = 2−s−1 and γs = 6γ
π2s2

that

t0(h, γ) ≤ 27
∑s0(h)

s=1
22s−1 ln

(
2π2s2

3γ

)
∈ O

(∑s0(h)

s=1
22s−1 ln

(
s0(h)

γ

))
⊆ O

(
4s0(h) ln

(
s0(h)

γ

))
⊆ O

(
4log2(3/h) ln

(
log2(3h−1)γ−1

))
⊆ O

(
h−2

(
ln lnh−1 + ln γ−1

))
as min{h, γ} → 0. It remains to show that TA is almost surely finite w.r.t. Pp. For an arbitrary
integer s ≥ log2(3/h) we have hs ≤ h/3 and thus

Pp

(
TA =∞

)
≤ Pp (∀s′ ∈ N with hs′ ≤ h/3 : D(As′) = UNSURE)

≤ Pp (D(As) = UNSURE) ≤ Pp((Es2 )c) ≤ γs,

which directly implies Pp(TA =∞) ≤ lims→∞ γs = 0.

E Remaining Proofs for Section 6

We prove the following more detailed version of Theorem 6.2.
Theorem E.1. LetA be Algorithm 3 called with the parameters k,m ∈ N with k ≤ m and γ ∈ (0, 1).
Then,A solvesPm,γk (∃GCW∧∆0) and fulfills for any P = {P(·|S)}S∈[m]k ∈ PMm

k (∃GCW∧∆0)

PP

(
D(A) = GCW(P) and TA ≤ t′(P,m, k, γ)

)
≥ 1− γ,

where t′(P,m, k, γ) is given as

max
{∑

s≤s′
t0(h(P(·|Bs)), γ′) : B1, B2, . . . , Bs′ ∈ [m]k s.t.

⋃
s≤s′

Bs = [m]
}

(16)

with s′ := d m
k−1e, γ

′ := γ
s′ and t0(h, γ) defined as in Proposition 4.4, i.e., t0(h, γ) =∑

s≤s0(h)d8 ln(4/γs)h
−2
s e with s0(h) = dlog2(3/h)e − 1.

6Note here that D(A) ∈ [m] holds, i.e., A cannot terminate with UNSURE as output.
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Proof. Suppose P = {P(·|S)}S∈[m]k ∈ PMm
k (∃GCW ∧ ∆0) to be fixed and abbreviate

i := GCW(P). Recall the internal values s, Ss and Fs of Algorithm 3. If A terminates, then the
value of s is s′ := d m

k−1e. Let us write Ãs for the instance of Algorithm 2, which is called with
parameters m, γ′ and sample access to P(·|Ss) in Step 2 (or 9), i.e., we have is = D(Ãs) ∈ Ss for
each s ≤ s′. For s ≥ 2, Ss and Fs depend on the outcome of Ãs−1 and are thus random variables.

Claim 1: On the event {TA <∞} we have

(i) Fs′ = ∅ and
⋃
s≤s′ Ss = [m], i.e.,

∑
s≤s′ t0(γ′, h(P(·|Ss))) ≤ t′(P,m, k, γ) holds a.s.,

(ii) {D(A) 6= i} ⊆
⋃
s≤s′{D(Ãs) 6= mode(P(·|Ss))}.

Proof of Claim 1: Suppose TA < ∞. Clearly, |Fs| is monotonically decreasing in s. Whenever
|Fs| ≥ k, then |Ss ∩ Fs| ≥ k − 1 and thus |Fs+1| ≤ |Fs| − (k − 1) are fulfilled. Hence, |Fs| ≤
m − s(k − 1) holds for any s ≤ s′ − 1. In particular, we have |Fs′−1| ≤ k − 1, which implies
Fs′ = ∅.
From [m] = F0 ⊇ F1 ⊇ · · · ⊇ Fs′ = ∅ and ∀s ≤ s′ : Fs+1 = Fs \ Ss we infer

⋃
s≤s′ Ss = [m],

which proves (i). Regarding that the implications

j ∈ Ss \ Ss′ ⇒ ∃l ∈ {0, . . . , s′ − s} : j ∈ Ss+l−1 \ Ss+l

and
j ∈ Ss \ Ss+1 ⇒ j 6= is

are trivially fulfilled for all j ∈ [m] and s ∈ {0, . . . , s′ − 1}, we obtain

{i 6∈ Ss′} ⊆ {∃s < s′ : i ∈ Ss and i 6∈ Ss+1}
⊆ {∃s < s′ : i ∈ Ss and is 6= i}.

Due to {i ∈ Ss and is 6= i} ⊆ {D(Ãs) 6= mode(P(·|Ss))}, this implies

{D(A) 6= i} = {i ∈ Ss′ and i 6= is′} ∪ {i 6∈ Ss′}

⊆
⋃

s≤s′
{i ∈ Ss and i 6= is}

⊆
⋃

s≤s′
{D(Ãs) 6= mode(P(·|Ss))}.

�

Claim 2: We have the estimate

PP

(
∃s ≤ s′ : D(Ãs) 6= mode(P(·|Ss))) or T Ãs > t0(γ′, h(P(·|Ss)))

)
≤ γ.

Proof of Claim 2: For s ≤ s′ let

Es :=
{
D(Ãs) 6= mode(P(·|Ss))) or T Ãs > t0(γ′, h(P(·|Ss)))

}
denote the set, where A fails at round s in the sense that Ãs either makes an error in finding
mode(P(·|Ss)) or queries “too many” samples for this. For B ∈ [m]k and s ≤ s′ − 1 with
PP({Ss = B} ∩

⋂
s̃≤s−1E

c
s̃) > 0 we have with regard to Proposition 4.4

PP

(
Es

∣∣∣ {Ss = B} ∩
⋂

s̃≤s−1
Ecs̃

)
= PP(·|B)

(
D(Ãs) 6= mode(P(·|B)) or T Ãs > t0(γ′, h(P(·|B)))

)
≤ γ′,

25



where we have used that both
⋂
s̃≤s−1E

c
s̃ and the choice {Ss = B} are independent of the samples

observed by Ãs. We conclude

PP

(⋃
s≤s′

Es

)
= PP

(⋃
s≤s′

Es \
(⋃

s̃≤s−1
Es̃

))
≤
∑

s≤s′

∑
B∈[m]k

PP

(
Es ∩ {Ss = B} ∩

⋂
s̃≤s−1

Ecs̃

)
=
∑

s≤s′

[∑
B
PP

(
Es

∣∣∣{Ss = B} ∩
⋂

s̃≤s−1
Ecs̃

)
PP

(
{Ss = B} ∩

⋂
s̃≤s−1

Ecs̃

)]
≤
∑

s≤s′
γ′ ≤ γ,

where we have written
∑
B for the sum over all B ∈ [m]k with PP

(
{Ss = B} ∩

⋂
s̃≤s−1E

c
s̃

)
> 0.
�

Now, let us define for s ≤ s′ the events

Rs :=
{
T Ãs ≤ t0(γ′, h(P(·|Ss)))

}
andR :=

⋂
s≤s′ Rs. Due to TA =

∑
s≤s′ T

Ãs we have

R ⊆
{
TA ≤

∑
s≤s′

t0(γ′, h(P(·|Ss)))
}
⊆
{
TA <∞

}
.

The equalityRc =
⋃
s≤s′ Rcs together with Part (ii) of Claim 1 and Claim 2 let us infer

PP ({D(A) 6= i} ∪ Rc) = PP (({D(A) 6= i} ∩ R) ∪Rc)

≤ PP

(⋃
s≤s′

{
D(Ãs) 6= mode(P(·|Ss)))

}
∪Rcs

)
= PP

(
∃s ≤ s′ : D(Ãs) 6= mode(P(·|Ss))) or T Ãs > t0(γ′, h(P(·|Ss)))

)
≤ γ

and we can thus conclude with the help of Part (i) of Claim 1 that

PP

(
D(A) = i and TA ≤ t′(P,m, k, γ)

)
≥ PP

(
D(A) = i and TA ≤

∑
s≤s′

t0(γ′, h(P(·|Ss))
)

≥ PP ({D(A) = i} ∩ R)

≥ 1− γ.

Proof of Theorem 6.2. According to Theorem E.1, A solves Pm,γk (∃GCW ∧ ∆0). Let P =
{P(·|S)}S∈[m]k ∈ PMm

k (∃GCW ∧∆0) be arbitrary. Theorem E.1 ensures that

PP

(
D(A) ∈ GCW(P) and TA ≤ t′(P,m, k, γ)

)
≥ 1− γ

holds with t′(P,m, k, γ) as in (16). By definition of h(P) we have h(P(·|S)) ≥ h(P) for any S ∈
[m]k, whence monotonicity of t0(h, γ) from Proposition 4.4 w.r.t. h shows us that t0(h(P(·|S)), γ) ≥
t0(h(P), γ) for any S ∈ [m]k. Thus, a look at (16) reveals that

t′(P,m, k, γ) ≤ T ′(h(P),m, k, γ)

with T ′(h,m, k, γ) :=
⌈
m
k−1

⌉
t0

(
h, γ
dm/(k−1)e

)
, which is according to Proposition 4.4 in

O
(
m
kh2 ln

(
m
k

) (
ln lnh−1 + ln γ−1

))
.

The following algorithm is a solution to Pm,γk (∃hGCW ∧∆0).
Theorem E.2. LetA be Algorithm 5 called with parameters m, k ∈ N with k ≤ m and γ, h ∈ (0, 1).
Then,A solves Pm,γk (∃hGCW∧∆0) and terminates a.s. for any P ∈ PMm

k (∃hGCW∧∆0) before

some time t′(m, k, h, γ) ∈ O
(
m
kh2 ln

(
m
kγ

))
.
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Algorithm 5 Solution to Pm,γk (∃hGCW ∧∆0)

Input: k,m ∈ N, γ ∈ (0, 1), h ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k ,
Initialization: Ã := Alg. 1, i0 ← UNSURE, h′ ← h

3 , γ′ ← γ
dm/(k−1)e , let S1 ∈ [m]k arbitrary,

F1 ← [m], s← 1
. Ss : candidate set in round s, Fs : remaining elements in round s

. is ∈ Ss ∪ {UNSURE} : output of Ã in round s
1: while |Fs| > 0 do
2: is ← Ã(h′, γ′, sample access to P(·|Ss))
3: Fs+1 ← Fs \ Ss
4: Write Fs+1 = {j1, . . . , j|Fs+1|}.
5: if |Fs+1| < k then
6: Fix distinct j|Fs+1|+1, . . . , jk ∈ [m] \ (Fs+1 ∪ {is}).
7: if is ∈ [m] then Ss+1 ← {is, j1, . . . , jk−1}
8: else Ss+1 ← {j1, . . . , jk}
9: s← s+ 1

10: is ← Ã(h′, γ′, sample access to P(·|Ss))
11: if is ∈ [m] then return is
12: else return 1

Proof of Theorem E.2. Let us define the random variable sA := min{s ∈ N |Fs = ∅} ∈ N ∪ {∞}
and suppose P ∈ PMm

k to be arbitrary but fixed for the moment.
Claim 1: We have sA ≤ s′ := d m

k−1e a.s. w.r.t. PP.
Proof of Claim 1: Assume on the contrary that sA > s′. Note that |Fs| is monotonically decreasing
in s. Whenever |Fs| ≥ k, then |Ss ∩ Fs| ≥ k − 1 and thus |Fs+1| ≤ |Fs| − (k − 1) are fulfilled.
Hence, |Fs| ≤ m− s(k− 1) holds for any s ≤ s′− 1. In particular, we have |Fs′−1| ≤ k− 1, which
implies Fs′ = ∅, contradicting the assumption sA > s′. This proves that sA ≤ s′ is fulfilled a.s. �

Using that A makes exactly sA calls of Ã (i.e., Algorithm 1) with parameters h′, γ′ and each such
call is executed with a sample complexity of exactly d8 ln(4/γ′)/h′

2e, the total sample complexity
of A is at most

s′d8 ln(4/γ′)/h′
2e =

⌈
m

k − 1

⌉⌈
72

h2
ln

(
4dm/(k − 1)e

γ

)⌉
,

which is in O
(
m
kh2 ln

(
m
kγ

))
as max{m, k, h−1, γ−1} → ∞. It remains to prove correctness of A.

Write A′ for Algorithm 6 called with the same parameters as A.
Claim 2: For any P ∈ PMm

k , we have
PP (D(A) 6= GCW(P)) = PP (D(A′) 6= GCW(P)) .

Proof of Claim 2: This follows directly from the fact that for any S ∈ [m]k, different calls of Ã on
P(·|S) are by assumption executed on different samples of P(·|S) and thus independent of each
other. �

This result shows that it is sufficient to prove correctness of A′. In the following, we denote by s, is
Fs and Ss the internal statistics of A′ and write Ãs for that instance of Ã, which is executed in A′ to
determine is. Let P ∈ PMm

k (∃hGCW ∧∆0) be fixed and define i := GCW(P).

Claim 3: For all s ≤ s′ we have
PP (i ∈ Ss and is 6= i) ≤ γ′.

Proof of Claim 3: Suppose B ∈ [m]k with i ∈ [m] and PP(Ss = B) > 0 to be arbitrary but fixed
for the moment. By assumption on P we have P(·|B) ∈ ∆3h′

k and since Ãs is Algorithm 1 executed
with parameters h′, γ′ and sample access to P(·|Ss) only, Lemma 4.3 assures

PP (i ∈ Ss and is 6= i|Ss = B)

= PP(·|B)(Alg. 1 started with h′, γ′ does not output mode(P(·|B))) ≤ γ′.
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Claim 3 thus follows via summation over all such B. �

On the event {TA′ < ∞}, we infer from [m] = F0 ⊇ F1 ⊇ · · · ⊇ FsA = · · · = Fs′ = ∅ and
∀s ≤ s′ : Fs+1 = Fs \ Ss similarly as in the proof of Theorem E.1

{D(A′) 6= i} ⊆
⋃

s≤s′
{i ∈ Ss and is 6= i}.

As TA
′
<∞ holds a.s. w.r.t. PP, combining this with Claim 3 directly yields

PP(D(A′) 6= i) ≤
∑

s≤s′
γ′ = γ,

which completes the proof.

Algorithm 6 Modification of Algorithm 5 for the proof of Theorem E.2
Input: k,m ∈ N, γ ∈ (0, 1), h ∈ (0, 1), sample access to P = {P(·|S)}S∈[m]k ,
Initialization: Ã := Algorithm 1, i0 ← UNSURE, h′ ← h

3 , γ′ ← γ
dm/(k−1)e

S1 ← [k], F1 ← [m], s← 1

1: Execute steps 1–8 of Algorithm 5.
2: let s′ ← d m

k−1e
3: while s < s′ do
4: is ← Ã(h′, γ′, sample access to P(·|Ss))
5: Fs+1 ← Fs, Ss+1 ← Ss
6: s← s+ 1
7: is ← Ã(h′, γ′, sample access to P(·|Ss))
8: return is

F Proof of Theorem 5.2

Before proving Theorem 5.2, we require some preparation. For S ∈ [m]k and p,q ∈ ∆S let us write
KL(p,q) for the Kullback-Leibler divergence of random variables X ∼ Cat(p) and Y ∼ Cat(q),
i.e.,

KL(p,q) =

{∑
x∈S:px>0 px ln

(
px
qx

)
, if ∀y ∈ S : qy = 0 ⇒ py = 0,

∞, otherwise.

For the sake of convenience, we write in the binary case k = 2 simply kl(x, y) :=
KL((x, 1− x), (y, 1− y)) for any x, y ∈ [0, 1].
Lemma F.1. (i) For any S ∈ [m]k and p,q ∈ ∆S we have

KL(p,q) ≤
∑

x∈S

(px − qx)2

qx
.

(ii) The inequality kl(γ, 1− γ) ≥ ln((2.4γ)−1) holds for any γ ∈ (0, 1).

Proof. The statement from (i) is Lemma 3 in [11] and for (ii) cf. Equation (3) in [21].

Given an algorithm A, which tackles the problem Pm,γk (∆h), let us write SAt for the query (element
of [m]k) made at time step t. Moreover, define TAS to be the number of times A makes the query

S ∈ [m]k before termination, i.e., TAS =
∑TA

t=1 1{SAs =S} and TA =
∑
S∈[m]k

TAS are fulfilled.
Let iAt ∈ SAt be the feedback observed by A at time step t, after having queried SAt , and write
FAt := σ(SA1 , i

A
t , . . . , S

A
t , i
A
t ) for the sigma algebra generated by the behaviour and observed

feedback of A until time t, and as usual FTA := FATA = σ
(⋃

t≤TA FAt
)

.

Since A may be thought of as a multi-armed bandit with
(
m
k

)
arms (one for each S ∈ [m]k) and

“rewards” iAt ∈ SAt , we may translate Lemma 1 from [21] to our setting in the following way:
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Lemma F.2. Let P,P′ ∈ PMm
k (∆h ∧ ∃GCW) with7 P(j|S),P′(j|S) > 0 for any S ∈ [m]k and

j ∈ S. If an algorithm A tackles Pm,γk (∆h ∧ ∃GCW) and fulfills EP[TA],EP′ [T
A] <∞, then∑

S∈[m]k
EP

[
TAS
]

KL(P(·|S),P′(·|S)) ≥ supE∈FTA kl (PP(E),PP′(E))

We are now ready to prove Theorem 5.2. The proof idea is similar to the one followed in the proof of
Theorem 7 in [35].

Proof of Theorem 5.2. We prove the instance-wise and asymptotic lower bound separately.

Part 1: Proof of the instance-wise bound
After relabeling the items in [m], we may suppose w.l.o.g. GCW(P) = 1 throughout the proof.
Write for convenience P[1] := P, recall that mS = mode(P[1](·|S)) for any S ∈ [m]k and define
P[l] ∈ PMm

k (∆h) for each l ∈ {2, . . . ,m} via

P[l](l|S) := P[1](mS |S), P[l](mS |S) := P[1](l|S),

P[l](j|S) := P[1](j|S) for all j ∈ S \ {l,mS} (17)

for any S ∈ [m]k with l ∈ S and

P[l](j|S) := P[1](j|S) for all j ∈ S

for any S ∈ [m]k with l 6∈ S. Abbreviating P
[r]
S := P[r](·|S) we directly obtain KL

(
P

[1]
S ,P

[l]
S

)
= 0

whenever S 6∈ [m]
(l)
k := {S ∈ [m]k | l ∈ S and l 6= mS}. Define

Σ(l) :=
∑

S∈[m]
(l)
k

EP[1]

[
TAS
]

for each l ∈ {2, . . . ,m}. Now, suppose l to be fixed for the moment and note that GCW(P[l]) = l
holds by construction of P[l]. As A solves Pm,γk (∆h), the event E := {D(A) = 1} ∈ FTA fulfills
PP[1](E) ≥ 1− γ and PP[l](E) ≤ γ. Consequently, by applying part (ii) of Lemma F.1 and Lemma
F.2, we obtain

ln
(
(2.4γ)−1

)
≤ kl (PP[1](E),PP[l](E))

≤
∑

S∈[m]k
EP[1]

[
TAS
]

KL
(
P

[1]
S ,P

[l]
S

)
=
∑

S∈[m]
(l)
k

EP[1]

[
TAS
]

KL
(
P

[1]
S ,P

[l]
S

)
,

that is,

Σ(l) ≥ ln
(
(2.4γ)−1

)
min

S∈[m]
(l)
k

1

KL
(
P

[1]
S ,P

[l]
S

) . (18)

For any S = {i1, . . . , ik} ∈ [m]k with i1 := mS the term EP[1]

[
TAS
]

appears exactly k − 1 times as
summand in

Σ(2) + · · ·+ Σ(m) =
∑m

l=2

∑
S∈[m]k:mS 6=l∈S

EP[1]

[
TAS
]
,

namely as one summand in Σ(i2), . . . ,Σ(ik) each. Hence, (18) lets us infer

(k − 1)EP[1]

[
TA
]

=
∑

S∈[m]k
(k − 1)EP[1]

[
TAS
]

≥ Σ(2) + · · ·+ Σ(m)

≥ ln
(
(2.4γ)−1

)∑m

l=2
min

S∈[m]
(l)
k

1

KL
(
P

[1]
S ,P

[l]
S

) .
7We put these conditions on P and P′ in order to guarantee mutually absolutely continuity of the “rewards”

iS ∼ Cat(P(·|S)) resp. i′S ∼ Cat(P′(·|S)), S ∈ [m]k, which is formally required in Lemma 1 in [21].
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This completes our proof of the instance-wise bound. �

Part 2: Proof of the worst-case bound
Since the statement is trivial for h = 1, we may assume w.l.o.g. h ∈ (0, 1) in the following. Let
us abbreviate ∆[m]k := {w = (wS)S∈[m]k ∈ [0, 1][m]k |

∑
S∈[m]k

wS = 1}. For S ∈ [m]k, write
S = {S(1), . . . , S(k)} with S(1) < · · · < S(k). Suppose ε ∈ (0, 1/2) to be arbitrary but fixed for the
moment and define P[1,ε] ∈ PMm

k (∃GCW ∧∆h) via

P[1,ε](S(1)|S) :=
1 + h+ 2ε

2
, P[1](S(2)|S) :=

1− h
2

and
∀j ∈ {3, . . . , k} : P[1](S(j)|S) :=

ε

k − 2
.

for any S ∈ [m]k. For l ∈ {2, . . . ,m} let P[l,ε] be as P[1,ε] with [m] being relabeled via the l-shift
νl : [m] → [m] given by

1 7→ l, 2 7→ l + 1, . . . m− l − 1 7→ m, m− l 7→ 1, . . . m 7→ l − 1,

i.e., P[l,ε](νl(ir)|{νl(i1), . . . , νl(ik)}) = P[1,ε](ir|{i1, . . . , ik}) for any {i1, . . . , ik} ∈ [m]k and
r ∈ [k]. Then, P[l] ∈ PMm

k (∃GCW ∧∆h) and GCW(P[l]) = l hold for any l ∈ [m]. Write

P∗(ε) := {P[1,ε],P[2,ε], . . .P[m,ε]}

and define

P∗(¬l) :=
{
P ∈ PMm

k (∃GCW ∧∆h) |GCW(P) 6= l and ∀S ∈ [m]k : minj∈S P(j|S) > 0
}
.

For any P,P′ ∈ PMm
k (∃GCW ∧ ∆h) fulfilling minS∈[m]k minj∈S P(j|S) > 0 as well as

minS∈[m]k minj∈S P
′(j|S) > 0 and GCW(P) 6= GCW(P′) Lemma F.2 guarantees similarly

as above

ln((2.4γ)−1) ≤
∑

S∈[m]k
EP

[
TAS
]

KL(PS ,P
′
S),

where we have written PS resp. P′S for P(·|S) resp. P′(·|S). Regarding arbitrariness of P and
P′ therein and using that EP[TA] > 0 and

(
EP[TAS ]/EP[TA]

)
S∈[m]k

∈ ∆[m]k hold trivially for any
P ∈ PMm

k , we may follow an idea from [18] (cf. the proof of Theorem 1 therein) and estimate

ln((2.4γ)−1) ≤ minP∈P∗(ε) infP′∈P∗(¬GCW(P))

∑
S∈[m]k

EP

[
TAS
]

KL(PS ,P
′
S)

≤ minP∈P∗(ε) EP[TA] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

EP

[
TAS
]

EP[TA]
KL(PS ,P

′
S)

≤ supw∈∆[m]k
minP∈P∗(ε) EP[TA] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

wSKL(PS ,P
′
S). (19)

Suppose w ∈ ∆[m]k to be arbitrary but fixed for the moment. The identity

k = k
∑

S∈[m]k
wS =

∑
l∈[m]

∑
S∈[m]k:l∈S

wS

assures the existence of some l = l(w) ∈ [m] with
∑
S∈[m]k:l∈S wS ≤

k
m . Abbreviate P := P[l,ε].

After relabeling [m] via ν−1
l , we may assume w.l.o.g. l = 1 in the following, i.e. P = P[1,ε] ∈ P∗(ε).

Define P′ ∈ PMm
k via

P′(2|S) :=
1 + h+ 2ε

2
, P′(minS \ {2} |S) :=

1− h
2

and P′(j|S) :=
ε

k − 2

for any j ∈ S \ {2,min(S \ {2})}, if 2 ∈ S, and

P′(j|S) := P(j|S)
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for any j ∈ S, if 2 6∈ S. From P′ ∈ PMm
k (∃GCW ∧∆h) and GCW(P′) = 2 6= 1 = GCW(P)

we infer P′ ∈ P∗(¬GCW(P)). In case {1, 2} 6⊆ S, we have P(j|S) = P′(j|S) for any j ∈ S and
thus KL(PS ,P

′
S) = 0. In the remaining case {1, 2} ⊆ S Lemma F.1 allows us to estimate

KL(PS ,P
′
S)

= KL

((
1 + h+ 2ε

2
,

1− h
2

,
ε

k − 2
. . . ,

ε

k − 2

)
,

(
1− h

2
,

1 + h+ 2ε

2
,

ε

k − 2
. . . ,

ε

k − 2

))
≤ (h+ ε)2

(
2

1− h
+

2

1 + h+ ε

)
=

(4 + 2ε)(h+ ε)2

(1− h)(1 + h+ ε)
.

Regarding the choice of l = 1 we infer∑
S∈[m]k

wSKL(PS ,P
′
S) =

∑
S∈[m]k:{1,2}⊆S

wSKL(PS ,P
′
S)

≤ (4 + 2ε)(h+ ε)2

(1− h)(1 + h+ ε)

∑
S∈[m]k:1∈S

wS ≤
k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)

and thus clearly

EP[TA]
∑

S∈[m]k
wSKL(PS ,P

′
S) ≤ k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)
EP[TA].

Since w was arbitrary and P = P[l(w),ε], combining this with (19) yields

ln((2.4γ)−1)

≤ supw∈∆[m]k
minP∈P∗(ε) EP[TA] infP′∈P∗(¬GCW(P))

∑
S∈[m]k

wSKL(PS ,P
′
S)

≤ supw∈∆[m]k
EP[l(w),ε] [TA] infP′∈P∗(¬GCW(P[l(w),ε]))

∑
S∈[m]k

wSKL
(
P

[l(w),ε]
S ,P′S

)
≤ k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)
supw∈∆[m]k

EP[l(w),ε] [TA]

≤ k(4 + 2ε)(h+ ε)2

m(1− h)(1 + h+ ε)
maxl∈[m] EP[l,ε] [TA].

As ε ∈ (0, 1/2) was arbitrary, we finally conclude

supP∈PMm
k (∃GCW∧∆h) EP

[
TA
]
≥ supε∈(0,1/2) maxl∈[m] EP[l,ε]

[
TA
]

≥ supε∈(0,1/2)

m(1− h)(1 + h+ ε)

k(4 + 2ε)(h+ ε)2
ln((2.4γ)−1)

≥ m(1− h2)

4kh2
ln((2.4γ)−1).

Remark F.3. The instance-wise bound in Theorem 5.2 appears to be maximal on an instance
P ∈ PMm

k defined via

P(mS |S) :=
1− h+ hk

k
and P(j|S) :=

1− h
k

for each j ∈ S \ {mS}.

with mS := minS for each S ∈ [m]k. Note that P(mS |S) = P(j|S) + h is fulfilled for each
S ∈ [m]k, j ∈ S \ {mS}. Regarding the definition of mS we thus have P ∈ PMm

k (∆h) with
GCW(P) = 1. With P[l](·|S) defined as in Theorem 5.2 we can estimate for each l ∈ {2, . . . ,m}
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and S ∈ [m]k with l ∈ S \ {mS} via Lemma F.1

KL
(
P(·|S),P[l](·|S)

)
≤
∑

j∈S

(P(j|S)−P[l](j|S))2

P(j|S)

=
(P(mS |S)−P[l](mS |S))2

P[l](mS |S)
+

(P(l|S)−P[l](l|S))2

P[l](l|S)

=
(P(mS |S)−P(l|S))2

P(l|S)
+

(P(l|S)−P(mS |S))2

P(mS |S)

=
(P(mS |S)−P(l|S))2(P(mS |S) + P(l|S))

P(mS |S)P(l|S)

=
h2k(1− h+ hk + 1− h)

(1− h+ hk)(1− h)
≤ 2kh2

1− h
,

where we have used hk ≥ 0 in the last step. Consequently, the instance-wise bound from Theorem
5.2 yields

EP

[
TA
]
≥ (m− 1)(1− h) ln((2.4γ)−1)

2h2k(k − 1)
∈ Ω

(
m

k2h2
ln

1

γ

)
,

which is by a factor 1/k asymptotically smaller than the worst-case bound stated in Theorem 5.2.

In the case of dueling bandits (k = 2), the instance-dependent bound from Theorem 5.2 reduces to

EP

[
TA
]
≥ ln((2.4γ)−1)

∑
l∈[m]\{i}

1

KL(P(·|{i, l}),P[l](·|{i, l}))

= ln((2.4γ)−1)
∑

l∈[m]\{i}

1

kl(P(i|{i, l}),P(l|{i, l}))
for any P ∈ PMm

2 (∃GCW ∧∆h) with GCW(P) = i and any solution A to Pm,γ2 (∃GCW ∧∆h).
By means of this, we obtain the following worst-case sample lower bound, which is by a factor
2(m−1)
m larger than the one stated in Theorem 5.2.

Corollary F.4. If A solves Pm,γ2 (∃GCW ∧∆h), then

supP∈PMm
2 (∃GCW∧∆h) EP

[
TA
]
≥ (m− 1)(1− h2)

4h2
ln((2.4γ)−1).

Proof. Define P ∈ PMm
2 (∃GCW ∧∆h) via P(i|{i, j}) := 1+h

2 for any 1 ≤ i < j ≤ m. Theorem
5.2 and Lemma F.1 allow us to infer

EP

[
TA
]
≥ (m− 1) ln((2.4γ)−1)

kl((1 + h)/2, (1− h)/2)

≥ (m− 1) ln((2.4γ)−1)

(
2h2

1− h
+

2h2

1 + h

)−1

=
(m− 1)(1− h2) ln((2.4γ)−1)

4h2
.

Remark F.5. Suppose A solves Pk,γk (∆h), let p ∈ ∆h
k and write i := mode(p). According to

Prop. C.1 we have

Ep

[
TA
]
≥ maxl∈[m]\{i}

1− 2γ

2φl,i(p)(pl + pi)

⌈
ln((1− γ)/γ)

ln((1/2+φl,i(p))/(1/2−φl,i(p)))

⌉
=: LB1(p, γ)

with φl,i(p) := pi−pl
2(pl+pi)

, and Thm. 5.2 guarantees

Ep

[
TA
]
≥ ln((2.4γ)−1)

k − 1

∑
l∈[k]\{i}

(
pl ln

(
pl
pi

)
+ pi ln

(
pi
pl

))−1

=: LB2(p, γ).

In an empirical study we observed LB1(p, γ) > LB2(p, γ) for all of 1000 parameters p sampled iid
and uniformly at random from ∆0

k, for any (k, γ) ∈ {5, 10, 15}× {0.01, 0.05, 0.1}. For example, we
have LB1((0.2, 0.2, 0.15, 0.2, 0.25), 0.05) ≈ 252 > 152.9 ≈ LB2((0.2, 0.2, 0.15, 0.2, 0.25), 0.05).
This indicates that the instance-wise lower bound of Prop. C.1 is larger than that from Thm. 5.2.

32



G Additional Experiments

G.1 Comparison of DKWT with PAC-WRAPPER

In this section, we provide further experimental results. First, we repeat the experiment regarding the
comparison of DKWT and PW from Section 7 for θ = (1, 2−1, 2−2, . . . , 2−9), with γ = 0.1 and for
different values of k. Table 5 shows the results obtained with 10 repetitions. Similar to the results in
the main paper, both algorithms apparently keep the desired confidence of 90%, but PW requires far
more samples for this. The fact that the observed sample complexities are not throughout decreasing
in k is supposedly due to the large standard errors and the little number of repetitions. However, they
strongly indicate that DKWT outperforms PW in terms of sample complexity.

Table 5: Comparison of DKWT with PAC-WRAPPER (PW) on θ = (1, 2−1, 2−2, . . . , 2−9)

TA Accuracy

k DKWT PW DKWT PW

2 8310 (0.0) 2509460 (226634.0) 1.00 1.00
3 4078 (348.9) 46277676 (30635546.4) 1.00 1.00
4 3925 (1014.3) 775101 (108535.7) 1.00 1.00
5 3397 (529.2) 6450264 (1363336.3) 1.00 1.00
6 2213 (465.0) 130069344 (77405795.5) 1.00 1.00
7 2856 (507.4) 253206333 (125199242.0) 1.00 1.00
8 3817 (608.9) 27159632 (12458792.0) 1.00 1.00
9 2855 (680.7) 146229360 (79427860.6) 1.00 1.00

Next, we compare DKWT with PW on synthetic data considered in [35], where PW has first been
introduced. We restrict ourselves to θarith,θgeo ∈ [0, 1]16 defined via

θarith
1 := 1, ∀i ∈ [15] : θarith

i+1 := θarith
i − 0.06,

θgeo
1 := 1, ∀i ∈ [15] : θgeo

i+1 :=
4

5
· θgeo
i ,

because the other synthetic datasets considered in Fig. 2 of [35] (i.e., g1 and b1) are not in
PMm

k (∃GCW ∧ ∆0), which is formally required for DKWT. For θ ∈ {θarith,θgeo} we exe-
cute DKWT with γ = 0.01 for 1000 repetitions on feedback generated by P(θ) and report the mean
termination time (and standard error in brackets) as well as the observed accuracy in Table 6. A look
at Fig. 2 of [35] reveals that DKWT indeed outperforms PW on both datasets while still keeping its
theoretical guarantees.

Table 6: Results of DKWT on θarith and θgeo

TA of A =DKWT Accuracy

θarith 1277781 (22284.0) 1.00
θgeo 55132 (910.5) 1.00

G.2 Comparison of DKWT with SELECT, SEEBS and EXPLORE-THEN-VERIFY

The authors of [29] restrict themselves in the analysis of their algorithm SEEBS to probability models
P ∈ PMm

2 (∃GCW ∧∆0), which fulfill both of the following conditions:

• Strong stochastic transitivity (SST): For all distinct distinct i, j, k ∈ [m] with P(i|{i, j}) ≥
1/2 and P(j|{j, k}) ≥ 1/2 we have

P(i|{i, k}) ≥ max{P(i|{i, j}),P(j|{j, k})}

• Stochastic triangle inequality (STI): For all distinct i, j, k ∈ [m] we have

|P(i|{i, k})− 1/2| ≤ |P(i|{i, j})− 1/2|+ |P(j|{j, k})− 1/2|.
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In particular, SEEBS is only proven to identify the correct GCW with confidence ≥ 1− γ for any P
in a set PMm

2 (∃GCW ∧∆0 ∧ SST ∧ STI) ( PMm
2 (∃GCW ∧∆0).

Table 7 shows the observed termination times (and standard errors theoreof in brackets) of DKWT,
SELECT, SEEBS and EtV compared on PMm

2 (∃GCW ∧ ∆h) in the same manner as done in
Section 7, where the true value of h is revealed to SELECT but not to DKWT, SEEBS or EtV. The
results for m ∈ {5, 10} are averaged over 100 repetitions and are partly the same as shown in Table
4, the results for m ∈ {15, 20} are averaged over 10 repetitions. Table 8 shows the corresponding
accuracies observed during the experiment underlying Table 7. Almost any algorithm in any case
achieves an accuracy of ≥ 95%, the only exception is SELECT for m = 20 and h = 0.20 and this is
supposedly due to the little number of repetitions considered. The results indicate again that DKWT
outperforms SEEBS but not SELECT. Since SELECT obtains as further information the true value
of h, this is not at all surprising.

Table 7: Comparison of DKWT, SELECT, SEEBS and EXPLORE-THEN-VERIFY (EtV)

TA

m h DKWT SELECT SEEBS EtV

5 0.20 6010 (293.2) 252 (4.2) 7305 (432.1) 8601 (589.2)
5 0.15 8874 (460.0) 460 (7.3) 13393 (904.5) 11899 (986.9)
5 0.10 15769 (1457.1) 989 (17.0) 19802 (1543.2) 260171 (210678.1)
5 0.05 31454 (4127.4) 3924 (68.6) 36855 (3533.2) 156534 (115903.1)

10 0.20 14334 (492.8) 565 (2.5) 16956 (617.9) 26115 (969.2)
10 0.15 18563 (734.5) 1009 (4.2) 27527 (1126.7) 32548 (2514.6)
10 0.10 33040 (1625.1) 2245 (9.7) 47330 (2138.2) 68858 (11304.5)
10 0.05 78660 (6517.2) 8971 (39.2) 83877 (5842.6) 220098 (92484.9)

15 0.20 21932 (1618.1) 803 (13.9) 28605 (2161.5) 54197 (5307.3)
15 0.15 27446 (2500.0) 1436 (12.3) 38084 (4985.3) 78753 (27741.4)
15 0.10 45737 (6709.6) 3248 (20.7) 67383 (8117.1) 116014 (24282.2)
15 0.05 114152 (18704.0) 12993 (82.7) 108738 (19780.4) 2804238 (2560594.1)

20 0.20 32038 (1209.2) 1154 (8.7) 40910 (2893.1) 78286 (3451.5)
20 0.15 39792 (3923.6) 2080 (12.6) 58793 (4828.0) 122582 (24065.7)
20 0.10 87667 (13380.8) 4616 (32.3) 105249 (13231.8) 631195 (281883.6)
20 0.05 134628 (21743.3) 18375 (138.2) 164439 (30175.4) 2094505 (1694236.4)

Table 8: Accuracies of DKWT, SELECT, SEEBS and EXPLORE-THEN-VERIFY (EtV) correspond-
ing to the experiment of Table 7

Accuracy

m h DKWT SELECT SEEBS EtV

5 0.20 1.00 0.97 1.00 1.00
5 0.15 1.00 1.00 1.00 1.00
5 0.10 1.00 0.99 1.00 1.00
5 0.05 1.00 1.00 1.00 1.00

10 0.20 1.00 0.95 1.00 1.00
10 0.15 1.00 0.98 1.00 1.00
10 0.10 1.00 0.99 1.00 1.00
10 0.05 1.00 1.00 1.00 1.00

15 0.20 1.00 1.00 1.00 1.00
15 0.15 1.00 1.00 1.00 1.00
15 0.10 1.00 1.00 1.00 1.00
15 0.05 1.00 1.00 1.00 1.00

20 0.20 1.00 0.90 1.00 1.00
20 0.15 1.00 1.00 1.00 1.00
20 0.10 1.00 1.00 1.00 1.00
20 0.05 1.00 1.00 1.00 1.00
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G.3 Comparison of DKWT with Alg. 5

Finally, we compare DKWT and Alg. 5 by means of their average sample complexity and accuracy
when executed on 1000 instances P, which were drawn independently and uniformly at random
from (a) PM5

k (∃GCW ∧∆h) and (b) PM5
k (∃hGCW ∧∆0.01). We choose γ = 0.05 and restrict

ourselves due to PM5
5 (∃GCW ∧∆h) = PM5

5 (∃hGCW ∧∆0.01) to k ∈ {2, 3, 4}. Similarly as in
our comparison to SELECT, Alg. 5 is revealed the true value of h and started with this as parameter.
The results are collected in (a) Table 9 and (b) Table 10. In any of the cases (a) and (b), DKWT
apparently outperforms Alg. 5 if h is smaller than some threshold h0, and the value of h0 appears to
be significantly larger for (a) than for (b). This indicates that Alg. 5 may be preferable over DKWT
if h(P) is small and P ∈ PMm

k (∃h′GCW ∧∆0) holds for some a priori known h′ ∈ (0, 1/2).

Table 9: Comparison of DKWT with Alg. 5 on PM5
k (∃GCW ∧∆h)

TA Accuracy

k h DKWT Alg. 5 DKWT Alg. 5

2 0.9 4155 (0.0) 2664 (0.0) 1.00 1.00
2 0.7 4155 (0.0) 4405 (0.0) 1.00 1.00
2 0.5 4155 (0.0) 8630 (0.0) 1.00 1.00
2 0.3 4195 (12.7) 23970 (0.0) 1.00 1.00
2 0.1 14729 (423.4) 215695 (0.0) 1.00 1.00

3 0.9 2298 (0.0) 1464 (0.0) 1.00 1.00
3 0.7 2298 (0.0) 2418 (0.0) 1.00 1.00
3 0.5 2298 (0.0) 4737 (0.0) 1.00 1.00
3 0.3 2381 (17.5) 13155 (0.0) 1.00 1.00
3 0.1 14933 (436.1) 118383 (0.0) 1.00 1.00

4 0.9 1428 (0.0) 1356 (0.0) 1.00 1.00
4 0.7 1428 (0.0) 2238 (0.0) 1.00 1.00
4 0.5 1428 (0.0) 4386 (0.0) 1.00 1.00
4 0.3 1492 (15.0) 12183 (0.0) 1.00 1.00
4 0.1 13449 (306.4) 109626 (0.0) 1.00 1.00

Table 10: Comparison of DKWT with Alg. 5 on PM5
k (∃hGCW ∧∆0.01)

TA Accuracy

k h DKWT Alg. 5 DKWT Alg. 5

2 0.9 53913 (7092.4) 2477 (8.0) 1.00 1.00
2 0.7 63647 (8322.8) 4124 (13.0) 1.00 1.00
2 0.5 54370 (6753.8) 8167 (24.2) 1.00 1.00
2 0.3 59488 (7738.0) 23275 (53.4) 1.00 1.00
2 0.1 60682 (7256.5) 214358 (236.4) 1.00 1.00

3 0.9 40359 (6188.7) 1464 (0.0) 1.00 1.00
3 0.7 27069 (3621.2) 2418 (0.0) 1.00 1.00
3 0.5 37362 (5774.2) 4737 (0.0) 1.00 1.00
3 0.3 31553 (4551.6) 13155 (0.0) 1.00 1.00
3 0.1 45929 (5277.3) 118383 (0.0) 1.00 1.00

4 0.9 24164 (4446.0) 1356 (0.0) 1.00 1.00
4 0.7 39088 (6293.2) 2238 (0.0) 1.00 1.00
4 0.5 31835 (5462.0) 4386 (0.0) 1.00 1.00
4 0.3 31796 (5131.8) 12183 (0.0) 1.00 1.00
4 0.1 48202 (5765.3) 109626 (0.0) 1.00 1.00
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