
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EQUIVARIANT DENOISERS CANNOT COPY GRAPHS:
ALIGN YOUR GRAPH DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph diffusion models, while dominant in graph generative modeling, remain rel-
atively underexplored for graph-to-graph translation tasks like chemical reaction
prediction. We show that standard permutation equivariant denoisers cause severe
limitations on such tasks, a problem that we pinpoint to their inability to break
symmetries present in the noisy inputs. We then propose to align the input and
target graphs in order to break the input symmetries, while retaining permutation
equivariance in the non-matching portions of the graph. We choose retrosynthesis
as an application domain, and show how alignment takes the performance of a dis-
crete diffusion model from a mere 5% to a SOTA-matching 54.7% top-1 accuracy.

1 INTRODUCTION

target input

Aligning the con-
dition and sample

using matching
node identifiers

Aligned permutation equivariance

Figure 1: Nodes in the input and output
graphs are given the same identifiers to en-
force alignment, while the model is free to
remain permutation equivariant w.r.t to the
unmatched nodes.

Graphs are a ubiquitous in a number of domains,
ranging from knowledge representation to drug
discovery (Ji et al., 2022; Vignac et al., 2023;
Hoogeboom et al., 2022b). Graph-to-graph trans-
lation in particular is relevant to a number of
applications, including molecular editing (Jin et al.),
where the goal is to generate a molecular graph with
a specific structure or properties, chemical reaction
prediction (Shi et al., 2020b), requiring predicting a
reactant molecular graph from a product molecular
graph and vice-versa, and in general any task where
the goal is to predict a future state of a graph given
an initial configuration (Rossi et al., 2020). Using a
generative model for graph-to-graph translation is a
natural approach, allowing a probabilistic treatment
of the task. Graph diffusion models are a particularly
promising framework, given their excellent perfor-
mance (Niu et al., 2020; Vignac et al., 2023) on graph data, and the rapid of diffusion models in
generative modelling more widely.

Permutation equivariance is a fundamental inductive bias in most machine learning models operating
on graphs, including graph diffusion models. This property ensures that the model’s output remains
consistent when input nodes are reordered or relabeled, thus eliminating the need for data augmen-
tation through node permutations. While permutation equivariance is a powerful inductive bias, our
paper demonstrates both theoretically and experimentally that it can be substantially sub-optimal
for graph-to-graph conditional generation, especially in scenarios where there exists a competing
inductive bias suggesting structural similarity between the input and output graphs. We identify the
root cause of this issue: the symmetry inherent in samples drawn from the diffusion model prior
(illustrated in the center of Fig. 1) and the neural network’s inability to break these symmetries.
Our findings align with previous and concurrent research highlighting the limitations imposed by
equivariance and symmetries in neural networks (Lawrence et al., 2024; Xie & Smidt, 2024).

The key question then becomes how to give a model the ability to break symmetries while keeping
the inductive bias of equivariance. We then propose a solution: aligned equivariance. The idea is to
use identifiers in the input and target graphs to align their nodes when possible, relaxing equivariance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Sec. 5 The Theoretical Limitations of Equivariant Denoisers
Copying graphs as a case-study on the limitations of equivariance. Fig. 4
The optimal permutation equivariant denoiser. Theorem 1

Sec. 6 Solution: Aligned Equivariant Denoisers
Relaxing permutation equivariance through alignment. Fig. 6a
Aligned denoisers induce aligned permutation invariant distributions. Theorem 2

Sec. 7 Suitable Alignment Methods
Skip-connection, positional encodings, input-alignment. Fig. A9

Sec. 9 Experiments
Proof of concept through simple graph copying tasks. Fig. 5
Application: Retrosynthesis. Table 2
Guided-generation for retrosynthesis. Fig. 8a
Ibuprofen synthesis through inpainting. Fig. 7

Figure 2: Overview of our contributions.

when the identifiers match. This helps break the symmetries of the input while retaining the benefits
of permutation equivariance on non-matching subgraphs. We visualise this in Fig. 1. We summarize
our contributions in Fig. 2.

2 RELATED WORK

Graph-to-graph translation methods Graph-to-graph models have shown promise in tasks such
as handwritten mathematical expression recognition Wu et al. (2021), molecular optimization Jin
et al. (2019), and retrosynthesis Lin et al. (2023). More recently, Igashov et al. (2024) propose a
Markov bridge model to map from the product to the reactant graph, which is the closest existing
approach to diffusion-based graph-to-graph translation. The paper however does not discuss equiv-
ariance and symmetry-breaking as a key design component. In fact, the authors use a method similar
to our input alignment method as discussed in Sec. 7, which leads us to believe that our theoretical
work is also relevant in explaining the success of their model.

Equivariance and symmetry-breaking Equivariant neural networks have gained attention for
their ability to incorporate known symmetries, often improving generalization . However, as noted
by Smidt et al. (2021), these networks face a fundamental limitation when dealing with self-
symmetric inputs, as they cannot break symmetries present in the data. This issue arises in various
applications, including prediction tasks on symmetric domains and generative models that must re-
construct from highly symmetric latent spaces (Lawrence et al., 2024). Previous work has explored
this problem in different contexts, such as graph representation learning (Srinivasan & Ribeiro,
2020), set generation (Zhang et al., 2022), and modeling physical systems (Kaba et al., 2023).

Permutation equivariance in graph diffusion Equivariance is widely used in graph diffusion
models to parameterize the reverse process (Niu et al., 2020; Vignac et al., 2023; Hoogeboom et al.,
2022b; Huang et al., 2022). One motivation is that, in diffusion models, permutation equivariant
neural nets induce permutation invariant distributions (Niu et al., 2020), meaning that different per-
mutations of the same graph have the same probabilities under the model. Recently, Yan et al.
(2023) showed that relaxing permutation equivariance in graph diffusion using absolute positional
encodings can improve performance empirically.

3 PRELIMINARIES: GRAPH-TO-GRAPH TRANSLATION

Consider a database of Nobs graphs D = {(Xn,Yn,P
Y→X
n)}Nobs

n=1 , where Xn represent the tar-
get graph, Yn the input graph, and PY→X

n are matrices defining node mappings between the two

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

...

GNN

Align

GNN

Align

GNN

Align

GNN

Align

Target (reactants)

Input (product)

X0 Xt XT Y

q(X1|X0)

pθ(X0|X1,Y)

q(Xt|Xt−1)

pθ(Xt−1|Xt,Y)

q(Xt+1|Xt)

pθ(Xt|Xt+1,Y)

q(XT |XT−1)

pθ(XT−1|XT ,Y)

=
∑

X0
q(X0|XT ,X0)pθ(X0|XT ,Y,PY→X)

Figure 3: An overview of a graph translation task using discrete diffusion models, illustrated through
chemical reactions. We adopt absorbing state diffusion (Austin et al., 2021), such that samples from
the stationary distribution are made of nodes and edges with the ’none’ label. The condition and
sample graphs are aligned using node mapping information (highlighted with the matching colours)
which identifies pairs of matched nodes across the input and target graphs.

graphs. The graph translation task is: given that the data is sampled from an unknown distribution
p(X,Y,PY→X), predict valid targets X ∼ p(X |Y) for a given input Y.

We start by formally defining the graph objects X and Y. To do so, we consider the space of one-hot
vectors of dimension K as vert(∆K−1), where vert(.) denotes the vertices of the probability simplex
∆K−1 with K − 1 degrees of freedom. We then define the target X as a tuple (XN ,XE) of a node
feature matrix XN ∈ (vert(∆Ka−1))NX and an edge feature matrix XE ∈ (vert(∆Kb−1))NX×NX ,
s.t. Ka and Kb are node and edge feature dimensions respectively. The input graph Y is similarly
defined as (YN ,YE) with the same node and edge features, but potentially a different number of
nodes NY . The features consist of node labels (with Ka possible values) and edge labels (with Kb

possible values), each including an empty value ⊥ to represent missing nodes or edges.

Node mapping matrices are associations for node pairs between X and Y. Formally, we define such
matrices as: PY→X ∈ {0, 1}NX×NY , with PY→X

i,j = 1 if the ith node of the target corresponds
with the jth node of the input, and zero otherwise. The purpose is to give additional information
about how nodes in the target are reconfigured from the input. Thus, PY→XYN equals XN with
the non-mapped nodes zeroed out. Correspondingly, PY→XYE(PY→X)⊤ equals XE with edges
to non-mapped nodes zeroed out. We expect an inductive bias such that if there is an edge between
two mapped nodes in X, there is a high probability of an edge between the corresponding nodes in
Y as well, i.e., the graphs are structurally similar for the parts that are node-mapped.

4 BACKGROUND

Discrete diffusion models for conditional graph generation We follow the framework of Vignac
et al. (2023), which adapts discrete diffusion models (Austin et al., 2021) to graphs. We present next
the main constituents of the framework.

We assume a Markov forward process

q(Xt+1 |Xt) =
∏NX

i=1 q(X
N ,i
t+1 |X

N ,i
t)

∏NX

i,j=1 q(X
E,ij
t+1 |X

E,ij
t), (1)

to diffuse the reactant to noise, and a reverse process

pθ(Xt−1 |Xt,Y) =
∏NX

i=1 pθ(X
N ,i
t−1 |Xt,Y)

∏NX

i,j pθ(X
E,ij
t−1 |Xt,Y), (2)

defining our generative model. Here, θ represents neural network parameters. Note that we always
have time conditioning implicitly pθ(Xt−1 |Xt,Y, t), but we drop t for notational convenience. We
will also condition on the node mapping PY→X in Sec. 7, but we will not include it in the notation
until then. The full generative distribution is pθ(X0:T |Y) = p(XT)

∏T
t=1 pθ(Xt−1 |Xt,Y), where

p(XT) is a predefined prior such that p(XT) = q(XT |X0). Following Hoogeboom et al. (2021);
Austin et al. (2021), we use the neural network specifically to predict ground truth labels from noised
samples, meaning that the neural network outputs a distribution p̃θ

(
X0 |Xt,Y

)
.

The reverse process is then parameterized by

pθ(Xt−1 |Xt,Y) =
∑

X0
q
(
Xt−1 |Xt,X0

)
p̃θ
(
X0 |Xt,Y

)
. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Loss calculation
Input: condition Y, target X0, and optional per-
mutation matrix PX→Y for alignment
t ∼ Uniform({0, . . . , T})
Xt ∼ q(Xt |X0)

X̃0 = Dθ(Xt,Y,PY→X)

Return Cross-Entropy(X0, X̃0)

Algorithm 2 Sampling
Input: condition Y
Choose (for alignment): PY→X ∈ RNX×NY

XT ∝ p(XT)
for t = T to 1 do

X̃0 = Dθ(Xt,Y,PY→X)

Xi
t−1 ∼

∑
k q(X

i
t−1 |Xi

t,X
i
0)X̃

i
0

Return X0

We write the connection to Eq. (2) explicitly in App. B.Throughout the paper, we denote the direct
output of the neural network as Dθ(Xt,Y) = (Dθ(Xt,Y)N , Dθ(Xt,Y)E), where Dθ(Xt,Y)N ∈
(∆Ka−1)NX and Dθ(Xt,Y)E ∈ (∆Kb−1)(NX×NX), i.e., we have a probability vector for each
node and edge. This implies p̃θ

(
X0 |Xt,Y

)
is a distribution factorized over nodes and edges.

The single-step transition for nodes (resp. for edges) is defined with a transition matrix QN
t as

q(XN ,i
t |XN ,i

t−1) = Cat(XN ,i
t ;p = XN ,i

t−1Q
N
t). (4)

In our experiments, we use the absorbing-state formulation from Austin et al. (2021), where nodes
and edges gradually transfer to the absorbing state, defined as the empty state ⊥. Formally, Qt =
(1 − βt)I + βt1e

⊤
⊥, where βt defines the diffusion schedule and e⊥ is one-hot on the absorbing

state. Then, the marginal q(Xt |X0) and conditional posterior q(Xt−1 |Xt,X0) also have a closed
form for the absorbing state transitions. The prior p(XT) is correspondingly chosen to be a delta
distribution at a graph with no edges and nodes set to the ⊥ state. The noise schedule βt is defined
using the mutual information criterion proposed in Austin et al. (2021). While other transitions,
like uniform and marginal (Vignac et al., 2023) are equally possible, the absorbing state model is
somewhat simpler and has been empirically found to outperform other transitions (Austin et al.,
2021; Lou et al., 2024), motivating our choice.

We use the cross-entropy loss, as discussed in Austin et al. (2021) and Vignac et al. (2023):

−Eq(X0,Y)q(t)q(Xt |X0)[log p̃θ(X0 |Xt,Y)], (5)

where q(t) is a uniform distribution over t ∈ {1 . . . T}.
Fig. 3 provides an overview of the conditional graph diffusion framework we use. For completeness,
a comprehensive definition of the model’s components for nodes and edges is given in App. B. The
training and sampling procedures with graph diffusion models are presented in Alg. 1 and Alg. 2,
along with optional conditioning on PY→X, as described in Sec. 7.

Permutation Equivariance and Invariance Permutation equivariance for the denoiser is defined
as Dθ(PX) = PDθ(X) where P is an arbitrary permutation matrix, and PX = (PXN ,PXEP⊤).
This makes single-step reverse transitions equivariant as well, in the sense that pθ(Xt−1 |Xt) =
pθ(PXt−1 |PXt). For our conditional setting, permutation equivariance can be written as
Dθ(PX,Y) = PDθ(X,Y). The prior in graph diffusion models is also usually permutation in-
variant s.t. p(PXT) = p(XT) (Niu et al., 2020; Vignac et al., 2023; Hoogeboom et al., 2022b).

5 PERMUTATION EQUIVARIANT DENOISERS CANNOT LEARN THE IDENTITY
FUNCTION

In this section, we consider a data set D = {(Xn,Yn,P
Y→X
n)}Nobs

n=1 , dubbed the ‘identity data’,
where for all data points Xn = PY→X

n Yn. In other words, both the input and the target are
equivalent, up to some permutation, as defined by the node-mapping matrix PY→X

n . While this
may seem like an overly simplistic scenario, we can use it to reason about the expressiveness of our
denoiser neural network. The motivation is that graph translation can be seen as close to the task
of copying graphs (i.e., learning the identity function) due to the structural similarity between the
input and target graphs. In this section, we show that standard graph diffusion models are highly
ineffective at copying graphs.

First, we note that a denoiser implementing the identity function should always give the following
output: Dθ(Xt,Y) = PY→XY, i.e., Dθ(Xt,Y) should put all the probability mass on the correct

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

node/edge label up to a permutation of Y, thus becoming a vertex of the probability simplex as
well. We note here that we pass the conditioning graph Y by concatenating it to the input X along
the node dimension, resulting in a graph with NX + NY nodes and (NX + NY) × (NX + NY)
edges. No edges are added between the X and Y subgraphs in the input. However, we show that
permutation equivariant denoisers Dθ are constrained to output ‘mean’ solutions instead, such that
the outputs for all nodes and all edges are equal in the early stages of generation.

To illustrate this observation, we give an intuitive argument, and then proceed to a formal proof.
Let us consider the case of a highly noisy input at t = T , and a permutation equivariant de-
noiser. Permutation equivariance means Dθ(RXT ,Y) = RPY→XY for a random permutation
matrix R ∈ {0, 1}NY →NX . Since XT does not contain any information about Y, the model
learns to ignore the X input, leading to Dθ(RXT ,Y) = Dθ(XT ,Y) = PY→XY. Thus,
RPY→XY = PY→XY, which is a contradiction. The only way to make both properties hold,
i.e., the equivariance Dθ(RXT ,Y) = RDθ(XT ,Y) and the property of ignoring the input
Dθ(RXT ,Y) = Dθ(XT ,Y), is if Dθ(XT ,Y) has the exact same output probability vector for
each node and edge. The following theorem characterizes this rigorously.
Theorem 1. (The optimal permutation equivariant denoiser) Let Dθ(XT ,Y) be permutation
equivariant s.t. Dθ(PXT ,Y) = PDθ(XT ,Y), and let q(XT) be permutation invariant. The
optimal solution with respect to the cross-entropy loss with the identity data is, for all nodes i and j{

Dθ(XT ,Y)Ni,: = ŷN , ŷN
k =

∑
i Yi,k/

∑
i,k Yi,k,

Dθ(XT ,Y)Ei,j,: = ŷE , ŷE
k =

∑
i,j Yi,j,k/

∑
i,j,k Yi,j,k,

(6)

where ŷN
k and ŷE

k are the marginal distributions of node and edge values in Y.

The proof is given in App. A.2, with an extension to other time steps in App. A.7. the Theorem
is also illustrated in Fig. 4. This makes it impossible for the model to solve the task in a single
step with T = 1, clearly limiting the performance on this basic task. With enough steps, it is still
possible, albeit slow, because smaller steps of the discrete generative process can break symmetries
in Xt, enabling the modeling of correlations between node and edge representations. In particular,
in the case of absorbing diffusion and T → ∞, the model becomes equivalent to an any-order
autoregressive model (Hoogeboom et al., 2022a).

6 SOLUTION: ALIGNED PERMUTATION EQUIVARIANCE

Given the failure of permutation equivariant denoisers to effectively copy graphs, we propose to
relax the permutation equivariance assumption just enough to give the network the capacity to
easily copy the condition Y to the denoiser output. The key observation we make is that it is enough
to have permutation equivariance in the sense that if we permute X and/or Y, and accordingly
permute the node mapping PY→X such that the matching between Y and X remains, the model
output should be the same. We call this aligned permutation equivariance. Formally, we use the
node-mapping permutation matrix PY→X as an input to the denoiser and consider denoisers that
satisfy the following constraint: Dθ(RX,QY,RPY→XQ⊤) = RDθ(X,Y,PY→X), where R
and Q are permutation matrices of shapes (NX ×NX) and (NY ×NY), respectively.

With PY→X and Y as input, an unconstrained denoiser can output the ground-truth permutation
PY→XY for the identity data task. Restricting the function to the aligned equivariant class does not
clash with this, as can be seen by writing out the optimal solution and the equivariance condition for
a permuted input RX,QY,RPY→XQ⊤:

(Identity data) Dθ(RX,QY,RPY→XQ⊤) = RPY→XQ⊤QY = RPY→XY, (7)

(Sec. 6) Dθ(RX,QY,RPY→XQ⊤) = RDθ(X,Y,PY→X) = RPY→XY. (8)

Note that the permutation invariance of pθ(X0) does not apply as it does for fully permutation
equivariant models. However, we show that a generalized form of distribution invariance holds.
Theorem 2. (Aligned denoisers induce aligned permutation invariant distributions) If the denoiser
function Dθ has the aligned equivariance property and the prior p(XT) is permutation invariant,
then the generative distribution pθ(X0 |Y,PY→X) has the corresponding property for any permu-
tation matrices R and Q:

pθ(RX0 |QY,RPY→XQ⊤) = pθ(X0 |Y,PY→X). (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

A proof is given in App. A.4, while Figure 4 showcases the denoising output of an aligned
equivariant model with a given PY→X. Informally, the theorem states that the graph pairing has the
same probability for all isomorphisms of the input and target graphs, as long as the node mapping
is not reassigned to different nodes. Thus, during training, we can use the permutations present in
the data, and be sure that the model generalizes to other permutations. During sampling, we only
have access to Y without node mapping information. The theorem ensures we can assign node
mappings arbitrarily and still obtain effectively the same distribution over the targets. To see this,
we note that all node mapping matrices can be characterized by a base permutation matrix PY→X

left multiplied by different permutations R. Applying the theorem: pθ(X0 |Y,RPY→X) =
pθ(R

−1X0 |Y,PY→X), where R−1 is just another permutation matrix, shows that the distribution
equals pθ(X0 |Y,PY→X), up to some permutation. In fact, by sampling the node mapping
matrix randomly, the distribution pθ(X0 |Y) =

∑
PY→X pθ(X0 |Y,PY→X)p(PY→X) becomes

invariant to any permutation of X0 and Y, although this is not strictly necessary in our context.
Lastly, we note that our use of node mapping here is not a constraint: it is merely an additional
input which allows the denoiser to use the structure of the conditional graph efficiently, and as such
we benefit even from a partially correct node mapping.

7 METHODS FOR ALIGNMENT IN GNNS

10 0
1 00
1 00
0 10

0.5

CO
C N

0.25 0.25 0 100
0 100
0 100
0 100

10 0

1 00
1 00

0 10

0 100
0 100
0 100
0 100

1

CO
C N

0.5 0.25 0.25

0.5 0.25 0.25

0.5 0.25 0.25

10 0
1 00

1 00

0 10

0
0 0

0

00
0 100

1
1

0
0
0

Reactant Product

Dθ(XT ,Y)N

C O N

Perm.Eq.
GNN

XN
T

C O N ⊥

YN

C O N

Dθ(XT ,Y,PY→X)N

C O N

Aligned
GNN XN

T

C O N⊥

PY→X

YN

CON

Figure 4: Comparing the optimal per-
mutation equivariant denoiser to an
aligned denoiser. As per Theorem 1,
the permutation equivariant model (top)
outputs the marginal distribution over
node types whereas the aligned model
(bottom) reconstructs the correct reac-
tant nodes in a specific permutation
PY→X.

We have established how constraining permutation equiv-
ariance to aligned permutation equivariance is a key com-
ponent for the success of the denoising model. In this
section, we discuss multiple methods to induce an align-
ment between the input and target graphs. We present the
implementation details in this section, and prove for each
method that they belong to the class of aligned equivariant
models in App. A.5. We visualize the methods in Fig. A9.

Node-mapped positional encodings Graph positional
encodings are a standard tool to break permutation sym-
metry in GNNs, making them a natural candidate for in-
ducing aligned permutation equivariance. We consider
uniquely identifying pairs of nodes matched via the node-
mapping matrix in both Xt and Y by adding a positional
encoding vector to each unique node pair. In practice,
we generate a set of distinct vectors φ ∈ RNY ×dφ s.t.
φ = g(Y) for each of the input graph nodes Y, with
g a function generating the encodings based on Y. In
this work, we take ϕ as a standard graph Laplacian po-
sitional encodings (Dwivedi et al., 2023), but in principle
any positional encoding scheme is applicable. We then
map the vectors ϕ to the corresponding inputs for the noisy
graph nodes Xt. Formally, we get Dθ(Xt,Y,PY→X) =
fθ([X

N
t PY→Xφ],XE

t , [Y
N φ],YE), where fθ is the

neural network that takes as inputs the augmented node
features and regular edge features and [XN

t PY→Xφ] ∈ RNX×(Ka+dφ) corresponds to concatena-
tion along the feature dimension. The only change required for the neural network is to increase the
initial linear layer size for the node inputs.

Direct skip connection Next, motivated by the identity function analysis in Sec. 5, we pro-
pose an alignment method that solves the identity task in a minimal way. In particular, we
modify the network to include a direct connection from the condition to the target output:
Dθ(Xt,Y,PY→X) = softmax(f logit

θ (Xt,Y) + λPY→XY) where f logit
θ (Xt,Y) are the logits

at the last layer of the neural network for the nodes and edges, λ is a learnable parameter and
PY→XY = (PY→XYN ,PY→XYE(PY→X)⊤). The sum is possible because Y is in one-hot
format and the dimensionalities of the denoiser output and PY→XY are the same. It is easy to
see that when λ → ∞, Dθ(Xt,Y,PY→X) → PY→XY because the direct connection from Y
dominates in the softmax.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Aligning Y in the input As a natural next step from aligning the graphs at the output via skip
connections, we propose to align them in the input. This allows more expressivity from the network,
since it can process the aligned graphs in the layers of the network before outputting the denoising
solution. In practice, we align Y by concatenating X and PY→XY along the feature dimension
before passing it to the neural network. This also presents an opportunity for computational savings:
Since Y is already concatenated to X along the feature dimension, Y does not strictly need to be
processed as a separate graph anymore. This is useful, e.g.,with the graph transformer model, since
computation scales quadratically with the total amount of nodes, which is reduced from (NX +NY)
to NX . Thus, we can drop out the explicit Y graph entirely, and only process the X graph augmented
with Y: Dθ(Xt,Y,PY→X) = fθ([X

N
t PY→XYN], [XE

t PY→XYE(PY→X)⊤]), where [·]
means concatenation along the feature dimension.

8 ADDING POST-TRAINING CONDITIONING FOR DISCRETE DIFFUSION
MODELS

To fully realize the potential of diffusion models for graph-to-graph translation, we derive a novel
reconstruction guidance-like (Ho et al., 2022; Chung et al., 2023; Song et al., 2023a) method for dis-
crete models. Note that this approach differs from Vignac et al. (2023) who use classifier-guidance
in their conditional generation. We use the denoiser output to evaluate the likelihood p(y |X0) of
the condition y (e.g., probability of synthesisability) given the reactants X0, and backpropagate to
get an adjustment of the backward update step:

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
log(Epθ(X0 |Xt,Y)p(y |X0))Xt−1+ logPθ(Xt−1 |Xt,Y).

(10)

The derivation starts with similar steps as the classifier guidance method in (Vignac et al.,
2023).More details in App. F. The method can be implemented with a few lines of code and works
as long as p(y |X0) is differentiable. For the retrosynthesis application, we experiment with a toy
model of synthesisability that is based on the count of atoms in the reaction (Ertl & Schuffenhauer,
2009), a concept also known as atom economy (Trost, 1991).

9 EXPERIMENTS

We assess the effect of aligned denoisers on the performance of regular discrete diffusion models.
To this effect, we first demonstrate our model on a toy example: copying simple graphs. We then
evaluate our method more rigorously on the real-world task of retrosynthesis, the task of defining
precursors for a given compound. We also show how diffusion enables a number of downstream
tasks within retrosynthesis, including inpainting and property-guided generation.

9.1 COPYING GRAPHS
Original Aligned Equivariant

Figure 5: Showcasing performance on
graph copying of grids.

We evaluate the model’s ability to copy a graph as it is. To
do so, we define a simple dataset made of 5× 5 grids. We
define an aligned and an equivariant denoiser, both with
the same architecture: a 2-layer GNN with 16 nodes in
the hidden dimension. We train both models on the same
100 samples with a batch size of 32 for 10 epochs. Fig-
ure 5 shows that our aligned denoiser recovers the original
graph almost perfectly, while a fully equivariant denoiser
outputs only a fraction of the same components.

9.2 RETROSYNTHESIS

Retrosynthesis is a crucial step in the drug discovery pipeline, as it provides a concrete plan to
create an identified compound. Single-step retrosynthesis in particular seeks to define the reactants
in a single chemical reaction, which can then be chained to create a more comprehensive synthesis
plan. The task lends itself naturally to graph translation models, since it seeks to generate a target

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

graph (reactants) given an input graph (product). In this experiment, we compare the performance
of the aligned denoiser to that of an equivariant denoiser using real-world chemical reactions.

Experimental setup We use the benchmark dataset USPTO-50k for our experiments. The dataset
consists of 50000 chemical reactions, in SMILES format (Weininger, 1988), carefully curated by
(Schneider et al., 2016) from an original 2 million reactions extracted through text mining by Lowe
(2012). More information on the benchmark dataset USPTO and its various subsets can be found
in App. C.2. We use the graph transformer architecture introduced by Dwivedi & Bresson (2021)
and used by Vignac et al. (2023). The network architecture and hyperparameters are detailed in
App. C.6. For each product, we generate 100 reactant sets, deduplicate them and rank the unique
reactants from most-to-least likely, as judged by the model, using the likelihood lower bound and
duplicate counts as a proxy. Based on the types of alignment discussed in Sec. 7, we experiment
with (1) a permutation equivariant model (Unaligned), (2) a model augmented with atom-mapped
positional encodings, calculated from the graph Laplacian eigendecomposition (DiffAlign-PE), (3) A
model with Laplacian positional encodings as well as the skip connection (DiffAlign-PE+skip), (4) A
model where X and Y are aligned at the input as well as in the output (DiffAlign-input alignment).
We use T = 100. We trained the models for 400–600 epochs and chose the best checkpoint based
on the Mean Reciprocal Rank (MRR, Liu et al. (2009)) score with T = 10 of the validation set. For
more details, see App. C.6.

Evaluation We follow previous practices and use the accuracy of obtaining the ground-truth reac-
tants as our main metric. This is measured by top-k accuracy, which counts the number of ground-
truth matches in the deduplicated and ranked samples among the top-k generated reactions. We also
report Mean Reciprocal Rank (MRR, Liu et al. (2009)) as used by Maziarz et al. (2023). We focus
here on a comparison between aligned and equivariant denoisers. In order to place our models in
the context of the available literature, we also compare to existing baselines in App. D.

Results We visualize the aligned denoiser and the permutation equivariant denoiser in Fig. 6a. As
predicted by Theorem 1, a sample from the permutation equivariant denoising distribution at high
levels of noise pθ(X0 |XT ,Y) has no information about the structure of the product. In contrast,
an aligned denoiser is able to copy the product structure, and the initial denoising output is of much
higher quality. We report results for the different aligned models and the unaligned model for top-k

Table 1: Top-k accuracy and MRR on the USPTO-50k test data set. Aligned models outperform the
unaligned one with the combined PE+skip model reaching the highest results. For a comparison to
other retrosynthetic baselines see App. D.

Method k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑ M̂RR ↑
Unaligned 4.1 6.5 7.8 9.8 0.056
DiffAlign-input 44.1 65.9 72.2 78.7 0.554
DiffAlign-PE 49.0 70.7 76.6 81.8 0.601
DiffAlign-PE+skip 54.7 73.3 77.8 81.1 0.639

and the combined MRR score on the USPTO-50k test set in Table 1. The model without alignment
performs worst, while combining the input alignment with positional encodings achieves the highest
top-k < 10 and MRR scores across all models, making our diffusion-based model competitive with
SOTA in retrosynthesis. Specifically, Table 2 shows our top-k accuracy and MRR score compared
to other baselines. We also outperform template-based models in all top-k scores (see note on the
evaluation of (Igashov et al., 2024) to understand why its results are not comparable), and outperform
all non-pretrained models on top-1. While we use a relatively large value for T during training in
our best models, we also highlight that the performance of the aligned model does not degrade
significantly when reducing the count of sampling steps to a fraction of T = 100. See Fig. 6 for
an ablation study with the number of sampling steps for our best model with positional encodings
and skip connections. We also compare to a permutation equivariant model and show that the top-k
scores go to near zero at 10 steps, while the aligned model sometimes recovers the ground truth even
with a single denoising step.

In App. E, we provide further ablations for different transition matrices, a model using only the
skip connections, and a model with matched Gaussian noise positional encodings. With the latter
experiment, we show that the benefits brought by the positional encoding having the graph inductive
bias due to the graph Laplacian eigenvector structure are not particularly significant, compared to
the inductive bias of alignment brought by matching the positional encodings across sides.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Aligned Denoiser Unaligned Denoiser
Sample with AM Product Sample Product

Sample from p̃θ(X0 |XT ,Y, PY→X) Sample from p̃θ(X0 |XT ,Y)

= blank = absorbing = atom mapping

(a) Aligned vs unaligned denoiser

1 2 5 10 20 50 100

0%

20%

40%

60%

80%

100%

top-1

top-3
top-5

top-100

Sampling step count

To
p-
k

Aligned model
Permutation equivariant model

(b) Quality of samples vs. sampling speed

Figure 6: Top-k scores for sampling step counts T for our PE-skip model and a model with a
standard permutation equivariant denoiser, using the first 10% of validation set reactions.

Table 2: Top-k accuracy and MRR on the USPTO-50k test data set—extended comparison, includ-
ing models with pretraining on larger data sets, and Retrobridge Igashov et al. (2024), where the
evaluation is done with a relaxed metric that does not consider charges or stereochemistry.

Method k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑ M̂RR ↑

Pr
e-

tr
ai

ne
d RSMILES (Zhong et al., 2022) 56.3 79.2 86.2 91.0 0.680

PMSR (Jiang et al., 2023) 62.0 78.4 82.9 86.8 0.704

Te
m

p. Retrosym (Coley et al., 2017b) 37.3 54.7 63.3 74.1 0.480
GLN (Dai et al., 2019) 52.5 74.7 81.2 87.9 0.641
LocalRetro (Chen & Jung, 2021) 52.6 76.0 84.4 90.6 0.650

Sy
nt

ho
n GraphRetro (Somnath et al., 2021) 53.7 68.3 72.2 75.5 0.611

RetroDiff (Wang et al., 2023) 52.6 71.2 81.0 83.3 0.629
MEGAN (Sacha et al., 2021) 48.0 70.9 78.1 85.4 0.601
G2G (Shi et al., 2020a) 48.9 67.6 72.5 75.5 0.582

Te
m

pl
at

e-
fr

ee

SCROP (Zheng et al., 2019) 43.7 60.0 65.2 68.7 0.521
Tied Transformer (Kim et al., 2021) 47.1 67.1 73.1 76.3 0.572
Aug. Transformer (Tetko et al., 2020) 48.3 - 73.4 77.4 0.569
Retrobridge (*) (Igashov et al., 2024) 50.3 74.0 80.3 85.1 0.622
GTA_aug (Seo et al., 2021) 51.1 67.6 74.8 81.6 0.605
Graph2SMILES (Tu & Coley, 2022) 52.9 66.5 70.0 72.9 0.597
Retroformer (Wan et al., 2022) 53.2 71.1 76.6 82.1 0.626
DualTF_aug (Sun et al., 2021) 53.6 70.7 74.6 77.0 0.619
Unaligned 4.1 6.5 7.8 9.8 0.056
DiffAlign-input 44.1 65.9 72.2 78.7 0.554
DiffAlign-PE 49.0 70.7 76.6 81.8 0.601

O
ur

s

DiffAlign-PE+skip 54.7 73.3 77.8 81.1 0.639

9.3 BENEFITS OF DIFFUSION: GUIDED GENERATION AND INPAINTING

We study the use of an external function for guided generation and inpainting, thus demonstrating
the advantages of graph-to-graph diffusion in the field of retrosynthesis as a concrete application
domain. In retrosynthesis, an interesting use-case for posthoc-conditioning is to increase the proba-
bility of the generated reactants being synthesisable, using some pre-trained synthesisability model.
To showcase the idea, we use a toy synthesisability model based on the total count of atoms in the
reactants (Ertl & Schuffenhauer, 2009). Figure 8a shows an example where we nudge the model
towards precursors with lower atom count with details of the procedure given in Alg. 3. More de-
tailed comments on this procedure are available in App. F. To illustrate the benefits of inpainting,
we replicate finding a known synthesis pathway hypothetically, in particular, BHC’s green synthesis
of Ibuprofen (Cann & Connelly, 2000). Fig. 7 compares the output of our model to the ground truth
synthesis. We write out the steps in detail in App. H.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Objective: synthesize

= does not correspond to ground truth

= the correct reaction (possibly up to implicit
H2 not present in the data)
= inpainted form

Real (retro)synthesis path

Basic generation

With inpainting

1. Carbonylation 2. Hydrogenation 3. Friedel-Crafts Acylation

Knowledge about the desired main reactant
and a guess about side reactants

Knowledge about the type of
reaction (acylation)

Figure 7: Replicating BHC’s green synthesis of Ibuprofen using our model interactively, and com-
paring to the known synthesis path.

+
+

Product

High atom count
guidance

Low atom count
guidance

(a) Atom guidance

Product Generate one reactant conditional on another

Generate conditional on desired substructure

(b) Inpainting

Figure 8: (a) Atom count guidance lets us specify if reactants should have many or few atoms,
controlling the atom economy. (b) Examples of inpainting with our model. Parts highlighted
in yellow are fixed by a practitioner to reflect desired characteristics, and the diffusion model
completes the reaction.

10 CONCLUSION

In this work, we studied an important aspect of the design space of conditional graph diffusion mod-
els: the equivariance of the denoiser. We showed that a permutation equivariant model converges
to a ‘mean’ distribution for all the components of the graph. We discuss how this result limits the
expressivity of the denoising process, which ultimately impedes the performance of graph diffusion
models. We propose aligned permutation equivariance to force the model to only consider permu-
tations which maintain the intrinsic alignment between the conditioning and generated graphs. Our
aligned denoisers achieve state-of-the-art results among template-free methods, reaching a top-1
accuracy beyond that of template-based methods. Furthermore, aligned permutation equivariance
opens up the benefits of graph diffusion in retrosynthesis, including flexible post-training condi-
tioning mechanisms, and the ability to adjust the amount of sampling steps during inference freely.
These properties could be used, e.g., in interactive applications or to add more controls for multi-step
retrosynthesis planners.

A limitation of the method is the requirement of some mapping information between the conditional
and generated graphs, although not fully mapped graphs. The model can handle errors in mapping
with additional denoising steps. Another limitation is the high computational demand characteristic
of iterative denoising. Advances in accelerated diffusion sampling methods (Hoogeboom et al.,
2022a; Karras et al., 2022; Lu et al., 2022; Song et al., 2023b; Sauer et al., 2023; Shih et al., 2023)
are likely to improve this aspect.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems, volume 34, pp. 17981–17993. Curran Associates, Inc., 2021.

Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and O Deniz
Akyildiz. Tweedie moment projected diffusions for inverse problems. arXiv preprint
arXiv:2310.06721, 2023.

M. C. Cann and M. E. Connelly. Synthesis of ibuprofen: A greener synthesis of ibuprofen which
creates less waste and fewer byproducts. In Real World Cases in Green Chemistry. American
Chemical Society, Washington, DC, 2000.

Shuan Chen and Yousung Jung. Deep retrosynthetic reaction prediction using local reactivity and
global attention. JACS Au, 1(10):1612–1620, 2021.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In International Conference
on Learning Representations, 2023.

Connor W. Coley, Regina Barzilay, Tommi S. Jaakkola, William H. Green, and Klavs F. Jensen.
Prediction of organic reaction outcomes using machine learning. ACS Central Science, 3(5):
434–443, 2017a.

Connor W. Coley, Luke Rogers, William H. Green, and Klavs F. Jensen. Computer-assisted ret-
rosynthesis based on molecular similarity. ACS Central Science, 3(12):1237–1245, 2017b.

Hanjun Dai, Chengtao Li, Connor Coley, Bo Dai, and Le Song. Retrosynthesis prediction with con-
ditional graph logic network. In Advances in Neural Information Processing Systems, volume 32,
pp. 8872–8882. Curran Associates, Inc., 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In International Conference on Learning Representations, 2024.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. In
AAAI Workshop on Deep Learning on Graphs, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of Cheminfor-
matics, 1:1–11, 2009.

Marc Anton Finzi, Anudhyan Boral, Andrew Gordon Wilson, Fei Sha, and Leonardo Zepeda-Nunez.
User-defined event sampling and uncertainty quantification in diffusion models for physical dy-
namical systems. In International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 10136–10152. PMLR, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–
8646, 2022.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In Advances in Neural Information
Processing Systems, volume 34, pp. 12454–12465. Curran Associates, Inc., 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In International Conference on Learning Rep-
resentations, 2022a.

Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3D. In International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 8867–8887. PMLR, 2022b.

H. Huang, L. Sun, B. Du, Y. Fu, and W. Lv. Graphgdp: Generative diffusion processes for permuta-
tion invariant graph generation. In 2022 IEEE International Conference on Data Mining (ICDM),
pp. 201–210. IEEE Computer Society, 2022.

Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M Bronstein, and Bruno Correia. Retro-
Bridge: Modeling retrosynthesis with Markov bridges. In Conference on Learning Representa-
tions, 2024.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2016.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks
and Learning Systems, 33(2), 2022. doi: 10.1109/tnnls.2021.3070843.

Yinjie Jiang, WEI Ying, Fei Wu, Zhengxing Huang, Kun Kuang, and Zhihua Wang. Learning
chemical rules of retrosynthesis with pre-training. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 5113–5121, 2023.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecule optimization. In International Conference on Learning Represen-
tations.

Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction out-
comes with Weisfeiler-Lehman network. In Advances in Neural Information Processing Systems,
volume 30, pp. 2607–2616. Curran Associates, Inc., 2017.

Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal graph-to-
graph translation for molecule optimization. In International Conference on Learning Represen-
tations, 2019.

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions, 2023.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, volume 35, pp.
26565–26577. Curran Associates, Inc., 2022.

Eunji Kim, Dongseon Lee, Youngchun Kwon, Min Sik Park, and Youn-Suk Choi. Valid, plausi-
ble, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of
Chemical Information and Modeling, 61(1):123–133, 2021.

Hannah Lawrence, Vasco Portilheiro, Yan Zhang, and Sékou-Oumar Kaba. Improving equivariant
networks with probabilistic symmetry breaking. In ICML 2024 Workshop on Geometry-grounded
Representation Learning and Generative Modeling, 2024.

Zaiyun Lin, Shiqiu Yin, Lei Shi, Wenbiao Zhou, and Yingsheng John Zhang. G2gt: Retrosynthesis
prediction with graph-to-graph attention neural network and self-training. Journal of Chemical
Information and Modeling, 63:1894–1905, 2023.

Songtao Liu, Zhengkai Tu, Minkai Xu, Zuobai Zhang, Lu Lin, Rex Ying, Jian Tang, Peilin Zhao, and
Dinghao Wu. FusionRetro: Molecule representation fusion via in-context learning for retrosyn-
thetic planning. In International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 22028–22041. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Informa-
tion Retrieval, 3(3):225–331, 2009.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. 2024.

Daniel Mark Lowe. Extraction of Chemical Structures and Reactions from the Literature. PhD
thesis, University of Cambridge, 2012.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan LI, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. In Advances in Neural
Information Processing Systems, volume 35, pp. 5775–5787. Curran Associates, Inc., 2022.

Krzysztof Maziarz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp
Seidl, and Marwin Segler. Re-evaluating retrosynthesis algorithms with syntheseus. In NeurIPS
2023 AI for Science Workshop, 2023.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 4474–4484. PMLR, 2020.

Xinyu Peng, Ziyang Zheng, Wenrui Dai, Nuoqian Xiao, Chenglin Li, Junni Zou, and Hongkai
Xiong. Improving diffusion models for inverse problems using optimal posterior covariance.
arXiv preprint arXiv:2402.02149, 2024.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Mikołaj Sacha, Mikołaj Błaz, Piotr Byrski, Paweł Dabrowski-Tumanski, Mikołaj Chrominski, Rafał
Loska, Paweł Włodarczyk-Pruszynski, and Stanisław Jastrzebski. Molecule edit graph attention
network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Infor-
mation and Modeling, 61(7):3273–3284, 2021.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. arXiv preprint arXiv:2311.17042, 2023.

Nadine Schneider, Nikolaus Stiefl, and Gregory A Landrum. What’s what: The (nearly) definitive
guide to reaction role assignment. Journal of Chemical Information and Modeling, 56(12):2336–
2346, 2016.

Philippe Schwaller, Theophile Gaudin, David Lanyi, Costas Bekas, and Teodoro Laino. “Found in
Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-
to-sequence models. Chemical Science, 9(28):6091–6098, 2018.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas
Bekas, and Alpha A Lee. Molecular transformer: A model for uncertainty-calibrated chemical
reaction prediction. ACS central science, 5(9):1572–1583, 2019a.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas
Bekas, and Alpha A Lee. Molecular transformer: A model for uncertainty-calibrated chemical
reaction prediction. ACS Central Science, 5(9):1572–1583, 2019b.

Marwin HS Segler and Mark P Waller. Neural-symbolic machine learning for retrosynthesis and
reaction prediction. Chemistry–A European Journal, 23(25):5966–5971, 2017.

Seung-Woo Seo, You Young Song, June Yong Yang, Seohui Bae, Hankook Lee, Jinwoo Shin,
Sung Ju Hwang, and Eunho Yang. GTA: Graph truncated attention for retrosynthesis. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(1):531–539, 2021.

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework
for retrosynthesis prediction. In International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 8818–8827. PMLR, 2020a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. A graph to graphs framework
for retrosynthesis prediction. In International conference on machine learning, pp. 8818–8827.
PMLR, 2020b.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of
diffusion models. In Advances in Neural Information Processing Systems, pp. 4263–4276. Curran
Associates, Inc., 2023.

Tess E. Smidt, Mario Geiger, and Benjamin Kurt Miller. Finding symmetry breaking order parame-
ters with euclidean neural networks. Phys. Rev. Res., 3, 2021. doi: 10.1103/PhysRevResearch.3.
L012002.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning Research, pp. 2256–2265. PMLR, 2015.

Vignesh Ram Somnath, Charlotte Bunne, Connor Coley, Andreas Krause, and Regina Barzilay.
Learning graph models for retrosynthesis prediction. In Advances in Neural Information Process-
ing Systems, volume 34, pp. 9405–9415. Curran Associates, Inc., 2021.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
32211–32252. PMLR, 2023b.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. In International Conference on Learning Repre-
sentations, 2020.

Ruoxi Sun, Hanjun Dai, Li Li, Steven Kearnes, and Bo Dai. Towards understanding retrosynthesis
by energy-based models. In Advances in Neural Information Processing Systems, volume 34, pp.
10186–10194. Curran Associates, Inc., 2021.

Igor V Tetko, Pavel Karpov, Ruud Van Deursen, and Guillaume Godin. State-of-the-art augmented
NLP transformer models for direct and single-step retrosynthesis. Nature Communications, 11
(1):5575, 2020.

Barry M Trost. The atom economy—a search for synthetic efficiency. Science, 254(5037):1471–
1477, 1991.

Zhengkai Tu and Connor W Coley. Permutation invariant graph-to-sequence model for template-
free retrosynthesis and reaction prediction. Journal of Chemical Information and Modeling, 62
(15):3503–3513, 2022.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. DiGress: Discrete denoising diffusion for graph generation. In International Con-
ference on Learning Representations, 2023.

Yue Wan, Chang-Yu Hsieh, Ben Liao, and Shengyu Zhang. Retroformer: Pushing the limits of end-
to-end retrosynthesis transformer. In International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pp. 22475–22490. PMLR, 2022.

Yiming Wang, Yuxuan Song, Minkai Xu, Rui Wang, Hao Zhou, and Weiying Ma. RetroDiff: Ret-
rosynthesis as multi-stage distribution interpolation. arXiv preprint arXiv:2311.14077, 2023.

David Weininger. Smiles, a chemical language and information system. Journal of Chemical Infor-
mation and Computer Sciences, 28(1):31–36, 1988.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jin-Wen Wu, Fei Yin, Yan-Ming Zhang, Xu-Yao Zhang, and Cheng-Lin Liu. Graph-to-graph: To-
wards accurate and interpretable online handwritten mathematical expression recognition. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(4), 2021. doi: 10.1609/aaai.v35i4.
16399.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
asymptotically exact conditional sampling in diffusion models. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 31372–31403. Curran Associates, Inc., 2023.

Shufang Xie, Rui Yan, Junliang Guo, Yingce Xia, Lijun Wu, and Tao Qin. Retrosynthesis prediction
with local template retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 5330–5338, 2023.

YuQing Xie and Tess Smidt. Equivariant symmetry breaking sets, 2024.

Chaochao Yan, Qianggang Ding, Peilin Zhao, Shuangjia Zheng, JINYU YANG, Yang Yu, and Jun-
zhou Huang. RetroXpert: Decompose retrosynthesis prediction like a chemist. In Advances in
Neural Information Processing Systems, volume 33, pp. 11248–11258. Curran Associates, Inc.,
2020.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. SwinGNN: Rethinking per-
mutation invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.01646,
2023.

Yan Zhang, David W. Zhang, Simon Lacoste-Julien, Gertjan J. Burghouts, and Cees G. M. Snoek.
Multiset-equivariant set prediction with approximate implicit differentiation, 2022.

Shuangjia Zheng, Jiahua Rao, Zhongyue Zhang, Jun Xu, and Yuedong Yang. Predicting retrosyn-
thetic reactions using self-corrected transformer neural networks. Journal of Chemical Informa-
tion and Modeling, 60(1):47–55, 2019.

Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Min Wu, Tingjun
Hou, and Mingli Song. Root-aligned SMILES: a tight representation for chemical reaction pre-
diction. Chemical Science, 13(31):9023–9034, 2022.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDICES

This appendix is organized as follows. App. A presents our theoretical results on aligned permu-
tation equivariance and accompanying proofs. App. B provides additional details on the setup for
conditional graph diffusion, including the transition matrices, noise schedule, and data encoding
as graphs. App. C includes additional details to replicate our experimental setup. App. D pro-
vides detailed comparsion between our model and other retrosynthetic baselines. App. F develops
a method to apply arbitrary post-training conditioning with discrete diffusion models, and presents
case studies showcasing the usefulness of post-training conditional inference in applications rele-
vant to retrosynthesis. This includes generating samples with desired properties and refining the
generation interactively through inpainting.

A ALIGNED PERMUTATION EQUIVARIANCE 17

A.1 VISUALIZING OUR ALIGNMENT METHODS 17

A.2 PROOF THAT PERMUTATION EQUIVARIANT DENOISERS DO NOT RECOVER THE
IDENTITY DATA . 17

A.3 PROOF THAT ALIGNED PERMUTATION EQUIVARIANT DENOISERS RECOVER
THE IDENTITY DATA . 19

A.4 PROOF OF THE GENERALIZED DISTRIBUTIONAL INVARIANCE WITH ALIGNED
EQUIVARIANCE . 20

A.5 PROOFS THAT OUR DENOISERS ARE ALIGNED PERMUTATION EQUIVARIANT . 21

A.6 A SINGLE-LAYER GRAPH TRANSFORMER WITH ORTHOGONAL ATOM-MAPPED
POSITIONAL ENCODINGS IS ABLE TO IMPLEMENT THE IDENTITY DATA SOLU-
TION FOR NODES . 22

A.7 EXTENDING THEOREM 1 TO SMALLER TIME STEPS 24

B DETAILS ON CONDITIONAL GRAPH DIFFUSION 25

C EXPERIMENTAL SETUP 28

C.1 COPYING TASK ON THE GRID DATASET . 28

C.2 DATA: USPTO DATA SETS . 28

C.3 NOTES ON OUR SAMPLING AND RANKING PROCEDURES 29

C.4 DETAILS ON STEREOCHEMISTRY . 29

C.5 DETAILS OF THE EVALUATION PROCEDURE 29

C.6 NEURAL NETWORK ARCHITECTURE, HYPERPARAMETERS, AND COMPUTE RE-
SOURCES . 30

D COMPARISION TO RETROSYNTHETIC BASELINES 30

E ADDITIONAL ABLATIONS 32

F ADDING POST-TRAINING CONDITIONING TO DISCRETE DIFFUSION MODELS 34

G HANDLING NOISY NODE MAPPINGS FOR THE TOY DATA 35

H DETAILS FOR THE IBUPROFEN SYNTHESIS EXPERIMENT 36

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

+

+

+ +

++

Matched positional
encodings

Neural net predicts
the difference to

the product graph

Align the graphs
in the input

XE

YE

XN

YN

P
Y

→
X
φ

φ

GNN D
θ
(X

,
Y
)N

Dθ(X,Y)E

XE

YE

XN

YN

GNN

D
θ
(X

,
Y
)N

Dθ(X,Y)E

PY→XYN PY→XYE(PY→X)⊤

XE

YE

XN

YN

GNN

D
θ
(X

,
Y
)N

Dθ(X,Y)E

Figure A9: Different ways to align the graphs in the architecture. All of them can be combined. The
⊕ sign means concatenation along the feature dimension, and + is the standard addition. All of the
methods can be combined together.

A ALIGNED PERMUTATION EQUIVARIANCE

A.1 VISUALIZING OUR ALIGNMENT METHODS

We visualize the various alignment methods we use in this work in Fig. A9.

A.2 PROOF THAT PERMUTATION EQUIVARIANT DENOISERS DO NOT RECOVER THE
IDENTITY DATA

Definitions Let us consider a data set D = {Xn,Yn,P
Y→X
n }Nobs

n=1 , where for all data points,
Xn = PY→X

n Yn, that is, both sides of the reactions are equivalent, up to some permutation, as
defined in the atom mapping matrix PY→X

n . It is always possible to preprocess the data such that
the rows of Yn are permuted with Yn ← PY→X

n Yn so that the resulting atom mapping between
Yn and Xn is always identity. For simplicity, we assume such a preprocessed data set in this section.

Let us assume that the one-step denoiser probability, pθ(X0 |XT ,Y), is parameterized by the neural
network Dθ(XT ,Y) ∈ RN×K such that the probability factorises for the individual nodes and
edges (so there is one output in the network for each node and each edge): pθ(X0 |XT ,Y) =∏

i

∑
k X

N
0,i,kDθ(XT ,Y)Ni,k

∏
i,j

∑
k X

E
0,i,j,kDθ(XT ,Y)Ei,j,k.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The ideal denoiser Clearly, the correct one-step denoiser Dθ(XT ,Y) = Y. This can be shown with
the Bayes’ rule by q(X0 |XT ,Y) = q(XT |X0,Y)q(X0 |Y)

q(XT |Y) = q(XT)q(X0 |Y)
q(XT) = q(X0 |Y). Because

one X always matches with exactly one Y in the data, this is a delta distribution q(X0 |Y) =∏
i δx0,i,yi , where we define x0,i and yi as the value of the i:th node / edge. It is also easy to see that

Dθ(XT ,Y) = Y is the optimal solution for the cross-entropy loss:

−
∑

(X0,Y)

q(X0) log pθ(X0 |XT ,Y) ∝ −
∑
Y

log pθ(Y |XT ,Y)

= −
∑
Y

log

∏
i

∑
k

YN
0,i,kDθ(XT ,Y)Ni,k

∏
i,j

∑
k

YE
0,i,j,kDθ(XT ,Y)Ei,j,k

 . (11)

All of the sums
∑

k Y
N
0,i,kDθ(XT ,Y)Ni,k and

∑
k Y

E
0,i,j,kDθ(XT ,Y)Ei,j,k are maximized for each

i, j and Y if Dθ(XT ,Y) = Y. In this case, the loss goes to zero.

The following theorem states that if the neural net is permutation equivariant, it will converge to a
‘mean’ solution, where the output for each node and each edge is the marginal distribution of nodes
and edges in the conditioning product molecule, instead of the global optimum Dθ(XT ,Y) = Y.

Theorem 3. The optimal permutation equivariant denoiser Let Dθ(XT ,Y) be permutation equiv-
ariant s.t. Dθ(PXT ,Y) = PDθ(XT ,Y), and let q(XT) be permutation invariant. The optimal
solution with respect to the cross-entropy loss with the identity data is, for all nodes i and j{

Dθ(XT ,Y)Ni,: = ŷN , ŷN
k =

∑
i Yi,k/

∑
i,k Yi,k,

Dθ(XT ,Y)Ei,j,: = ŷE , ŷE
k =

∑
i,j Yi,j,k/

∑
i,j,k Yi,j,k,

(12)

where ŷN
k and ŷE

k are the marginal distributions of node and edge values in Y.

Proof. Nodes. The cross-entropy denoising loss for the nodes can be written as

CE = −
∑

(X0,Y)

Eq(XT |X0)

∑
i,k

XN
0,i,k logDθ(XT ,Y)i,k (13)

= −
∑

(X0,Y)

Eq(XT)

∑
i,k

XN
0,i,k logDθ(XT ,Y)i,k (14)

= −
∑
Y

Eq(XT)

∑
i,k

YN
i,k logDθ(XT ,Y)i,k, (15)

where the first equality is due to q(XT |X0) containing no information about X0 at the end of the
forward process, and the second equality is due to X0 = Y in the data. Since q(XT) is permu-
tation invariant, that is, all permuted versions PXT of XT are equally probable, we can split the
expectation into two parts Eq(XT)[·] ∝ Eq(X′

T)

∑
P[·], where X′

T contain only graphs in distinct
isomorphism classes, and

∑
P sums over all permutation matrices of size N ×N ,

CE ∝ −
∑
Y

Eq(X′
T)

∑
P

∑
i,k

YN
i,k logDθ(PX′

T ,Y)Ni,k. (16)

Due to the permutation equivariance, Dθ(PX′
T ,Y)N = PDθ(X

′
T ,Y)N , and Dθ(PX′

T ,Y)Ni,k =

Dθ(X
′
T ,Y)Nπ(i),k, where π(i) denotes the index the index i is mapped to in the permutation P.

Thus,

CE ∝ −
∑
Y

Eq(X′
T)

∑
π

∑
i,k

YN
i,k logDθ(X

′
T ,Y)Nπ(i),k (17)

= −
∑
Y

Eq(X′
T)

∑
i,k

∑
π

YN
π−1(i),k logDθ(X

′
T ,Y)Ni,k, (18)

where the equality is due to all permutations being in a symmetric position: What matters is the rela-
tive permutation between YN and Dθ(X

′
T ,Y). Now,

∑
π Y

N
π−1(i),k =

∑
π Y

N
π(i),k = C

∑
i Y

N
i,k,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

because for each node index i, all the nodes in Y are included equally often due to symmetry. This
is proportional to the marginal distribution ŷN up to some constant, and thus we have:

CE ∝ −
∑
Y

Eq(X′
T)

∑
i,k

ŷN
k logDθ(X

′
T ,Y)i,k. (19)

Clearly, the optimal value for each node output i is the empirical marginal distribution
Dθ(X

′
T ,Y)Ni,: = (ŷN)⊤.

Edges With the exact same steps, we can get the equivalent of Eq. (16) for the edges:

CE ∝ −
∑
Y

Eq(X′
T)

∑
P

∑
i,j,k

YE
i,j,k logDθ(PX′

T ,Y)Ei,j,k. (20)

The permutation equivariance property for the edges is now written as Dθ(PX′
T ,Y)E =

PDθ(X
′
T ,Y)EP⊤, and Dθ(PX′

T ,Y)Ni,jk = Dθ(X
′
T ,Y)Nπ(i),π(j),k. Thus,

CE ∝ −
∑
Y

Eq(X′
T)

∑
π

∑
i,j,k

YE
i,j,k logDθ(X

′
T ,Y)Eπ(i),π(j),k (21)

= −
∑
Y

Eq(X′
T)

∑
i,j,k

∑
π

YE
π−1(i),π−1(j),k logDθ(X

′
T ,Y)Ei,j,k, (22)

with the equality holding again due to symmetry. Now, for any pair of node indices i and j, the
set of all permutations contains all pairs of node indices (π(i), π(j)) equally often due to symme-
try. These pairs correspond to edges in YE , and thus

∑
π Y

E
π−1(i),π−1(j),k =

∑
π Y

E
π(i),π(j),k

=

D
∑

i,j Y
E
i,j,k, where D is a constant that counts how many times each edge pair appeared in the set

of all permutations. This is again proportional to the marginal distribution over the edges ŷE

CE ∝ −
∑
Y

Eq(X′
T)

∑
i,j,k

ŷE
k logDθ(X

′
T ,Y)i,j,k. (23)

Again, the optimal value for each edge output (i, j) is Dθ(X
′
T ,Y)Ei,j,: = (ŷE)⊤.

A.3 PROOF THAT ALIGNED PERMUTATION EQUIVARIANT DENOISERS RECOVER THE
IDENTITY DATA

Here, we detail the steps in the proof of Theorem 1, but with aligned permutation eqivariance intead
of regular permutation equivariance, and highlight the principal differences in both calculations. We
start with versions of Eq. (15) rewritten with atom mapping explicitly, and PY→X conditioning in
the denoiser:

CE = −
∑

(X0,Y,PY →X)

Eq(XT |X0)

∑
i,k

XN
0,i,k logDθ(XT , Y, P

Y→X)i,k (24)

= −
∑

(Y,PY →X)

Eq(XT)

∑
i,k

(PY→XY N)i,k logDθ(XT , Y, P
Y→X)i,k (25)

Versions of Eq. (16) to Eq. (18) with atom mapping conditioning and utilizing aligned permutation
equivariance (instead of permutation equivariance):

CE ∝ −
∑

Y,PY →X

Eq(X′
T)

∑
P

∑
i,k

(PY→XY N)i,k logDθ(PX ′
T , Y, P

Y→X)Ni,k (26)

= −
∑

Y,PY →X

Eq(X′
T)

∑
P

∑
i,k

(PY→XY N)i,k logDθ(X
′
T , Y, P

−1PY→X)Nπ(i),k (27)

= −
∑

Y,PY →X

Eq(X′
T)

∑
i,k

∑
π

(PY→XY N)π−1(i),k logDθ(X
′
T , Y, P

−1PY→X)Ni,k (28)

= −
∑

Y,PY →X

Eq(X′
T)

∑
i,k

∑
P

(P−1PY→XY N)i,k logDθ(X
′
T , Y, P

−1PY→X)Ni,k (29)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We could assume again for notational simplicity (not necessary) that PY→X = I in the data. In
any case, we have a cross-entropy loss where we try to predict a permutation of Y , P−1PY→XY .
Both P−1PY→X and Y are given as explicit information to the neural network, so for each P , the
optimal output is P−1PY→XY , which is a permutation of the original Y .

The primary difference in these two proofs:

• With the version with regular permutation equivariance, only the data term Y is dependent
on the permutation P in Eq. (18). This makes it possible to factor out the sum

∑
π Y

N
π−1(i),k,

leading to Eq. (19). This factorization is also why the optimal neural net output is not
dependent on P .

• With aligned permutation equivariance, the denoiser term retains dependence on P−1, and
the maximal factorization is

∑
P (P

−1Y N)i,k logDθ(X
′
T , Y, P

−1)Ni,k. Thus, for each com-
bination of P and Y , the neural net will have a different optimal output.

A.4 PROOF OF THE GENERALIZED DISTRIBUTIONAL INVARIANCE WITH ALIGNED
EQUIVARIANCE

We start by proving a useful lemma, and then continue and continue to the proof of the main theorem.

Lemma 1. (An aligned denoiser induces aligned distribution equivariance for a single reverse step)

If the denoiser function Dθ has the aligned equivariance property Dθ(RX,QY,RPY→XQ⊤) =
RDθ(X,Y,PY→X), then the conditional reverse distribution pθ(Xt−1 |Xt,Y,PY→X) has the
property pθ(RXt−1 |RXt,QY,RPY→XQ⊤) = pθ(Xt−1 |Xt,Y,PY→X).

Proof. First, let us denote the transition probabilities from t to t−1 with Fθ(Xt,Y,PY→X), where
formally Fθ(Xt,Y,PY→X)Ni,k =

∑
k′ q(XN

t−1,i,k |XN
t,i,k,X

N
0,i,k)Dθ(Xt,Y,PY→X)Ni,k′ and

Fθ(Xt,Y,PY→X)Ei,j,k =
∑

k′ q(XE
t−1,i,j,k |XE

t,i,j,k,X
E
0,i,j,k)Dθ(Xt,Y,PY→X)Ei,j,k′ . Clearly,

since the values of Fθ depend only pointwise on the values of Dθ, Fθ is aligned permutation equiv-
ariant as well.

We continue by directly deriving the connection:

pθ(RXt−1 |RXt,QY,RPY→XQ⊤) (30)

=
∏
i

∑
k

(RXt−1)
N
i,kFθ(RXt,QY,RPY→XQ⊤)i,k

×
∏
i,j

∑
k

(RXt−1)
E
i,j,kFθ(RXt,QY,RPY→XQ⊤)Ei,j,k (31)

=
∏
i

∑
k

(Xt−1)
N
π(i),kFθ(Xt,Y,PY→X)π(i),k

×
∏
i,j

∑
k

(Xt−1)
E
π(i),π(j),kFθ(Xt,Y,PY→X)Eπ(i),π(j),k, (32)

where in the last line we used the aligned permutation equivariance definition, and the the effect of
the permutation matrix R on index i was denoted as π(i). Now, regardless of the permutation, the
products contain all possible values i and pairs i, j exactly once. Thus, the expression remains equal
if we replace π(i) with just i:

pθ(RXt−1 |RXt,QY,RPY→XQ⊤) (33)

=
∏
i

∑
k

(Xt−1)
N
i,kFθ(Xt,Y,PY→X)i,k

∏
i,j

∑
k

(Xt−1)
E
i,j,kFθ(Xt,Y,PY→X)Ei,j,k (34)

= pθ(Xt−1 |Xt,Y,PY→X), (35)

which concludes the proof.

Theorem 4. Aligned denoisers induce aligned permutation invariant distributions If the denoiser
function Dθ has the aligned equivariance property and the prior p(XT) is permutation invariant,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

then the generative distribution pθ(X0 |Y,PY→X) has the corresponding property for any permu-
tation matrices R and Q:

pθ(RX0 |QY,RPY→XQ⊤) = pθ(X0 |Y,PY→X) (36)

Proof. Let us assume that the result holds for some noisy data level t:
pθ(RXt |QY,RPY→XQ⊤) = pθ(Xt |Y,PY→X). We will then show that the same will
hold for Xt−1, which we can use to inductively show that the property holds for X0. We begin as
follows:

pθ(RXt−1 |QY,RPY→XQ⊤) =
∑
Xt

pθ(RXt−1 |Xt,QY,RPY→XQ⊤)pθ(Xt |QY,RPY→XQ⊤)

(37)

=
∑
Xt

pθ(Xt−1 |R−1Xt,Y,PY→X)pθ(R
−1Xt |Y,PY→X).

(38)

where on the second line we used Lem. 1 and the assumption that the result holds for noise level t.
The sum over Xt contains all possible graphs and all of their permutations. Thus, the exact value of
R−1 does not affect the value of the final sum, as we simply go through the same permutations in a
different order, and aggregate the permutations with the sum. Thus,

pθ(RXt−1 |QY,RPY→XQ⊤) =
∑
Xt

pθ(Xt−1 |Xt,Y,PY→X)pθ(Xt |Y,PY→X) (39)

= pθ(Xt−1 |Y,PY→X) (40)

showing that if the result holds for level t, then it also holds for level t − 1. We only need to show
that it holds for level XT−1 to start the inductive chain:

pθ(RXT−1 |QY,RPY→XQ⊤) =
∑
XT

pθ(RXT−1 |XT ,QY,RPY→XQ⊤)p(XT) (41)

=
∑
XT

pθ(XT−1 |R−1XT ,Y,PY→X)p(R−1XT), (42)

where on the second line we again used Lem. 1 and the permutation invariance of p(XT). Again, the
exact value of R−1 does not matter for the sum, since the sum goes through all possible permutations
in any case. Thus we have

pθ(RXT−1 |QY,RPY→XQ⊤) =
∑
XT

pθ(XT−1 |XT ,Y,PY→X)p(XT) (43)

= pθ(XT−1 |Y,PY→X). (44)

Thus, since the property holds for XT−1, it also holds for XT−2, . . . , until X0. This concludes the
proof.

A.5 PROOFS THAT OUR DENOISERS ARE ALIGNED PERMUTATION EQUIVARIANT

In this section, we show for each of the three alignment methods that the corresponding denoisers
do indeed fall within the aligned permutation equivariance function class. Fig. A9 summarizes the
different alignment methods.

Atom-mapped positional encodings We start by writing out one side of the aligned permutation
equivariance condition, Dθ(RXt,QY,RPY→XQ⊤) for this particular function class, and directly
show that it equals PDθ(Xt,Y,PY→X).

Dθ(RXt,QY,RPY→XQ⊤) = fX
θ (

[
RXN

t RPY→XQ⊤Qφ
]
,RXER⊤,

[
QYN Qφ

]
,QYEQ⊤)

(45)

= fX
θ (

[
RXN

t RPY→Xφ
]
,RXER⊤,

[
QYN Qφ

]
,QYEQ⊤),

(46)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where fθ itself is a function that is permutation equivariant for the combined X and Y graph as
input. This means that the neural net itself gives an output for the entire combined graph, but we
only consider the X subgraph as the denoiser output, denoted here as fX

θ . For clarity, we can
combine the reactant and product node features and adjacency matrices in the notation, and use the
permutation equivariance property of our GNN:

fθ(

[
RXN

t RPY→Xφ
QYN Qφ

]
,

[
RXE

t R
⊤ 0

0 QYEQ⊤

]
) (47)

=

[
R 0
0 Q

]
fθ(

[
XN

t PY→Xφ
YN φ

]
,

[
XE

t 0
0 YE

]
) (permutation equivariance of base NN)

(48)

Taking only the X part of the output and reverting to Dθ notation, we directly arrive at the result
that Dθ(RXt,QY,RPY→XQ⊤) = RDθ(Xt,Y,PY→X).

Directly adding Y to the output We again start by writing out an aligned equivariant input to
the denoiser, with fθ again denoting a network that is permutation equivariant with respect to the
combined X and Y graph:

Dθ(RX,QY,RPX→YQ⊤) = softmax(fX
θ (RX,QY) +RPY→XQ⊤QY) (49)

= softmax(RfX
θ (X,Y) +RPY→XY) (permutation equivariance of base denoiser)

(50)

= R softmax(fX
θ (X,Y) +PY→XY) (51)

= RDθ(X,Y,PX→Y) (52)

where we were able to move the permutation outside the softmax since the softmax is applied on
each node and edge separately.

Aligning Y and X at the input to the model Let’s denote by [X PY→XY] concatenation along
the feature dimension for both the nodes and edges of the graphs. Recall then that the definition
of aligning the graphs in the input is Dθ(X,Y,PY→X) = fθ([X PY→XY]), where fθ is a
permutation equivariant denoiser. Writing out the aligned equivariance condition

Dθ(RX,QY,RPY→XQ⊤) = fθ([RX RPY→XQ⊤QY]) = fθ([RX RPY→XY]) (53)

= fθ(R[X PY→XY]) = Rfθ([X PY→XY]) (54)

= Dθ(X,Y,PY→X) (55)

which shows that this method results in aligned equivariance as well.

A.6 A SINGLE-LAYER GRAPH TRANSFORMER WITH ORTHOGONAL ATOM-MAPPED
POSITIONAL ENCODINGS IS ABLE TO IMPLEMENT THE IDENTITY DATA SOLUTION FOR
NODES

Here, we show that a single-layer Graph Transformer neural net can model the identity data for the
nodes given orthogonal atom-mapped positional encodings (e.g., the graph Laplacian eigenvector-
based ones). In particular it is possible to find a θ such that Dθ(Xt,Y,PY→X)N = YN . We hope
that this section can serve as an intuitive motivation for why matched positional encodings help in
copying over the structure from the product to the reactant side.

Recall that we have N atoms on both sides of the reaction. Let us map the atom mapping indices
to basis vectors in an orthogonal basis φ = [φ1, φ2, . . . , φN]⊤. In practice, the node input to the
neural net on the reactant side is now X∗

t = [XN
t , φ], and the node input on the product side is

Y∗ = [YN , φ].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Now, a single-layer Graph Transformer looks as follows (as defined in the Vignac et al. (2023)
codebase):

N = [(X∗N
t)⊤, (Y∗N)⊤]⊤ (Concatenate rows) (56)

E =

[
XE

t 0
0 YE

]
(Create joined graph) (57)

N1 = MLPN (N) (Applied with respect to last dimension) (58)

E1 =
1

2
(MLPE(E) +MLPE(E)⊤) (Symmetrize the input) (59)

t1 = MLPt(t) (60)
Q,K,V = WQN1,WKN1,WV N1 (One attention head for simplicity) (61)

A1 = QK⊤ (62)
A2 = A1 ∗ (WE2E1 + 1) +WE3E1 (63)
A3 = softmax(A3) (64)

N2 = AV/
√
df (df is the embedding dim of V) (65)

N3 = N2 ∗ (Wt2t1 + 1) +Wt3t1 (66)
E2 = W(A2 ∗ (Wt4t1 + 1) +Wt5t1) (67)
t4 = MLPt4(Wt2 +W[min(N3),max(N3),mean(N3), std(N3)]

+W[min(N3),max(N3),mean(N3), std(N3)] (68)
E3 = MLPE2

(E2) +E (69)

Eout =
1

2
(E3 +E⊤

3) (Symmetrize the output) (70)

Nout = MLPN3
(N3) +N (71)

tout = t4 + t (72)

Now, for purposes of illustration, we can define most linear layers to be zero layers:
MLPE ,MLPt,WE2 ,WE3 ,Wt2 ,Wt3 ,Wt4 ,Wt5 = 0. In addition to this, we define MLPN

to be an identity transform. WQ and WK are both chosen as picking out the U columns of N1,
with additional overall scaling by some constant α. WV is chosen to pick out the product node la-

bels: WV N1 =

[
0

YN

]
. Now, we can easily see how the Graph Transformer can obtain the optimal

denoising solution for the nodes. Consider an input N = [(PX∗
t)

⊤, (Y)⊤]⊤, where the reactant
side is permuted. The output of the network should be PY. Focusing on the parts of the network
that compute the node features:

A1 = α2

[
Pφφ⊤P⊤ Pφφ⊤

φφ⊤P⊤ φφ⊤

]
= α2

[
I P

P⊤ I

]
, (73)

A2 = A1, (74)

A3 ≈ softmax(A2) =
1

2

[
I P

P⊤ I

]
(If α≫ 1), (75)

N2 =
A3V√
dF

=

[
I P

P⊤ I

] [
0
YN

]
/(2

√
df) =

[
PYN

YN

]
/(2

√
df). (76)

Here, we used the fact that we chose the positional embeddings to be an orthogonal basis, and
φφ⊤ = I, as well as the fact that PP⊤ = I for any permutation matrices. The term 1

2 in the third
equation came from the fact that each row of A1 contains two non-zero values that are also equal.
The probability gets divided between the two of them in the softmax if the logits are scaled large
enough, and the approximation becomes arbitrarily accurate.

From now on, since we are interested in the denoising output only for the reactant side, we drop out
the reactant side YN and only focus on the PYN part. We choose the final MLPN2

to scale the
output by some factor β ≫ 1:

Nout = βN2 +N (77)

nθ(PX∗
t ,Y

∗)N = softmax(βPYN +N) ≈ PYN . (78)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Here, the approximation can be made arbitrarily accurate by scaling β to a higher value, since
the logits will become more and more peaked towards the values where PYN equals one instead
of zero. This showcases how the attention mechanism in the Graph Transformer pairs with atom
mapping-based orthogonal positional encodings to achieve the identity function from products to
reactants.

A.7 EXTENDING THEOREM 1 TO SMALLER TIME STEPS

We prove the following result characterizing the optimal denoiser output for a more restricted setup
of absorbing-state diffusion and on an identity data with no edges (i.e., just a set of nodes):

Dθ(Xt, Y)i,k =

{
Yi,k, if Xt,i is not in the absorbing state
ŷMk , if Xt,i is in the absorbing state

where ŷMk =
∑

j∈Mt
Yj,k∑

j∈Mt

∑
k Yj,k

where Mt refers to the set of nodes in the mask state. We will include the proof as an additional
comment below. In words, the optimal output for the masked nodes is the marginal distribution
of the nodes that have not been de-masked yet, that is, the mean of all possible placements of the
remaining nodes.

The analysis for graphs with edges becomes more involved, but we postulate that a similar analysis
would show that the output would converge to a mean of all possible permutations of Y that are in
agreement with the current set of subgraphs Xt.

To recap, we have the simplified scenario where we generate a set of nodes X conditioned on another
set of nodes Y , without edges. The goal is to characterize the optimal permutation equivariant
denoiser for this process at any noise level.

Definitions. Let X0 ∈ {0, 1}N×K be the initial set of N nodes, each represented by a one-hot
vector of dimension K. We condition on Y ∈ {0, 1}N×K , where X0 = Y in our data. The forward
process is an absorbing state diffusion, defined as follows for t ∈ 0, 1, . . . , T :

q(Xt,i = M |X0,i) = t/T (79)
q(Xt,i = X0,i|X0,i) = 1− t/T (80)

where M represents the additional "mask" state. We denote the denoiser as Dθ(Xt, Y), which is
assumed to be permutation equivariant with respect to Xt.

Notation For a given Xt, we define: M(Xt) ⊂ 1, . . . , N : Set of indices of masked nodes U(Xt) =

1, . . . , N \ M(Xt): Set of indices of non-masked nodes ŷ
M(Xt)
k = 1

|M(Xt)|
∑

i∈M(Xt)
Yi,k:

Marginal distribution of node values in Y for the node indices that are masked in Xt

Result
Theorem 5. The optimal permutation equivariant denoiser Dθ(Xt, Y) for the absorbing state diffu-
sion process at any time t and for any particular Xt is given by: Dθ(Xt, Y)i,k = Yi,k, if i ∈ U(Xt)

Dθ(Xt, Y)i,k = ŷ
M(Xt)
k , if i ∈M(Xt)

Proof. The cross-entropy loss for the denoiser at time t is:

CEt = −Eq(Xt|X0)

N∑
i=1

∑
k

X0,i,k logDθ(Xt, Y)i,k (81)

= −Eq(Xt|X0)

 ∑
i∈U(Xt)

∑
k

X0,i,k logDθ(Xt, Y)i,k +
∑

i∈M(Xt)

∑
k

X0,i,k logDθ(Xt, Y)i,k

(82)

We consider the optimal denoiser output for non-masked and masked nodes separately:

Non-masked nodes (i ∈ U(Xt)) For these nodes, the optimal output is clearly Dθ(Xt, Y)i,k =
Yi,k, since Yi,k = X0,i,k.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Masked nodes (i ∈M(Xt)) Let’s focus on a particular instantiation of Xt. Due to the permutation
equivariance of Dθ, for any permutation P that only permutes indices within M(Xt), we have:
Dθ(PXt, Y) = PDθ(Xt, Y). Moreover, because all nodes in M(Xt) are in the same mask state,
all such permutations of Xt are identical: Dθ(PXt, Y) = Dθ(Xt, Y) Combining these facts, we
conclude that for any i, j ∈ M(Xt): Dθ(Xt, Y)i = Dθ(Xt, Y)j Thus, the denoiser must output
the same value for all masked nodes in a given Xt. Now, consider the part of the cross-entropy loss
corresponding to the masked nodes for this particular Xt:

CEM
t (Xt) = −

∑
i∈M(Xt)

∑
k

X0,i,k logDθ(Xt, Y)i,k (83)

= −
∑
k

 ∑
i∈M(Xt)

X0,i,k

 logDθ(Xt, Y)m,k (84)

where m is any index in M(Xt). Observe that
∑

i∈M(Xt)
X0,i,k is proportional to the marginal

distribution of the masked nodes in X0 (which is equal to Y). Using our defined notation, we can
rewrite the cross-entropy as: CEM

t (Xt) ∝ −|M(Xt)|
∑

k ŷ
M(Xt)
k logDθ(Xt, Y)m,k The optimal

Dθ(Xt, Y)m,k that minimizes this expression is clearly ŷ
M(Xt)
k . Combining the results for masked

and non-masked nodes yields the stated optimal denoiser.

B DETAILS ON CONDITIONAL GRAPH DIFFUSION

Our transition matrices To define QN
t and QE

t , we adopt the absorbing-state formulation from
Austin et al. (2021), where nodes and edges gradually transfer to the absorbing state ⊥. Formally,
we give the generic form of the transition matrix Qt for node input XN ∈ RNX×NX 1

Qt = (1− βt)I+ βt1e
⊤
⊥, (85)

where βt defines the diffusion schedule and e⊥ is one-hot on the absorbing state ⊥. For complete-
ness, we list the other two common transitions relevant to our application. The first is the uniform
transition as proposed by Hoogeboom et al. (2021)

Qt = (1− βt)I+ βt
11

⊤

K
(86)

where βt, I are as before and K is the number of element (edge or node) types, i.e., the number of
input features for both nodes and edges. Vignac et al. (2023) also proposed a marginal transition
matrix

QN
t = (1− βt)I+ βt

1
(
mN)⊤

and QE
t = (1− βt)I+ βt

1
(
mE

)⊤
(87)

which they argued leads to faster convergence. In this case, mN ∈ RKa and mE ∈ RKb are row
vectors representing the marginal distributions for node and edge types respectively. We tested all
three types of transition matrices in early experiments and noted the absorbing state model to be
slightly better than the others. The marginal q(Xt |X0) and conditional posterior q(Xt−1 |Xt,X0)
also have a closed form for all of these transition matrices.

Noise schedule We use the mutual information noise schedule proposed by Austin et al. (2021),
which leads to

t

T
= 1−I(Xt;X0)

H(X0)
=

H(X0,Xt)−H(Xt)

H(X0)
=

∑
X0,Xt

p(X0)q(Xt |X0) log
q(Xt |X0)∑

X′
0
p(X′

0)q(Xt |X′
0)∑

X0
p(X0) log p(X0)

(88)
For absorbing state diffusion, these equations lead to βt = 1

T−t+1 . Similarly, the total transition
probability to the absorbing state at time t has a simple form: q(Xt =⊥ |X0) =

t
T .

1The only difference between QN
t and QE

t for the absorbing-state and uniform transitions is the dimensions
of I , e, 1 and the value of K. We therefore give a generic form for both and imply choosing the right dimensions
for each case.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Forward process posterior For transition matrices that factorize over dimensions, we have

q(Xt−1,i,: |Xt,i,:,X0,i,:) ∼
XtQ

⊤
t ·X0,i,:Q̄t−1

X0,i,:Q̄tX⊤ (89)

where Xi,: is the one-hot encoding of ith node/edge of the graph, in row vector format.

Variational lower-bound loss Diffusion models are commonly trained by minimizing the negative
variational lower-bound on the model’s likelihood (Ho et al., 2020). Austin et al. (2021) discuss the
difference between optimizing the ELBO and cross-entropy losses and show that the two losses are
equivalent for the absorbing-state transition. We choose to use cross-entropy, similar to Vignac et al.
(2023), due to faster convergence during training. We include the formula for the ELBO in Eq. (90)
for completeness.

Lvb = EX0∼q(X0)

[
KL

[
q(XT |X0) ∥ p(XT)

]︸ ︷︷ ︸
LT

+

T∑
t=2

EXt∼q(Xt |X0)KL
[
q(Xt−1 |Xt,X0) ∥ pθ(Xt−1 |Xt)

]
︸ ︷︷ ︸

Lt−1

− EX1∼q(X1 |X0) log pθ(X0 |X1)︸ ︷︷ ︸
L0

]
(90)

We also note that we use this quantity as part of the scoring function mentioned in Sec. 9.

Data encoding and atom-mapping We illustrate our graph encoding using atom-mapping and
permutation matrices in Fig. A10.

Connection between the denoising parameterization p̃(X0 |Xt,Y) and p(Xt−1 |Xt,Y). Here,
we elaborate on how does p̃(X0 |Xt,Y) connect with p(Xt−1 |Xt,Y).

Recall that the reverse transition is factorized with respect to nodes and edges:

pθ(Xt−1 |Xt,Y) =
∏NX

i=1 pθ(X
N ,i
t−1 |Xt,Y)

∏NX

i,j pθ(X
E,i,j
t−1 |Xt,Y). (91)

We parameterize the transition as follows:

pθ(Xt−1 |Xt,Y) =
∑

X0
q
(
Xt−1 |Xt,X0

)
p̃θ
(
X0 |Xt,Y

)
. (92)

The connection between this parameterization and the probabilties pθ(X
N ,i
t−1 |Xt,Y) is obtained by

noting that both q
(
Xt−1 |Xt,X0

)
and p̃θ

(
X0 |Xt,Y

)
factorize over dimensions:

q
(
Xt−1 |Xt,X0

)
=

NX∏
i

q
(
XN ,i

t−1 |X
N ,i
t ,XN ,i

0

)NX∏
i,j

q
(
XE,i,j

t−1 |X
E,i,j
t ,XE,i,j

0

)
(93)

p̃θ
(
X0 |Xt,Y

)
=

NX∏
i

p̃θ
(
XN ,i

0 |Xt,Y
)NX∏

i,j

p̃θ
(
XE,i,j

0 |Xt,Y
)

(94)

Plugging these in to Eq. (92) and expanding the sum, we get

pθ(Xt−1 |Xt,Y) =
∑
XN ,0

0

∑
XN ,1

0

· · ·
∑

X
E,NX,NX
0

(NX∏
i

q
(
XN ,i

t−1 |X
N ,i
t ,XN ,i

0

)
p̃θ
(
XN ,i

0 |Xt,Y
)

NX∏
i,j

q
(
XE,i,j

t−1 |X
E,i,j
t ,XE,i,j

0

)
p̃θ
(
XE,i,j

0 |Xt,Y
))
(95)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure A10: Illustrating graph encoding using atom-mapping.

=

1
1

1
1

1

1

0000 0
0000 0

0000 0
000 0
000 0 0

0000 0
0000 0
0 000 0
0000 0
0000

0
0

0
0

0
0

10 0 0
1 0 00
1 0 00

1 0 00
00 10

00 10

1 0 00
1 0 00

10 0 0

1 0 00
00 10

00 10

00 0 0
00 0 0

00 0 0

00 0 0

1 0 00
1 0 00

10 0 0

1 0 00
00 10

00 10

10 0 0

00 10

1 0 00

1 0 00

C
C

O

C

N
FC

C

O

C

N

F
C

C
C

O

N

1 2 0 0 00
0 0 1 2 01
0 0 0 0 02
1 0 0 0 10
2 0 0 0 00
0 0 1 0 00

+

1
1

1
1

1

1

0000 0
0000 0

0000 0
000 0
000 0 0

0000 0
0000 0
0 000 0
0000 0
0000

0
0

0
0

0
0

1
1

1
1

1

1

0
0
0
0

0
0

0
0
0

0

0
0
0
0

0

0
0

0

0

0
0
0

0
0

0
0
0
0

0

0
0
0
0

0

0
0

0
0

0

0
0
0
0

0

0
0
0
0

0 00000

00 0 0 1 00 0 0 0
00 0 0 0 00 0 0 0
02 0 0 0 00 0 0 0
00 0 0 0 00 0 0 0
00 0 0 0 00 0 0 0
00 2 0 0 00 0 0 0
00 1 0 0 10 0 0 0
00 0 0 0 00 0 0 0
21 0 0 1 00 0 0 0
00 1 0 0 00 0 2 0

=

00 0 1 0 00 0 0 0
00 0 0 0 00 1 0 0
02 0 0 0 00 0 0 0
01 0 0 0 02 0 0 1
00 0 0 0 00 2 0 0
00 2 0 0 00 0 0 0
00 1 0 0 00 0 0 0
00 0 0 0 10 0 0 0
21 0 0 1 00 0 0 0
00 1 0 0 00 1 2 0

Reactants Product

Atom mapping from the nodes of Y to the nodes of X

Atom mapping from the edges of Y to the edges of X

CONF CONF

CONF

XN PY→XYN PY→X
YN

Non-atom-
mapped atoms

NX NY

XE PY→XYE(PY→X)⊤ PY→X YE (PY→X)⊤

Gathering terms together, we get

=

(∑
XN ,0

0

q
(
XN ,0

t−1 |X
N ,0
t ,XN ,0

0

)
p̃θ
(
XN ,0

0 |Xt,Y
))

︸ ︷︷ ︸
=pθ(X

N ,0
t−1 |Xt,Y)

· (96)

(∑
XN ,1

0

q
(
XN ,1

t−1 |X
N ,1
t ,XN ,1

0

)
p̃θ
(
XN ,1

0 |Xt,Y
))

︸ ︷︷ ︸
=pθ(X

N ,1
t−1 |Xt,Y)

· (97)

. . . (98)(∑
X

E,NX,NX
0

q
(
XE,NX,NX

t−1 |XE,NX,NX
t ,XE,NX,NX

0

)
p̃θ
(
XE,NX,NX

0 |Xt,Y
))

︸ ︷︷ ︸
=pθ(X

E,NX,NX
t−1 |Xt,Y)

(99)

=

NX∏
i=1

pθ(X
N ,i
t−1 |Xt,Y)

NX∏
i,j

pθ(X
E,ij
t−1 |Xt,Y). (100)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL SETUP

C.1 COPYING TASK ON THE GRID DATASET

Data generation We generate 5 × 5 fully connected grids then noise them by flipping a fixed
portion of edges chosen at random. We set the portion of edges to be flipped to 5% of the total
number of edges (i.e., for 5× 5 grids, 31 edges get flipped).

Neural network We use the same neural network architecture for both the aligned and unaligned
denoisers. We use a graph transformer Dwivedi & Bresson (2021) with 2 layers, 1 attention head,
and dimension 16 for the hidden layer. The activation function used is ReLu, and dropout rate of
0.1.

Training hyperparameters We train both models for 10 epochs, using Adam optimizer with a
learning rate of 0.01. We set the batch size to 32.

C.2 DATA: USPTO DATA SETS

All open-source data sets available for reaction modelling are derived in some form from the patent
mining work of Lowe (2012). We distinguish 5 subsets used in previous work: 15k, 50k, MIT,
Stereo, and full (original data set). Table A3 provides key information about the subsets.

Table A3: UPSTO-50K subsets used in retrosynthesis

Subset Introduced by # of reactions Preprocessiong & Data split (script)

Full Lowe (2012) 1 808 938 Dai et al. (2019)
Stereo Schwaller et al. (2018) 1 002 970 Schwaller et al. (2019b)
MIT Jin et al. (2017) 479 035 -
50k Schneider et al. (2016) 50 016 Dai et al. (2019)

15k is proposed by Coley et al. (2017a). The subset includes reactions covered by the 1.7k most
common templates. All molecules appearing in the reaction are included to model the involvement
of reagents and solvents despite not contributing with atoms to the product.

50k is preprocessed by Schneider et al. (2016). The goal of the analysis is to assign roles (reactant,
reagent, solvent) to different participants in a reaction through atom mapping. This effort led to the
creation of an atom-mapped and classified subset of around 50k reactions, which is used nowadays
as a benchmark for retrosynthesis tasks. It is not clear how said subset was selected.

MIT is used by Jin et al. (2017). The preprocessing is described as ‘removing duplicate and
erroneous reactions’ with no further explanation of what qualifies as an erroneous reaction. The
output of this filtering is a data set of 49k reactions (from an original set of 1.8M reactions).

Stereo is proposed by Schwaller et al. (2018). The authors apply a more flexible filtering strategy
compared to USPTO-MIT. Their data set only discards 800k reactions from the original data set
because they are duplicates or they could not be canonicalized by RDKit. In addition, the data set
only considers single-product reactions (92% of the full data set), as opposed to splitting multi-
product reactions. The preprocessing steps include removing reagents (molecules with no atoms
appearing in the product), removing hydrogen atoms from molecules, discarding atom-mapping
information and canonicalizing molecules. In addition, since the original method applied to this
subset is a language model, tokenization is performed on the atoms.

Full is preprocessed by Dai et al. (2019). The processing includes removing duplicate reactions,
splitting reactions with multiple products into multiple reactions with one product, removing reactant
molecules appearing unchanged on the product side, removing all reactions with bad atom-mapping
(i.e., when the sorted mapping between products and reactants is not one-to-one), and removing bad
products (missing mapping, or not parsed by Rdkit).

Our choice Similar to many other works on retrosynthesis, we use 50k as the main data set to
evaluate our method.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C.3 NOTES ON OUR SAMPLING AND RANKING PROCEDURES

Duplicate removal Removing duplicates from the set of generated precursors is a common method-
ology in retrosynthesis, albeit often not discussed explicitly in papers. The benefit of duplicate re-
moval is to ensure that an incorrect molecule that is nevertheless judged as the best one according
to the ranking scheme does not fill up all of the top-k positions after ranking. While this does not
affect top-1 scores, not removing the duplicates would degrade the other top-k scores significantly.

Choice of scoring function Specifically, we use the following formula for approximating the
likelihood of the sample under the model.

s(X) = (1− λ)
count(X)∑
X′ count(X′)

+ λ · eelbo(X)∑
X′ eelbo(X

′)
, (101)

where count(.) returns the number of occurrences of sample X in the set of generated samples
(by default, 100), elbo(.) computes the variational lower bound of the specific sample under the
model, and λ is a weighting hyperparameter. The sums are taken over the set of generated samples.
Intuitively, the idea is to provide an estimate of the likelihood from two routes. The ELBO is an
estimate (a lower bound) of log pθ(X), and exponentiating and normalizing gives an estimate of the
probability distribution. Since the same reactants are often repeated in a set of 100 samples, the
counts can be used as a more direct proxy, although they inherently require a relatively large amount
of samples to limit the variance of this estimate.

We set the value of λ to be 0.9, although we find that the top-k scores are not at all sensitive to
variation in the exact value, as long as it is below 1, and the count information is used. Thus,
the counts seem more important than the ELBO, which may be due to the lower bound nature of
the ELBO or stochasticity in estimating its value. More accurate likelihood estimation schemes for
diffusion models, such as exact likelihood values using the probability flow ODE (Song et al., 2021),
could be a valuable direction for future research in the context of retrosynthetic diffusion models.

C.4 DETAILS ON STEREOCHEMISTRY

Our model does not explicitly consider changes in stereochemistry in the reaction, but instead, we
use the atom mappings implicitly assigned to the samples by the model to transfer the chiral tags
from the products to the reactants. The initial choice of PY→X at the start of sampling can be
considered to be the atom mapping of the generated reactants, given that the model has been trained
on correct atom mappings.

For the chiral tags, we take the ground-truth SMILES for the product molecules from the dataset and
assign the corresponding chiral tag to the corresponding atom mapping on the generated reactants.
For cis/trans isomerism, we use the Chem.rdchem.BondDir bond field in rdkit molecules and
transfer them to the reactant side based on the atom mapping of the pair of atoms at the start and end
of the bond.

Note that when using rdkit, transferring chirality requires some special
care: The chiral tags Chem.ChiralType.CHI_TETRAHEDRAL_CCW and
Chem.ChiralType.CHI_TETRAHEDRAL_CW are defined in the context of the order in
which the bonds are attached to the chiral atom in the molecule data structure. Thus, the chiral tag
sometimes has to be flipped to retain the correct stereochemistry, based on whether the order of the
bonds is different on the reactant molecule data structure and the product molecule data structure.

C.5 DETAILS OF THE EVALUATION PROCEDURE

Top-k scores We evaluate the top-k scores by ranking the list of generated and deduplicated
samples and calculating the percentage of products for which the ground-truth reactants are in the
first k elements in the list.

Mean reciprocal rank We formally define the MRR as MRR = Ep(r)[r
−1]. Verbally, it is the

expected value of the inverse of the amount of reactant suggestions that the model makes before
encountering the ground truth, and as such measures how early on is the correct reactant encountered
in the ranked samples. It also incorporates the intuition that the difference between obtaining the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

correct reactants in, say, the 9th or the 10th position, is not as significant as the difference between
the 1st and 2nd positions.

While we do not have direct access to the entire p(r) just based on the top-k scores, we can estimate
it with a uniform distribution assumption on r within the different top-k ranges. Formally, we
define four sets S1, S2, S3, S4 = {1}, {2, 3}, {4, 5}, {6, 7, 8, 9, 10} in which p(r) is assumed to be
uniform, and s(r) ∈ {1, 2, 3, 4} denotes the group that rank r belongs to. Top-k is denoted as topk,
where k ∈ {1, 3, 5, 10} in our case. Note that they are also equal to the cumulative distribution

of p(r) until k. We thus define p̂(r) =
topmax(Gs(r))

−topmax(Gs(r)−1)

|Gs(r)|
and p̂(1) = top1. For the case

where the ground truth was not in the top-10, we assume it is not recovered and place the rest of the
probability mass on p(∞). Our MRR estimate is then defined as

M̂RR =

10∑
r=1

p̂(r)
1

r
. (102)

In cases where we do not have top-k values for all {1,3,5,10} (such as the Augmented Transformer
in Table 2 for top-3), we assume that p̂(r) is constant in the wider interval between the preceding
and following top-ks (2–5 in the case of the top-3 missing).

C.6 NEURAL NETWORK ARCHITECTURE, HYPERPARAMETERS, AND COMPUTE RESOURCES

We discuss here the neural network architecture and hyper-parameters we choose. Our denoiser is
implemented as a Graph Transformer (Dwivedi & Bresson, 2021), based on the implementation of
Vignac et al. (2023) with additional graph-level level features added to the input of the model. See
Vignac et al. (2023) for an in-depth discussion of the neural network.

In all of our models, we use 9 Graph Transformer layers. When using Laplacian positional encod-
ings, we get the 20 eigenvectors of the Graph Laplacian matrix with the largest eigenvalues and
assign to each node a 20-dimensional feature vector.

We use a maximum of 15 ’blank’ nodes, in practice meaning that the models have the capacity to add
15 additional atoms on the reactant side. In another detail, following Vignac et al. (2023), we weigh
the edge components in the cross-entropy loss by a factor of 5 compared to the node components.

We used a batch size of 16 for the models where the expanded graph containing X and Y as sub-
graphs is given as input. These models were trained for approximately 600 epochs with a single
A100/V100/AMD MI250x GPU. For the model where alignment is done by concatenating Y along
the feature dimension in the input, the attention map sizes were smaller and we could fit a larger
batch of 32 with a single V100 GPU. This model was trained for 600 epochs. The training time for
all of our models was approximately three days. In early experiments and developing the model, we
trained or partially trained multiple models that did not make it to the main paper. Sampling 100
samples for one product with T = 100 from the model takes roughly 60 seconds with the current
version of our code with an AMD MI250x GPU, and 100 samples with T = 10 takes correspond-
ingly about 6 seconds. It is likely that the inference could be optimized, increasing the sample
throughput.

The reported models were chosen based on evaluating different checkpoints with 10 diffusion steps
on the validation set for different checkpoints and chose the best checkpoint based on the MRR
score.

D COMPARISION TO RETROSYNTHETIC BASELINES

Overview of retrosynthetic baselines There are three main types of retrosynthesis models (Liu
et al., 2023). Template-based models depend on the availability and quality of hard-coded chem-
ical rules (Segler & Waller, 2017; Xie et al., 2023). Synthon-based models are limited by their
definition of a reaction center, which does not necessarily hold for complex reactions (Yan et al.,
2020; Shi et al., 2020a; Wang et al., 2023). See Fig. A11 for an example of a reaction impossible
for synthon-based models but which our model gets correctly. Template-free methods are the most
scalable since they do not use any chemical assumptions in their design but perform suboptimally
compared to template-based methods on benchmarks like UPSTO-50k (Wan et al., 2022; Seo et al.,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure A11: Left: An example reaction from USPTO-50k where the reactant is not
possible to predict with a synthon-based model. Right: example reactants generated
by our model (includes the ground-truth one). The SMILES-string for the reaction is
ON=C1CCc2oc3ccccc3c21»O=C1NCCc2oc3ccccc3c21.

Table A4: Comparison of top-k accuracy and MRR on the USPTO-50k test set without charges and
without stereochemical information, following the evaluation setup of Igashov et al. (2024)

Model k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑ M̂RR ↑
RetroBridge (T=500) 50.8 74.1 80.6 85.6 0.622
DiffAlign-PE+Skip (T=100) 56.3 75.2 80.4 84.0 0.658

2021). Efforts to bridge the gap between the template-based and template-free paradigms include
methods investigating pretraining (Zhong et al., 2022; Jiang et al., 2023). Note that our method is
in between template-free and template-based methods, since it uses atom-mapping information but
not an explicit (and thus limited) set of templates. We put our models in their own category in the
results table.

Methods with a different evaluation procedure Despite Igashov et al. (2024)’s RetroBridge being
a closely related to a diffusion model, we cannot include it in a straightforward comparison because
it discards atom charges from the ground truth smiles during evaluation. Specifically, the model uses
only atom types as node features and compares the generated samples to the smiles reconstructed
from the ground truth data through the same encoding (i.e., without charges too) 2. To compare
our model to RetroBridge fairly, we trained our DiffAlign-PE+Skip on uncharged atom-labels, and
evaluated it without considering atom charge nor stereochemistry. The results are shown in App. D.
Many recently published methods for retrosynthesis have capped out their top-1 scores in the 49%-
53% range (see our Table 2), indicating that the increase we achieve over RetroBridge’s top-1 score
(of over 5%) is quite significant. Furthermore, the results we achieve are with 5 times less denoising
steps (100 instead of 500). For a closer look at the performance at different step counts, we invite
the reader to compare Figure 5 in (Igashov et al., 2024) to our Figure Fig. 6. The comparison shows
that Retrobridge’s top-1 score decreases to almost 0 at a step count more than 10. In contrast, our
top-1 is close to 50% even at 5 steps, and higher than Retrobridge at 100 steps. We attribute this
improvement to our more careful analysis of alignment, and utilising multiple alignment techniques.
.

Methods with pretraining Zhong et al. (2022) and Jiang et al. (2023) pre-train their models
on the USPTO-Full and Pistachio data sets, respectively, and as such the results are not directly
comparable to models trained on the standard USPTO-50k benchmark. Pretraining with diffusion
models is an interesting direction for future research, but we consider it outside the scope of our
work. Furthermore, comparison between models with different pretraining datasets and pretraining
strategies has the danger of complicating comparisons, given that relative increases in performance
could be explained by the model, the pretraining strategy, or the pretraining dataset. As such, we
believe that standardized benchmarks like USPTO-50k are necessary when researching modelling
strategies.

Another commonly used metric used to evaluate retrosynthesis model is round-trip accuracy, in
which a forward prediction model is used to evaluate whether our samples can indeed produce the
input product. Coverage considers a sample correct if it matches exactly the ground truth or is
deemed suitable by the forward prediction oracle. Accuracy counts the percentage of valid precur-

2This can be seen in the code shared by Igashov et al. (2024): https://github.com/igashov/
RetroBridge

31

https://github.com/igashov/RetroBridge
https://github.com/igashov/RetroBridge

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table A5: Round-trip coverage and accuracy for different baselines. The methods are categorized as:
template-based (TB), non-template-based (NTB), and models performing their evaluation without
taking into account formal charges (NC) nor stereochemistry (NS). We achieve the highest coverage
and top-1 accuracy among non-template-based methods. Our lower top-k>1 accuracy may be due
to our model generating a higher number of unique predictions compared to competitors, visualized
in Figure Fig. A12.

Coverage (↑) Accuracy (↑)
Model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

TB GLN (Dai et al., 2019) 82.5 92.0 94.0 82.5 71.0 66.2

NTB

MEGAN (Sacha et al., 2021) 78.1 88.6 91.3 78.1 67.3 61.7
Graph2SMILES (Tu & Coley, 2022) — — — 76.7 56.0 46.4
Retroformeraug (Wan et al., 2022) — — — 78.6 71.8 67.1
DiffAlign-PE+skip (ours) 81.6 90.0 91.8 81.6 62.8 53.3

NS LocalRetro (Chen & Jung, 2021) 82.1 92.3 94.7 82.1 71.0 66.7

NS-NC RetroBridge (Igashov et al., 2024) 85.1 95.7 97.1 85.1 73.6 67.8
DiffAlign-PE+skip-NSNC (ours) 87.6 96.4 97.6 87.6 69.3 59.1

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500 DiffAlign-PE+skip*
Retrobridge*

#
of

pr
od

uc
ts

of unique predictions per product

Figure A12: We compare the diversity (number of unique predictions per product) of our samples
to RetroBridge (Igashov et al., 2024). It is important for a retrosynthetic model to generate diverse
precursors, thus offering the practitioner with multiple synthesis strategies, especially given the
limited accuracy of forward prediction models.

sors over all generated samples. We use the same prediction model as previous work, i.e., Molecular
Transformer (Schwaller et al., 2019a). As can be seen from Table A5 our model outperforms all
non-template-based baselines on all thresholds. We also highlight a known tradeoff between diver-
sity and accuracy of generation in Fig. A12, which explains partly why our accuracy is lower than
other baselines (we compare to samples from RetroBridge (Igashov et al., 2024) in particular as an
illustration).

E ADDITIONAL ABLATIONS

Disentangling the effect of the inductive biases due to graph positional encodings vs. the induc-
tive bias of alignment. To disentangle the effect of the graph inductive bias brought by the graph

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Model Top-1 Top-3 Top-5 Top-10 Top-50 MRR
DiffAlign-PE-Gaussian 45.51 68.55 73.24 75.78 83.20 0.5649
DiffAlign-PE-Laplacian 46.09 68.75 72.85 75.98 83.98 0.5686

Table A6: Performance comparison of the model with the only alignment method being the matched
Gaussian noise encoding versus a model with the only alignment method being the matched Lapla-
cian eigenvector-based positional encoding. Both contain alignment information, but the first does
not contain additional inductive biases about the structure of the conditioning graph Y. Results are
obtained with 512 samples form the USPTO-50k test set and 10% of the full training budget used in
Table 2.

Model Top-1 Top-3 Top-5 Top-10 Top-50 MRR
Uniform-PE+Skip 43.75 58.98 62.89 67.38 72.66 0.5156
Marginal-PE+Skip 44.73 60.94 63.28 66.60 69.92 0.5244
Absorbing-PE+Skip 49.22 70.90 74.61 77.93 84.96 0.5952

Table A7: Performance comparison of the PE+Skip models with different transition matrices, eval-
uated with 512 samples form the USPTO-50k test set and 10% of the full training budget.

Laplacian positional encodings and the alignment inductive bias brought by matching the positional
encodings for the input and output graph, we trained two models:

1. A model where the only alignment method is the matched PE where the PE is gener-
ated from the graph Laplacian eigenvectors of the conditioning graph Y (our default PE
method).

2. A model where the only alignment method is matched PEs where the PE is generated by
sampling random Gaussian noise vectors on the conditioning graph nodes Y and placing
these same vectors on the X side.

Both contain alignment information, but the latter does not contain the additional inductive bias
brought by the graph positional encoding. We show the results at roughly 10% of the full training
budget for the results in Table 2. The results are listed in Table A6. Clearly, the results are not
significantly different, indicating that the inductive bias brought by the graph positional encodings
is not as significant as the inductive bias of alignment.

Different transitions. (Vignac et al., 2023) did not originally consider the absorbing state transi-
tions we use. Instead, they used the uniform and marginal transitions. With the uniform transitions,
each step provides a non-zero chance of transitioning from one state to any of the others. This con-
verges to an uniform distribution over the node and edge states at XT . With the marginal transitions,
these transitions are biased such that the distribution of nodes and edges in p(XT) is the marginal
distribution of the node and edge types in the original data. Since there are much more no-edges
than edges in the data, this encodes a sparsity to the graphs in p(XT).

To provide a fair comparison, we compare our absorbing state model and these models on roughly
10% of the full training budget (80 epochs), and list the results for 512 samples from the test set in
Table A7. The absorbing-state model performs the best, whereas the marginal and uniform models
perform slightly worse. The marginal transitions somewhat outperform the uniform transitions.

Comparison to only using the skip connections. Here, we provide a comparison to a model
that only uses the skip connections, and no other alignment method. The results are again shown
for roughly 10% of the training budget (epoch (80) for the PE+Skip model and for the Skip-only
model in Table A8. It is evident that only having the skip connection does not work well, although
it is better than an entirely unaligned model (see Table 2). This is likely due to the skip-only model
having limited expressivity: The neural net does not get the alignment information in the input at
all, and thus is unable to use it apart from the skip connection, which enables literally copying the
Y graph from input to output.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Model Top-1 Top-3 Top-5 Top-10 Top-50 MRR
DiffAlign-Skip 9.77 17.38 24.61 29.30 32.23 0.1517
DiffAlign-PE+Skip (Laplacian) 49.22 70.90 74.61 77.93 84.96 0.5952

Table A8: Performance comparison for a model with the only alignment method being skip connec-
tions and a model where we also use the Laplacian positional encodings, evaluated with 512 samples
form the USPTO-50k test set and 10% of the full training budget

F ADDING POST-TRAINING CONDITIONING TO DISCRETE DIFFUSION
MODELS

In this section, we show a method to add additional controls and conditions on the used discrete
diffusion model post-training. Note that this approach differs from (Vignac et al., 2023)’s in that
our method is an adaptation of reconstruction guidance (Ho et al., 2022; Chung et al., 2023; Song
et al., 2023a), while they adapt classifier-guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol,
2021; Song et al., 2021) for their conditional model. While the notation is from the point of view of
our graph-to-graph translation, the method here applies in general to any discrete diffusion model.
We start out by following (Vignac et al., 2023) and (Sohl-Dickstein et al., 2015; Dhariwal & Nichol,
2021), and then make the novel connection to reconstruction guidance. We write the Bayes’ rule for
an additional condition y (e.g., a specified level of drug-likeness or synthesizability, or an inpainting
mask)

pθ(Xt−1 |Xt,Y, y) ∝ p(y |Xt−1,Xt,Y)pθ(Xt−1 |Xt,Y) (103)
= p(y |Xt−1,Y)pθ(Xt−1 |Xt,Y) (104)

where the second equation was due to the Markovian structure of the generative process (Xt−1

d-separates y and Xt). Now, we can take the log and interpret the probabilities as tensors
Pθ(y |Xt−1,Y) and Pθ(Xt−1 |Xt,Y) defined in the same space as the one-hot valued tensors
Xt−1 and Xt. We get:

logPθ(Xt−1 |Xt,Y, y) ∝ logP(y |Xt−1,Y) + logPθ(Xt−1 |Xt,Y) (105)

Similarly to (Vignac et al., 2023), we can now Taylor expand logPθ(y |Xt−1,Y) around Xt with

logP(y |Xt−1,Y) ≈ logP(y |Xt,Y) +∇X′
t
logP(y |X′

t,Y)|X′
t=Xt

(Xt−1 −Xt) (106)

Given that we are interested in the distribution w.r.t. Xt−1, the Xt terms are constant when we plug
them in to Eq. (105), resulting in

logPθ(Xt−1 |Xt,Y, y) ∝ ∇X′
t
logP(y |X′

t,Y)|X′
t=Xt

Xt−1 + logPθ(Xt−1|Xt,Y) (107)

Simplifying the notation to assume taking the gradient at Xt, we can also write

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
logPθ(y |Xt,Y)Xt−1 + logPθ(Xt−1 |Xt,Y) (108)

In practice, the equation means that given log pθ(y |Xt,Y), we get pθ(Xt−1 |Xt,Y, y) by adding
the input gradient of log pθ(y |Xt,Y) to the logits given by the regular reverse transition and re-
normalizing.

It would be possible to approximate log pθ(y |Xt,Y) by training an additional classifier, leading
to classifier guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021; Song et al., 2021)
and the exact method presented in (Vignac et al., 2023).We go further by adapting these formulas to
reconstruction guidance (Ho et al., 2022; Chung et al., 2023; Song et al., 2023a). These methods and
more advanced versions (Dou & Song, 2024; Finzi et al., 2023; Boys et al., 2023; Wu et al., 2023;
Peng et al., 2024) provide different levels of approximations of the true conditional distribution.
Here, we show an approach particularly similar to (Chung et al., 2023), by approximating the true
denoising distribution p(X0|Xt,Y) directly with the denoiser output

p(y |Xt,Y) =
∑
X0

p(X0 |Xt,Y)p(y |X0) (109)

≈
∑
X0

p̃θ(X0 |Xt,Y)p(y |X0). (110)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Algorithm 3 Sampling with atom-count guidance

Input: Product Y
Choose: PY→X ∈ RNX×NY

XT ∝ p(XT)
for t = T to 1 do

X̃0 = Dθ(Xt,Y, PY→X) ▷ Denoising output
X̃i

t−1 =
∑

k q(X
i
t−1 |Xi

t,X
i
0)X̃

i
0 ▷ Regular reverse transition probabilities

Xi
t−1 ∼ softmax(log X̃t−1 + γ∇Xt

log σ(
∑

i∈S X̃0,i,d−a

b)) ▷ Renormalize
Return X0

Here p(X0 |Xt,Y) is the true, intractable distribution given by going through the entire sampling
process and p̃(X0 |Xt,Y) is the factorized distribution that is given by the denoiser output, and
’jumps to’ X0 directly. This results in the following update step:

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
log

(
Ep̃θ(X0 |Xt,Y)p(y |X0)

)
Xt−1 + logPθ(Xt−1 |Xt,Y).

(111)

Summing over all possible graphs X0 is prohibitive, however. Instead, we could sample X0 from
p̃θ(X0 |Xt,Y) with the Gumbel-Softmax trick (Jang et al., 2016) and evaluate log p(y |X0). As
long as log p(y |X0) is differentiable, we can then just use automatic differentiation to get our es-
timate of ∇Xt logPθ(y |Xt,Y). Another, more simplified approach that avoids sampling from
p̃θ(X0 |Xt,Y) is to relax the definition of the likelihood function to directly condition on the
continuous-valued probability vector P̃θ(X0 |Xt,Y) instead of the discrete-valued X0. For sim-
plicity, we adopted this approach, but the full method with Gumbel-Softmax is not significantly
more difficult to implement. The algorithm for sampling is shown in Alg. 3.

Toy Synthesisability Model: Controlling Atom Economy

The model of synthesizability that we use is

X̃0 = pθ(X0 |Xt,Y), (112)

p(y = synthesizable | X̃0) = σ(

∑
i∈S X̃0,i,d − a

b
)γ , (113)

where S is the set of non-atom-mapped nodes, a, b and γ are constants that define the synthesizability
model and d refers to the dummy node index. The intuition is that the more nodes are classified as
dummy nodes (non-atoms), the fewer atoms we have in total, leaving the atom economy higher.
Note that

∑
i∈S X̃0,i,d is the expected amount of dummy nodes from pθ(X0 |Xt,Y). We set a

to half the amount of dummy nodes and b to one-quarter of the amount of dummy nodes. It turns
out that this leaves γ as a useful parameter to tune the sharpness of the conditioning. The gradient
estimate is then given by

∇Xt logPθ(y |Xt,Y) = γ∇Xt log σ(

∑
i∈S X̃0,i,d − a

b
), (114)

which can be directly calculated with automatic differentiation.

G HANDLING NOISY NODE MAPPINGS FOR THE TOY DATA

Sec. 9.1 introduced the graph copying as a toy data set. Here, we extend it to analyse the effect of
imperfect node mapping during training. In particular, we consider a scheme for adding ’noise’ to
the node mapping by swapping them with each other on either the conditioning, or equivalently, the
other side. We do it as follows:

1. Sample the number of pair swaps: f ∼ Poisson(λ)

2. For each of the f swaps, randomly select two nodes i, j in the graph A and swap their
mappings

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure A13: Results from training an aligned model for a 1000 steps in the graph copying task
presented in Sec. 9.1, with different levels of noise in the atom mappings. λ parameterizes a Poisson
distribution that defines the level of mistakes in the node mapping. On lower noise levels, the results
do not significantly change. However, there seems to be a limit in which the neural net training
dynamics changes to produce clearly suboptimal results.

The Poisson parameter λ controls the expected number of swaps, allowing us to tune the level of
noise in the node mapping. We trained small models for a 1000 steps of training, and show the
results with different noise levels in Fig. A13. Small errors in the node mapping are evidently not a
significant issue, but larger λ does start affecting performance, at least in this early training phase.
We also include a measure of similarity to the target graph: The precision is the fraction of edges
that were correctly inferred, compared to the ground-truth target.

H DETAILS FOR THE IBUPROFEN SYNTHESIS EXPERIMENT

Below we explain the synthesis steps visualized in Fig. 7 in detail:

1. The retrosynthesis begins with carbonylation, adding a ’CO’ structure. Initial basic gen-
eration yields unpromising results, so the practitioner suggests a partial reactant structure,
leading to a more viable path.

2. The model then proposes hydrogenation, a logical next step. While H2 molecules aren’t
explicitly represented in the data, they’re inferred from the context of the reaction.

3. For the third step, the practitioner identifies an opportunity for acylation (involving the
C(=O)C group), potentially leading to readily available reactants. Given this C(=O)C

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure A14: The precision of the adjacency matrix estimates from an aligned model across training,
with different levels of node mapping noise λ. Going above λ > 0.02 nudges the training dynamics
to perform poorly on this task.

structure, the model successfully completes the reaction. These steps align with the syn-
thesis plan proposed by BHC.

4. The retrosynthesis path starts with carbonylation, a well-known synthetic reaction which
adds a ‘CO’ structure to a compound. The practitioner tries basic generation but then
notices that the suggested reactant is not promising. They then suggest a partial structure
of the reactants which leads to a more sensible path.

5. Next, our model proposes hydrogenation, which is a sensible suggestion in this case. The
data does not handle explicitly individual H2 molecules, but they are inferred from the
context.

6. In the third step, the practitioner notices that an acylation reaction (a reaction with the
C(=O)C group) might lead to reactants that are readily available. The model is able to
complete the rest of the reaction after knowing that C(=O)C is present. These steps match
the synthesis plan proposed by BHC.

37

	Introduction
	Related Work
	Preliminaries: Graph-to-Graph Translation
	Background
	Permutation equivariant denoisers cannot learn the identity function
	Solution: Aligned Permutation Equivariance
	Methods for Alignment in GNNs
	Adding Post-training Conditioning for Discrete Diffusion Models
	Experiments
	Copying graphs
	Retrosynthesis
	Benefits of diffusion: guided generation and inpainting

	Conclusion
	References
	Aligned Permutation Equivariance
	Visualizing our Alignment Methods
	Proof that Permutation Equivariant Denoisers Do Not Recover the Identity Data
	Proof that Aligned Permutation Equivariant Denoisers Recover the Identity Data
	Proof of the Generalized Distributional Invariance with Aligned Equivariance
	Proofs that Our Denoisers Are Aligned Permutation Equivariant
	A Single-layer Graph Transformer with Orthogonal Atom-mapped Positional Encodings is Able to Implement the Identity Data Solution for Nodes
	Extending Theorem 1 to Smaller Time Steps

	Details on Conditional Graph Diffusion
	Experimental Setup
	Copying Task on the Grid Dataset
	Data: USPTO Data Sets
	Notes on Our Sampling and Ranking Procedures
	Details on Stereochemistry
	Details of the Evaluation Procedure
	Neural Network Architecture, Hyperparameters, and Compute Resources

	Comparision to Retrosynthetic Baselines
	Additional ablations
	Adding Post-Training Conditioning to Discrete Diffusion Models
	Handling noisy node mappings for the toy data
	Details for the ibuprofen synthesis experiment

