
 

1. The deep learning techniques we implemented for NOISE and 𝑵𝑶𝑰𝑺𝑬&&&&&&&&&&	ICs classification (Table 
I): 

Convolutional Neural network (CNN): A 2D CNN was used with tuned hyperparameters. Details are 
mentioned in the manuscript as this deep learning technique was used for NOISE and 𝑵𝑶𝑰𝑺𝑬	&&&&&&&&&&IC 
classification.   

Transfer Learning: We used the VGG16 pre-trained model as a feature extractor and defined our own 
classifier model. We used the pre-trained weights of ‘imagenet’ in Keras, we added flatten, dense and output 
layers after the last layer in VGG16. The dense layer’s number of neurons were tested for 5 different values: 
192, 256, 512, 712 and 1024, out of which 512 gave the best accuracy. Fine-tuning the VGG model by 
freezing a few of its layers did not give good results. 

Vision Transformer: We implemented Vision Transformer (ViT) to evaluate its performance for NOISE 
and 𝑵𝑶𝑰𝑺𝑬	&&&&&&&&&&IC classification.  The hyperparameters were obtained using “Optuna”, and to avoid gradient 
explosion and gradient vanishing issues, we implemented gradient clipping and batch normalization 
respectively.  

Table I: Deep learning results for NOISE and 𝑵𝑶𝑰𝑺𝑬&&&&&&&&&&	ICs classifications. 

Technique Accuracy Precision Sensi2vity Specificity 
CNN 80.3% 81.8% 76.2% 83.4% 

Transfer 
Learning 

75.5% 76.2% 77.8% 73.1% 

ViT 69.01% 69% 71% 67% 
 

As CNN reports the best classifica>on results, we used this deep learning technique for noise elimina>on.  

2. Data descrip2on: 

Resting state fMRI data was acquired from 2 independent centers: Centre 1 and Centre 2 using IRB process 
and cross-university agreement. Center 1 dataset consists of 52 patients, age 3 months – 18 years (all 
children), 23 Male and 29 Female. The MRI images were acquired using a 3T MRI, Ingenuity Philips 
Medical system with a 32-channel head coil. The rs-fMRI parameters were set at TR 2000ms, TE 30 ms, 
matrix size 80 x 80, flip angle 80o, number of slices 46, slice thickness 3.4 mm with no gap, in-plane 
resolution 3x3 mm, interleaved acquisition, and number of total volumes 600, in two 10-min runs, with 
total time of 20 mins. Centre 2 dataset consists of 31 patients with ages spanning from 2 months to 62 years 
(20 childnre, 11 adults), 14 Male and 17 Female. The MRI images were acquired using Siemens’s 
MAGNETOM Prisma FIT scanner, with the following parameters configured: TR 2010ms, TE 32ms, flip 
angle 82o, slice thickness 4mm and spacing between slices 4. 

 

3. Hyperparameter seEngs: We used Keras Hyperband tuner algorithm with objec>ve of minimizing 
valida>on loss to obtain the hyperparameters of DL part. The 2D CNN architecture was used as it 
gave the best results for noise IC classifica>on (Table I). CNN’s hyperparameters were fine-tuned 
using 80% training data, reserving the remaining 20% for valida>on. 
 



 
i) Across_trial cross valida2on (Center A): The final hyperparameters were: 
a) Number of convolu>onal layers: 3 
b) Number of 3 X 3 filters in convolu>onal layer 1, 2 and 3: 64, 64 and 256 respec>vely. 
c) Number of neurons in dense fully connected layer: 704. 
d) Learning rate: 0.0001. 
e) Dropout rate: 0.33. 
f) Batch_size = 32. 

 
ii) Across_trial cross valida2on (Center B): The final hyperparameters were: 
a) Number of convolu>onal layers: 6 
b) Number of 3 X 3 filters in convolu>onal layer 1, 2, 3, 4, 5 and 6: 128, 16,64, 512, 512, and 256 

respec>vely. 
c) Number of neurons in dense fully connected layer: 3008. 
d) Learning rate: 0.0001. 
e) Dropout rate: 0.33. 
f) Batch_size = 32. 

 
 

iii) Aggregated Trial valida2on:  
a) Number of convolu>onal layers: 2 
b) Number of 3 X 3 filters in convolu>onal layer 1 and 2: 16 and 64 respec>vely. 
c) Number of neurons in dense fully connected layer: 1472. 
d) Learning rate: 0.0001. 
e) Dropout rate: 0.33. 
f) Batch_size = 16. 

 

4. Closed form rela2on between class entropy and Fisher informa2on: 

According to Gourieroux et al. (1995), Fisher information is proportional to the Kullback-Leibler 
(KL) divergence of class entropy. Considerin ωr as a parameter of the latent space representation 
of xi, we obtain the following equation connecting class entropy and Fisher information: 
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    indicates the second derivative or divergence of class entropy with respect to the 
latent space representation element ωr . 

 

Using Equa>ons (1), (2), and (3) given in main manuscript, and applying algebraic manipula>ons, we 
derive the following rela>on: 
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Further explora>on of the term   (
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  yields the following rela>on:  
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This can be expanded as: 
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	from the equa>on above into the expression for I(ωr) aaer simplifica>ons for 

clarity, we find that: 
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Since in rare classes, the distance dist(xi,xj) is much larger and class density is very low, the Fisher 
informa>on is correspondingly low, which increases the lower error limit of any unbiased es>mator. 

 

5. Anonymous code and data link: The code link has been provided in the paper. Sample data of one 
pa>ent is provided from Center A.  

 

 
 

 

 



 


