
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SOURCE MODEL SELECTION

When performing model fusion, it’s crucial to understand the performance differences between source
and target models. Unlike knowledge distillation—which enhances a less performant model using
a more advanced teacher model—our model fusion approach doesn’t rely solely on the largest or
most complex models. Instead, we can merge smaller models that excel in specific tasks to create a
more capable target model. We also do not need careful target and source LLM selection, due to our
adaptive selection approach. Thereby reducing the time and cost prior training, as well as the risk of
integrating models that can make the models perform worse. Our model choices were driven by three
key considerations:

Model-Agnostic Design: We aimed to develop a framework that automatically filters and learns from
diverse models with minimal prior assumptions. By not restricting ourselves to specific architectures
or ”good” candidate models, we allow the adaptive selection mechanism to determine the most
effective contributions from each model. This approach minimizes the need for manual selection
and demonstrates that even models with lower standalone performance (e.g., MiniMA-3B) do not
negatively impact the fused model’s overall performance. Our rationale is that a model-agnostic
design enhances flexibility and broad applicability, allowing the fusion process to capitalize on the
unique strengths of each model without being hindered by their individual weaknesses.

Use of Popular Models Across Scales: To ensure scalability and generalization, we selected widely
used models of varying sizes—ranging from over 100 million to 3 billion and 7 billion parameters.
By including models at different scales, we can assess how our fusion method performs across a
spectrum of complexities and capacities. For the 7B models, we used the same ones as FuseLLM to
enable fair comparisons. The motivation here is to validate that our approach is effective regardless
of model size and to demonstrate its potential for widespread adoption in various settings.

Inclusion of Task Diversity Recognizing that different models may excel in different domains,
we incorporated specialized models like the Starcoder variants, which are large language models
designed for code generation. Unlike FuseLLM, which focused primarily on general-purpose models,
we included these specialized models to test our fusion method’s efficacy across diverse task types.
This choice reflects our intention to demonstrate the versatility of our approach and its applicability
to a wide range of real-world scenarios.

As shown in Tab. 2 For instance, in the case of Fusion-X -T, we observe that the Llama-160M model
demonstrates the best performance with an average score of 40.54 across the six tasks. Consequently,
Llama-160M serves as the target model for Fusion-X -T. Similarly, for Fusion-X -S, the Amber model
shows superior performance with an average score of 58.22, while our target model is OpenLLaMA-
V2-3B. Lastly, for Fusion-X -B, the Llama-2-7B model leads with an impressive average score of
64.69.

B DESIGN DETAILS

Adaptive Selection Network. The layers are defined as follows:

• Layer 1: Linear layer mapping from input features to 2 ⇥ input features, followed by GELU
activation.

• Layer 2: Linear layer mapping from 2⇥ input features back to input features, followed by GELU
activation.

• Layer 3: Linear layer mapping from input features to N (number of candidates), without activation.

We initialize the weights of the linear layers using Xavier uniform initialization to facilitate better
convergence during training.

Ensuring Candidate Diversity Our dynamic selection mechanism allows for varying the number of
selected candidates from one up to N . By adjusting the threshold ⌧ , we can control the strictness
of candidate selection, promoting diversity when beneficial or focusing on top performers when
necessary.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C TRAINING DETAILS

Hyperparameter Search for Loss. To determine the optimal weight for our feedback loss and
fusion loss, we conducted a comprehensive grid search, exploring different weight combinations.

Figure 7: Loss grid search. Smaller and
darker circle means lower perplexity.

Our goal was to identify weights that would bring all
loss components to a similar order of magnitude, en-
suring no single component dominates the overall loss
function. This step is crucial to ensure that no single
component dominates the overall loss function. We
performed this grid search using 10% of the validation
set. We show the grid search results in Fig. 7. The
best combination is �fuse = 0.1, �feed = 0.5.

Training Procedure. During training, the model pro-
cesses batches of candidate outputs and rewards. The
rewards are first flattened and normalized. The Adap-
tive Selection Network computes selection probabil-
ities, which are then used to dynamically select can-
didates based on the threshold ⌧ . The selected prob-
abilities are normalized, and the candidates’ outputs
and rewards are fused using a weighted sum.

D EVALUATION BENCHMARKS

We evaluate Fusion-X on three benchmarks that represent different core capabilities of LLMs,
spanning reasoning, commonsense, science, and code generation.

• Common Sense (CS) Talmor et al. (2018) is a benchmark to evaluate the commonsense capability
of LLMs. We consider 5 standard multiple-choice tasks: ARC easy and challenge Clark et al.
(2018), BoolQ Clark et al. (2018), HellaSwag Zellers et al. (2019), and OpenBookQA Mihaylov
et al. (2018). We employ lm-eval-hardness Gao et al. (2023) to conduct a likelihood-based zero-shot
evaluation. Specifically, we select the option with the highest likelihood given the context and
report the accuracy.

• Big-Bench Hard (BBH) Suzgun et al. (2022) is a benchmark to evaluate the general reasoning

ability of LLMs. It contains 23 multiple-choice tasks and 4 free-form generation tasks from the Big-
Bench bench authors (2023), which can be classified into four categories: algorithmic and arithmetic
reasoning, natural language understanding, world knowledge, and multilingual knowledge. We
follow previous work to generate the predictions based on few-shot chain-of-thought (CoT) prompts
and then calculate the exact match (EM) accuracy.

• Multi-task Language Understanding (MMLU) Hendrycks et al. (2021) is a benchmark designed
to measure knowledge acquired during pretraining by evaluating models exclusively in zero-shot
and few-shot settings. The benchmark covers 57 subjects across STEM, the humanities, the social
sciences, and more. It ranges in difficulty from an elementary level to an advanced professional
level, and it tests both world knowledge and problem solving ability. Subjects range from traditional
areas, such as mathematics and history, to more specialized areas like law and ethics.

• MultiPL-E (ME) Cassano et al. (2023) is a multilingual programming benchmark to assess the
coding ability of LLMs. It is translated from the Python benchmark into parallel datasets in
18 programming languages. We use the bigcode-evaluation-hardness to perform zero-shot code
generation in 10 popular programming languages in the HumanEval category and report the pass@1
based on 20 generated samples for each question.

E TOKEN ALIGNMENT

We follow the Token alignment process in Wan et al. (2024a) in the context of input text involves
aligning two distribution matrices from two different LLMs (Large Language Models). This alignment
is carried out along two dimensions: token-wise alignment relative to the text and distribution-wise
alignment with respect to the vocabulary.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Token-wise Alignment: For token-wise alignment, dynamic programming is used to minimize the
total cost of editing one sequence of tokens to match another. The proposed MinED (Minimal Edit
Distance) method in Wan et al. (2024a) aligns tokens by minimizing the edit distance between them,
effectively capturing the nuances between the two LLMs’ vocabularies.

Distribution-wise Alignment: For distribution-wise alignment, the process is between two vocabu-
laries from different tokenizers of the two LLMs. Tokens with similar distribution values are aligned
effectively. However, for distribution values involving different tokens, the EM method fails to align
these due to minor differences in values. The MinED method maps based on their minimal edit
distance, ensuring successful alignment of these distribution values.

F Q&A EXAMPLE COMPARISON

We present case studies to demonstrate how Our Fusion-X method combines the strengths of multiple
source LLMs to produce accurate results in different tasks in Fig. 8. We compare the Q&A results
with both Llama-2-7B and FuseLLM. We can provide a more accurate and relevant answer given a
question compared to the others.

Figure 8: Comparison of Q&A examples between Llama-2, FuseLLM, and Fusion-X .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

G MORE EVALUATION RESULTS

Table 5: Overall results of FuseLLM and baselines in code generation evaluations on MultiPL-E
(ME), where percentages indicate the rate of improvement/decrease compared to Llama-2. Numbers
in red represents the tasks that have performance decrease compared to the target model.

Task OpenLLaMA MPT LLaMA* Starcoder FuseLLM Fusion-X
C++ 14.47 13.11 7.45 7.54 9.88 10.05
Go 67.40 66.96 57.02 70.40 54.44 65.78
Java 14.28 13.42 10.31 15.70 10.50 12.34
JavaScript 17.61 13.01 13.17 29.2 14.25 17.03
PHP 11.24 9.53 9.75 15.61 9.84 9.91
Python 15.73 17.24 13.85 20.50 13.07 13.91
R 7.21 4.53 4.97 10.3 5.25 5.84
Ruby 10.09 12.33 10.37 12.22 10.68 10.74
Rust 5.78 8.29 6.77 7.98 6.96 8.05
TypeScript 14.21 14.13 12.61 17.10 14.19 15.50

Avg. 10 Tasks 17.80 17.26 14.63 20.65 15.40 (+0.77) 16.88 (+2.25)

Table 6: More results of Fusion-X and baselines on Big-Bench Hard (BBH) benchmark. Numbers
in red represent the tasks that have performance decrease compared to the target model.

Task Target Model Integrate 5 LLMs Integrate 4 LLMs
llama-160 FuseLLM Fusion-X FuseLLM Fusion-X

Boolean Expressions 9.60 34.00 25.60 22.00 12.50
Causal Judgement 4.81 21.93 29.95 26.20 22.50
Date Understanding 17.20 20.00 20.00 19.60 20.00
Disambiguation QA 0.00 1.20 4.40 0.00 2.50
Dyck Languages 2.40 0.00 2.40 0.00 2.40
Formal Fallacies 0.00 0.00 0.00 0.00 0.00
Geometric Shapes 0.00 0.00 0.00 0.00 0.00
Hyperbaton 0.00 0.00 0.00 0.00 0.00
Logical Deduction (3 objects) 12.00 6.00 12.00 2.40 0.00
Logical Deduction (5 objects) 5.60 5.20 6.40 1.60 10.00
Logical Deduction (7 objects) 6.40 3.20 6.80 3.60 6.40
Movie Recommendation 0.00 0.40 0.00 0.00 0.00
Multistep Arithmetic Two 0.00 0.00 0.00 0.00 0.00
Navigate 0.00 0.00 28.40 0.00 47.50
Object Counting 8.40 5.60 0.40 0.40 2.50
Penguins in a Table 11.64 8.90 15.07 8.37 11.71
Reasoning about Colored Objects 13.20 2.40 4.00 2.80 2.50
Ruin Names 0.00 0.00 0.00 0.00 0.00
Salient Translation Error Detection 0.00 0.80 0.00 0.40 0.00
Snarks 19.66 3.93 4.49 3.37 2.50
Sports Understanding 52.40 51.60 50.00 51.20 60.00
Temporal Sequences 0.00 0.00 1.20 0.00 0.00
Tracking Shuffled Obj. (3 objects) 7.60 0.00 2.00 0.00 0.00
Tracking Shuffled Obj. (5 objects) 3.20 1.60 1.20 0.00 0.00
Tracking Shuffled Obj. (7 objects) 0.40 0.00 0.40 0.40 0.40
Web of Lies 0.00 0.00 0.00 0.00 0.00
Word Sorting 0.00 0.00 0.00 0.00 0.00

Avg. 27 Tasks 6.46 6.18 7.86 (+1.40) 5.27 7.44 (+0.98)

17


