
Published as a conference paper at ICLR 2025

EQUIVARIANT DENOISERS CANNOT COPY GRAPHS:
ALIGN YOUR GRAPH DIFFUSION MODELS

Najwa Laabid1∗ , Severi Rissanen1∗, Markus Heinonen1, Arno Solin1, Vikas Garg1,2
1Department of Computer Science, Aalto University
2YaiYai Ltd
{najwa.laabid, severi.rissanen, markus.o.heinonen}@aalto.fi,
arno.solin@aalto.fi, vgarg@csail.mit.edu

ABSTRACT

Graph diffusion models, dominant in graph generative modeling, remain underex-
plored for graph-to-graph translation tasks like chemical reaction prediction. We
demonstrate that standard permutation equivariant denoisers face fundamental
limitations in these tasks due to their inability to break symmetries in noisy
inputs. To address this, we propose aligning input and target graphs to break
input symmetries while preserving permutation equivariance in non-matching
graph portions. Using retrosynthesis (i.e., the task of predicting precursors
for synthesis of a given target molecule) as our application domain, we show
how alignment dramatically improves discrete diffusion model performance
from 5% to a SOTA-matching 54.7% top-1 accuracy. Code is available at
https://github.com/Aalto-QuML/DiffAlign.

1 INTRODUCTION
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Figure 1: Nodes in the input and output
graphs are given the same identifiers to en-
force alignment, while the model is free to
remain permutation equivariant w.r.t to the
unmatched nodes.

Graphs appear ubiquitously across domains from
knowledge representation to drug discovery (In-
graham et al., 2019; Ji et al., 2022; Hoogeboom
et al., 2022b; Verma et al., 2023). Graph-to-graph
translation serves numerous applications: molec-
ular editing (Jin et al., 2019b), where the goal is
generating molecular graphs with specific structures
or properties; chemical reaction prediction (Shi
et al., 2020b), which requires predicting reactant
graphs from product graphs and vice-versa; and
any task predicting future graph states from initial
configurations (Rossi et al., 2020). Generative
models offer a natural, probabilistic approach to
graph-to-graph translation. Graph diffusion models
present a particularly promising framework given
their excellent performance on graph data (Niu et al.,
2020; Vignac et al., 2023; Mercatali et al., 2024) and
the widespread success of diffusion models in generative modeling in general.

Permutation equivariance forms a fundamental inductive bias in graph-based machine learning mod-
els, including graph diffusion models. This property ensures consistent model outputs when input
nodes are reordered or relabeled, eliminating the need for data augmentation with different node per-
mutations. While powerful, permutation equivariance faces fundamental limitations when mapping
highly symmetric inputs to less symmetric outputs. We identify the root cause of this issue: when
trying to satisfy equivariance with a symmetric input, an optimally-trained neural network can only
predict identical distributions for all elements—essentially the marginal distribution of labels in the
training data (see Theorem 1). Our findings align with previous and concurrent research highlighting
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Sec. 3.1 The Theoretical Limitations of Equivariant Denoisers
Copying graphs as a case-study on the limitations of equivariance. Fig. 4
The optimal permutation equivariant denoiser. Theorem 1

Sec. 3.2 Solution: Aligned Equivariant Denoisers
Relaxing permutation equivariance through alignment. Fig. 6a
Aligned denoisers induce aligned permutation invariant distributions. Theorem 2

Sec. 3.3 Suitable Alignment Methods
Skip-connection, positional encodings, input-alignment. Fig. A9

Sec. 4 Experiments
Proof of concept through simple graph copying tasks. Fig. 5
Application: Retrosynthesis. Table 2
Guided-generation for retrosynthesis. Fig. 8a
Ibuprofen synthesis through inpainting. Fig. 7

Figure 2: Overview of our contributions.

the limitations imposed by equivariance and symmetries in neural network (Lawrence et al., 2024;
Xie & Smidt, 2024).

The key question becomes: how can we enable symmetry breaking while preserving the benefits of
equivariance? We propose aligned equivariance as our solution, visualized in Fig. 1. This approach
uses node identifiers in both input and target graphs to align corresponding nodes through vari-
ous methods (see Sec. 3.3), relaxing equivariance constraints when identifiers match. This targeted
symmetry breaking creates structural anchors that guide the generation process while maintaining
permutation equivariance in non-matching subgraphs. Our experimental results shows that a com-
bination of our alignment methods achieves SOTA-matching results on retrosynthesis, the task of
predicting precursor molecules for a given target. We summarize our contributions in Fig. 2.

2 PRELIMINARIES

2.1 GRAPH-TO-GRAPH TRANSLATION

Consider a database of Nobs graphs D = {(Xn,Yn,P
Y→X
n )}Nobs

n=1 , where Xn represents the tar-
get graph, Yn the input graph, and PY→X

n are matrices defining node mappings between the two
graphs. The graph translation task is: given that the data is sampled from an unknown distribution
p(X,Y,PY→X), predict valid targets X ∼ p(X |Y) for a given input Y.

We start by formally defining the graph objects X and Y. To do so, we consider the space of one-hot
vectors of dimension K as vert(∆K−1), where vert(.) denotes the vertices of the probability simplex
∆K−1 with K − 1 degrees of freedom. We then define the target X as a tuple (XN ,XE) of a node
feature matrix XN ∈ (vert(∆Ka−1))NX and an edge feature matrix XE ∈ (vert(∆Kb−1))NX×NX ,
where Ka and Kb are node and edge feature dimensions respectively. The input graph Y is similarly
defined as (YN ,YE) with the same node and edge features, but potentially a different number of
nodes NY . The features consist of node labels (with Ka possible values) and edge labels (with Kb

possible values), each including an empty value ⊥ to represent missing nodes or edges.

Node mapping matrices establish correspondence between nodes in the input and target graphs.
Formally, we define such matrices as: PY→X ∈ {0, 1}NX×NY , with PY→X

i,j = 1 if the ith node
of the target is the atom-mapped counterpart of the jth node of the input, and zero otherwise. This
node mapping plays a crucial role in breaking the inherent symmetries present in graph diffusion
models. Without this correspondence information, a model cannot distinguish which specific nodes
in the input should map to which specific nodes in the output, leading to averaged, symmetrical
predictions that fail to capture the structural relationships between input and target graphs, as we
discuss later.
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Figure 3: An overview of a graph translation task using discrete diffusion models, illustrated through
chemical reactions. We adopt absorbing state diffusion (Austin et al., 2021), such that samples from
the stationary distribution are made of nodes and edges with the ’none’ label. The condition and
sample graphs are aligned using node mapping information (highlighted with the matching colours)
which identifies pairs of matched nodes across the input and target graphs.

The product PY→XYN equals XN with the non-mapped nodes zeroed out. Similarly,
PY→XYE(PY→X)⊤ equals XE with edges to non-mapped nodes zeroed out. We expect an in-
ductive bias such that if an edge exists between two mapped nodes in X, there is a high probability
of an edge between their corresponding nodes in Y as well. This reflects the fundamental intuition
that graphs are structurally similar for their node-mapped portions.

2.2 DISCRETE DIFFUSION MODELS FOR CONDITIONAL GRAPH GENERATION

We follow the framework of Vignac et al. (2023), which adapts discrete diffusion models (Austin
et al., 2021) to graphs. We present the main constituents of the framework. We assume a Markov
forward process

q(Xt+1 |Xt) =
∏NX

i=1 q(X
N ,i
t+1 |X

N ,i
t )

∏NX

i,j=1 q(X
E,ij
t+1 |X

E,ij
t ), (1)

to diffuse the reactant to noise, and a reverse process

pθ(Xt−1 |Xt,Y) =
∏NX

i=1 pθ(X
N ,i
t−1 |Xt,Y)

∏NX

i,j pθ(X
E,ij
t−1 |Xt,Y), (2)

defining our generative model. Here, θ represents neural network parameters. Note that we always
have time conditioning implicitly in pθ(Xt−1 |Xt,Y, t), but we drop t for notational convenience.
We will also condition on the node mapping PY→X in Sec. 3.3, but we will not include it in the no-
tation until then. The full generative distribution is pθ(X0:T |Y) = p(XT )

∏T
t=1 pθ(Xt−1 |Xt,Y),

where p(XT ) is a predefined prior such that p(XT ) = q(XT |X0). Following Hoogeboom et al.
(2021) and Austin et al. (2021), we use the neural network specifically to predict ground truth labels
from noised samples, meaning that the neural network outputs a distribution p̃θ

(
X0 |Xt,Y

)
.

The reverse process is then parameterized by

pθ(Xt−1 |Xt,Y) =
∑

X0
q
(
Xt−1 |Xt,X0

)
p̃θ
(
X0 |Xt,Y

)
. (3)

Both q
(
Xt−1 |Xt,X0

)
and p̃θ

(
X0 |Xt,Y

)
factorize over dimensions:

q
(
Xt−1 |Xt,X0

)
=

NX∏
i

q
(
XN ,i

t−1 |X
N ,i
t ,XN ,i

0

)NX∏
i,j

q
(
XE,i,j

t−1 |X
E,i,j
t ,XE,i,j

0

)
(4)

p̃θ
(
X0 |Xt,Y

)
=

NX∏
i

p̃θ
(
XN ,i

0 |Xt,Y
)NX∏

i,j

p̃θ
(
XE,i,j

0 |Xt,Y
)

(5)

We write the connection to Eq. (2) explicitly in App. B. Throughout the paper, we denote the direct
output of the neural network as Dθ(Xt,Y) = (Dθ(Xt,Y)N , Dθ(Xt,Y)E), where Dθ(Xt,Y)N ∈
(∆Ka−1)NX and Dθ(Xt,Y)E ∈ (∆Kb−1)(NX×NX), i.e., we have a probability vector for each
node and edge. This implies p̃θ

(
X0 |Xt,Y

)
is a distribution factorized over nodes and edges.

The single-step transition for nodes (and similarly for edges) is defined with a transition matrix QN
t :

q(XN ,i
t |XN ,i

t−1) = Cat(XN ,i
t ;p = XN ,i

t−1Q
N
t ). (6)
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Algorithm 1 Loss calculation
Input: condition Y, target X0, and optional per-
mutation matrix PX→Y for alignment
t ∼ Uniform({0, . . . , T})
Xt ∼ q(Xt |X0)

X̃0 = Dθ(Xt,Y,PY→X)

Return Cross-Entropy(X0, X̃0)

Algorithm 2 Sampling
Input: condition Y
Choose (for alignment): PY→X ∈ RNX×NY

XT ∝ p(XT )
for t = T to 1 do

X̃0 = Dθ(Xt,Y,PY→X)

Xi
t−1 ∼

∑
k q(X

i
t−1 |Xi

t,X
i
0)X̃

i
0

Return X0

In our experiments, we use the absorbing-state formulation from Austin et al. (2021), where nodes
and edges gradually transfer to the absorbing state, defined as the empty state ⊥. Formally, Qt =
(1 − βt)I + βt1e

⊤
⊥, where βt defines the diffusion schedule and e⊥ is one-hot on the absorbing

state. Then, the marginal q(Xt |X0) and conditional posterior q(Xt−1 |Xt,X0) also have a closed
form for the absorbing state transitions. The prior p(XT ) is correspondingly chosen to be a delta
distribution at a graph with no edges and nodes set to the ⊥ state. The noise schedule βt is defined
using the mutual information criterion proposed in Austin et al. (2021). While other transitions, like
uniform and marginal (Vignac et al., 2023) are equally possible, the absorbing state model is simpler
and empirically outperforms others (Austin et al., 2021; Lou et al., 2024), motivating our choice.

We use the cross-entropy loss, as discussed in Austin et al. (2021) and Vignac et al. (2023):
−Eq(X0,Y)q(t)q(Xt |X0)[log p̃θ(X0 |Xt,Y)], (7)

where q(t) is a uniform distribution over t ∈ {1 . . . T}.
Fig. 3 provides an overview of the conditional graph diffusion framework we use. For completeness,
a comprehensive definition of the model’s components for nodes and edges is given in App. B. The
training and sampling procedures with graph diffusion models are presented in Alg. 1 and Alg. 2,
along with optional conditioning on PY→X, as described in Sec. 3.3.

Permutation Equivariance and Invariance Permutation equivariance for the denoiser is defined
as Dθ(PX) = PDθ(X) where P is an arbitrary permutation matrix, and PX = (PXN ,PXEP⊤).
This makes single-step reverse transitions equivariant as well, in the sense that pθ(Xt−1 |Xt) =
pθ(PXt−1 |PXt). For our conditional setting, permutation equivariance can be written as
Dθ(PX,Y) = PDθ(X,Y). The prior in graph diffusion models is also usually permutation in-
variant s.t. p(PXT ) = p(XT ) (Niu et al., 2020; Vignac et al., 2023; Hoogeboom et al., 2022b).

2.3 RELATED WORK

Graph-to-graph translation methods Graph-to-graph models have demonstrated success in di-
verse tasks including handwritten mathematical expression recognition (Wu et al., 2021), molecular
optimization (Jin et al., 2019a), and retrosynthesis (Lin et al., 2023). Recently, Igashov et al. (2024)
introduced a Markov bridge model for product-to-reactant graph mapping, representing the closest
approach to diffusion-based graph-to-graph translation. While their paper does not explicitly ad-
dress equivariance and symmetry-breaking as design elements, the authors implement a technique
similar to our "input alignment" described in Sec. 3.3. This suggests our theoretical framework may
also explain their model’s effectiveness.

Equivariance and symmetry-breaking Equivariant neural networks have attracted interest for
their ability to incorporate known symmetries, typically enhancing generalization. However, Smidt
et al. (2021) identified a fundamental limitation: these networks struggle with self-symmetric inputs
because they cannot break inherent data symmetries. This challenge appears across various applica-
tions, including prediction tasks on symmetric domains and generative models reconstructing from
highly symmetric latent spaces (Lawrence et al., 2024). Researchers have explored this issue in dif-
ferent contexts, including graph representation learning (Srinivasan & Ribeiro, 2020), set generation
(Zhang et al., 2022), and physical system modeling (Kaba et al., 2023).

Permutation equivariance in graph diffusion Equivariance features prominently in graph diffu-
sion models to parameterize the reverse process (Niu et al., 2020; Vignac et al., 2023; Hoogeboom
et al., 2022b; Huang et al., 2022). One key motivation is that permutation equivariant neural net-
works induce permutation invariant distributions in diffusion models (Niu et al., 2020), ensuring dif-
ferent permutations of the same graph have identical probabilities under the model. In recent work,
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Yan et al. (2023) demonstrated that relaxing permutation equivariance in graph diffusion through
absolute positional encodings empirically improves performance.

3 WHY PERMUTATION EQUIVARIANCE FAILS AND HOW TO FIX IT

3.1 PERMUTATION EQUIVARIANT DENOISERS CANNOT LEARN THE IDENTITY FUNCTION

In this section, we consider a data set D = {(Xn,Yn,P
Y→X
n )}Nobs

n=1 , dubbed the ‘identity data’,
where for all data points Xn = PY→X

n Yn. In other words, both the input and the target are
equivalent, up to some permutation, as defined by the node-mapping matrix PY→X

n . This seem-
ingly simple scenario reveals a fundamental limitation of standard graph diffusion models. Graph
translation can be viewed as similar to copying graphs (learning the identity function) because of
the structural similarity between input and target graphs. Yet, we demonstrate that standard graph
diffusion models struggle with this basic task due to their inability to break symmetries.

A denoiser implementing the identity function should output Dθ(Xt,Y) = PY→XY, placing all
probability mass on the correct node/edge labels (up to a permutation of Y). We pass the condi-
tioning graph Y by concatenating it to the input X along the node dimension, creating a graph with
NX +NY nodes and (NX +NY)× (NX +NY) edges, with no edges between the X and Y sub-
graphs. However, permutation equivariant denoisers Dθ are constrained to output identical "mean"
solutions for all nodes and edges in the early stages of generation.

To understand this intuitively, consider a highly noisy input at t = T and a permutation equivariant
denoiser. Permutation equivariance requires that Dθ(RXT ,Y) = RDθ(XT ,Y) for any permuta-
tion matrix R ∈ {0, 1}NY →NX . Since XT contains no information about Y (due to high noise),
the model learns to ignore the X input, leading to Dθ(RXT ,Y) = Dθ(XT ,Y) = PY→XY.
This creates a contradiction: RPY→XY = PY→XY, which cannot generally be true. The
only way to satisfy both equivariance (Dθ(RXT ,Y) = RDθ(XT ,Y)) and input-independence
(Dθ(RXT ,Y) = Dθ(XT ,Y)) is if Dθ(XT ,Y) outputs identical probability vectors for each
node and edge. This symmetry problem prevents the model from distinguishing between nodes
that should have different labels. The following theorem formalizes this limitation:
Theorem 1. (The optimal permutation equivariant denoiser) Let Dθ(XT ,Y) be permutation
equivariant s.t. Dθ(PXT ,Y) = PDθ(XT ,Y), and let q(XT ) be permutation invariant. The
optimal solution with respect to the cross-entropy loss with the identity data is, for all nodes i and j{

Dθ(XT ,Y)Ni,: = ŷN , ŷN
k =

∑
i Yi,k/

∑
i,k Yi,k,

Dθ(XT ,Y)Ei,j,: = ŷE , ŷE
k =

∑
i,j Yi,j,k/

∑
i,j,k Yi,j,k,

(8)

where ŷN
k and ŷE

k are the marginal distributions of node and edge values in Y.

We visualize the theorem in Fig. 4, and give the proof in App. A.2, with an extension to other
time steps in App. A.7. The symmetry constraint makes it impossible for the model to solve the
task in a single step with T = 1. With multiple smaller steps, the model can gradually break
symmetries as sampling in the discrete generative process introduces slight asymmetries in Xt,
enabling correlations between node and edge representations to emerge. Each denoising step can
leverage these small asymmetries from previous steps, slowly building node identity information.
As T → ∞ with absorbing diffusion, the model eventually becomes equivalent to an any-order
autoregressive model (Hoogeboom et al., 2022a), thus exemplifying gradual symmetry-breaking by
changing one element at a time. However, this process remains inefficient compared to approaches
that directly address the symmetry problem.

3.2 SOLUTION: ALIGNED PERMUTATION EQUIVARIANCE

Given the failure of permutation equivariant denoisers to effectively copy graphs, we propose to
relax the permutation equivariance constraint in a controlled way. We observe that it is sufficient
to have permutation equivariance in the sense that if we permute X and/or Y, and accordingly
permute the node mapping PY→X such that the matching between Y and X remains, the model
output should be the same. We call this aligned permutation equivariance. Formally, we use the
node-mapping permutation matrix PY→X as an input to the denoiser and consider denoisers that
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satisfy the following constraint: Dθ(RX,QY,RPY→XQ⊤) = RDθ(X,Y,PY→X), where R
and Q are permutation matrices of shapes (NX ×NX) and (NY ×NY), respectively.

With PY→X and Y as input, an unconstrained denoiser can output the ground-truth permutation
PY→XY for the identity data task. Restricting the function to the aligned equivariant class does not
clash with this, as can be seen by writing out the optimal solution and the equivariance condition for
a permuted input RX,QY,RPY→XQ⊤:

(Identity data) Dθ(RX,QY,RPY→XQ⊤) = RPY→XQ⊤QY = RPY→XY, (9)

(Aligned Equivariance) Dθ(RX,QY,RPY→XQ⊤) = RDθ(X,Y,PY→X) = RPY→XY.
(10)

Note that the permutation invariance of pθ(X0) does not apply as it does for fully permutation
equivariant models. However, we show that a generalized form of distribution invariance holds.
Theorem 2. (Aligned denoisers induce aligned permutation invariant distributions) If the de-
noiser function Dθ has the aligned equivariance property and the prior p(XT ) is permutation in-
variant, then the generative distribution pθ(X0 |Y,PY→X) has the corresponding property for any
permutation matrices R and Q:

pθ(RX0 |QY,RPY→XQ⊤) = pθ(X0 |Y,PY→X). (11)

A proof is given in App. A.4, while Figure 4 showcases the denoising output of an aligned equivari-
ant model with a given PY→X. Informally, the theorem states that the graph pairing has the same
probability for all isomorphisms of the input and target graphs, as long as the node mapping is not
reassigned to different nodes. This means that during training, we can use the permutations present
in the data and be confident that the model generalizes to other permutations. During sampling,
we only have access to Y without node mapping information. The theorem ensures we can assign
node mappings arbitrarily and still obtain effectively the same distribution over the targets. We
show this mathematically in App. A.4. Lastly, we note that our use of node mapping here is not
a constraint: it is merely an additional input which allows the denoiser to use the structure of the
conditional graph efficiently, and as such we benefit even from a partially correct node mapping.
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Figure 4: Comparing the optimal per-
mutation equivariant denoiser to an
aligned denoiser. As per Theorem 1,
the permutation equivariant model (top)
outputs the marginal distribution over
node types whereas the aligned model
(bottom) reconstructs the correct reac-
tant nodes in a specific permutation
PY→X.

3.3 METHODS FOR ALIGNMENT IN GNNS

We have established how constraining permutation equiv-
ariance to aligned permutation equivariance is a key com-
ponent for the success of the denoising model. In this sec-
tion, we discuss multiple methods to induce an alignment
between the input and target graphs. We visualize these
methods in Fig. A9 and prove that each belongs to the
class of aligned equivariant models in App. A.5.

Node-mapped positional encodings Graph positional
encodings are a standard tool to break permutation sym-
metry in GNNs, making them a natural candidate for in-
ducing aligned permutation equivariance. We consider
uniquely identifying pairs of nodes matched via the node-
mapping matrix in both Xt and Y by adding a posi-
tional encoding vector to each unique node pair. In prac-
tice, we generate a set of distinct vectors φ ∈ RNY ×dφ

such that φ = g(Y) for each of the input graph nodes
Y, with g a function generating the encodings based
on Y. In this work, we use Laplacian positional en-
codings (Dwivedi et al., 2023), but in principle any po-
sitional encoding scheme is applicable. We then map
the vectors ϕ to the corresponding inputs for the noisy
graph nodes Xt. Formally, we get Dθ(Xt,Y,PY→X) =
fθ([X

N
t PY→Xφ],XE

t , [Y
N φ],YE), where fθ is the neural network that takes as inputs the aug-

mented node features and regular edge features and [XN
t PY→Xφ] ∈ RNX×(Ka+dφ) corresponds
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to concatenation along the feature dimension. The only change required for the neural network is to
increase the initial linear layer size for the node inputs.

Direct skip connection Next, motivated by the identity function analysis in Sec. 3.1, we
propose an alignment method that solves the identity task in a minimal way. In particular,
we modify the network to include a direct connection from the condition to the target output:
Dθ(Xt,Y,PY→X) = softmax(f logit

θ (Xt,Y) + λPY→XY) where f logit
θ (Xt,Y) are the logits

at the last layer of the neural network for the nodes and edges, λ is a learnable parameter and
PY→XY = (PY→XYN ,PY→XYE(PY→X)⊤). The sum is possible because Y is in one-hot
format and the dimensionalities of the denoiser output and PY→XY are the same. It is easy to
see that when λ → ∞, Dθ(Xt,Y,PY→X) → PY→XY because the direct connection from Y
dominates in the softmax.

Aligning Y in the input As a natural next step from aligning the graphs at the output via
skip connections, we propose to align them in the input. This allows more expressivity from
the network, since it can process the aligned graphs in the layers of the network before out-
putting the denoising solution. In practice, we align Y by concatenating X and PY→XY along
the feature dimension before passing it to the neural network. Thus, we can drop out the ex-
plicit Y graph entirely, and only process the X graph augmented with Y: Dθ(Xt,Y,PY→X) =
fθ([X

N
t PY→XYN ], [XE

t PY→XYE(PY→X)⊤]), where [·] means concatenation along the
feature dimension.

3.4 ADDING POST-TRAINING CONDITIONING FOR DISCRETE DIFFUSION MODELS

To fully realize the potential of diffusion models for graph-to-graph translation, we derive a novel
reconstruction guidance-like method for discrete models (Ho et al., 2022; Chung et al., 2023; Song
et al., 2023a). This approach differs from the classifier-guidance used by Vignac et al. (2023) in
their conditional generation. We use the denoiser output to evaluate the likelihood p(y |X0) of the
condition y (e.g., probability of synthesizability) given the reactants X0, and backpropagate to get
an adjustment of the backward update step:

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
log(Epθ(X0 |Xt,Y)p(y |X0)) + logPθ(Xt−1 |Xt,Y). (12)

The derivation starts with similar steps as the classifier guidance method in Vignac et al. (2023). We
provide more details in App. F. The method can be implemented with a few lines of code and works
as long as p(y |X0) is differentiable. For the retrosynthesis application, we experiment with a toy
model of synthesizability based on the count of atoms in the reaction (Ertl & Schuffenhauer, 2009),
a concept also known as atom economy (Trost, 1991).

4 EXPERIMENTS

We assess the effect of aligned denoisers on the performance of regular discrete diffusion models.
To this effect, we first demonstrate our model on a toy example: copying simple graphs. We then
evaluate our method more rigorously on the real-world task of retrosynthesis, the task of defining
precursors for a given compound. We also show how diffusion enables a number of downstream
tasks within retrosynthesis, including inpainting and property-guided generation.

4.1 COPYING GRAPHS
Original Aligned Equivariant

Figure 5: Showcasing performance on
graph copying of grids.

We evaluate the model’s ability to copy a graph as it is. To
do so, we define a simple dataset made of 5× 5 grids. We
define an aligned and an equivariant denoiser, both with
the same architecture: a 2-layer GNN with 16 nodes in
the hidden dimension. We train both models on the same
100 samples with a batch size of 32 for 10 epochs. Fig-
ure 5 shows that our aligned denoiser recovers the original
graph almost perfectly, while a fully equivariant denoiser
outputs only a fraction of the same components.
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4.2 RETROSYNTHESIS

Retrosynthesis is a crucial step in the drug discovery pipeline, as it provides a concrete plan to
create an identified compound. Single-step retrosynthesis in particular seeks to define the reactants
in a single chemical reaction, which can then be chained to create a more comprehensive synthesis
plan. The task lends itself naturally to graph translation models, since it seeks to generate a target
graph (reactants) given an input graph (product). In this experiment, we compare the performance
of the aligned denoiser to that of an equivariant denoiser using real-world chemical reactions.

Experimental setup We use the benchmark dataset USPTO-50k for our experiments. The dataset
consists of 50000 chemical reactions, in SMILES format (Weininger, 1988), curated by Schnei-
der et al. (2016) from an original 2 million reactions extracted through text mining by Lowe
(2012). More information on the benchmark dataset USPTO and its various subsets can be found
in App. C.2. We use the graph transformer architecture introduced by Dwivedi & Bresson (2021)
and used by Vignac et al. (2023). The network architecture and hyperparameters are detailed in
App. C.6. For each product, we generate 100 reactant set, we deduplicate them and rank the unique
reactants from most-to-least likely, as judged by the model, using the likelihood lower bound and du-
plicate counts as a proxy. Based on the types of alignment discussed in Sec. 3.3, we experiment with
(1) a permutation equivariant model (Unaligned), (2) a model augmented with atom-mapped po-
sitional encodings, calculated from the graph Laplacian eigendecomposition (DiffAlign-PE), (3) A
model with Laplacian positional encodings as well as the skip connection (DiffAlign-PE+skip), (4) A
model where X and Y are aligned at the input as well as in the output (DiffAlign-input alignment).
We use T = 100. We trained the models for 400–600 epochs and chose the best checkpoint based
on the Mean Reciprocal Rank (MRR, (Liu et al., 2009)) score with T = 10 of the validation set. For
more details on our experimental setup, see App. C.6.

Evaluation We follow previous practices and use the accuracy of obtaining the ground-truth reac-
tants as our main metric. This is measured by top-k accuracy, which counts the number of ground-
truth matches in the deduplicated and ranked samples among the top-k generated reactions. We also
report Mean Reciprocal Rank (MRR, (Liu et al., 2009)) as used by Maziarz et al. (2023). We focus
here on a comparison between aligned and equivariant denoisers. In order to place our models in
the context of the available literature, we also compare to existing baselines in App. D.

Results We visualize the aligned denoiser and the permutation equivariant denoiser in Fig. 6a.
As predicted by Theorem 1, a sample from the permutation equivariant denoising distribution at
high levels of noise pθ(X0|XT ,Y) has no information about the structure of the product. This is a
direct consequence of the symmetry limitation: without alignment, the equivariant denoiser cannot
distinguish between different possible node mappings, producing identical outputs for all nodes and
effectively averaging across all possible configurations. In contrast, an aligned denoiser is able to
copy the product structure, and the initial denoising output is of much higher quality.

Table 1: Top-k accuracy and MRR on the USPTO-50k test data set. Aligned models outperform the
unaligned one with the combined PE+skip model reaching the highest results. For a comparison to
other retrosynthetic baselines see App. D.

Method k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑ M̂RR ↑
Unaligned 4.1 6.5 7.8 9.8 0.056
DiffAlign-input 44.1 65.9 72.2 78.7 0.554
DiffAlign-PE 49.0 70.7 76.6 81.8 0.601
DiffAlign-PE+skip 54.7 73.3 77.8 81.1 0.639

We report results for the different aligned models and the unaligned model for top-k and the com-
bined MRR score on the USPTO-50k test set in Table 1. The model without alignment performs
worst, while combining the input alignment with positional encodings achieves the highest top-
k < 10 and MRR scores across all models, making our diffusion-based model competitive with
SOTA in retrosynthesis. Specifically, Table 2 shows our top-k accuracy and MRR score compared
to other baselines. We also outperform template-based models in all top-k scores (see note on the
evaluation of (Igashov et al., 2024) to understand why its results are not comparable), and outper-
form all non-pretrained models on top-1. While we use a large value for T during training in our best
models, we also highlight that the performance of the aligned model does not degrade significantly
when reducing the count of sampling steps to a fraction of T = 100. See Fig. 6 for an ablation study
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Figure 6: Top-k scores for sampling step counts T for our PE-skip model and a model with a
standard permutation equivariant denoiser, using the first 10% of validation set reactions.

with the number of sampling steps for our best model with positional encodings and skip connec-
tions. We also compare to a permutation equivariant model and show that the top-k scores go to near
zero at 10 steps, while the aligned model sometimes recovers the ground truth even with a single
denoising step. We provide further ablations for different transition matrices, a model using only
the skip connections, and a model with matched Gaussian noise positional encodings in App. E.
With the latter experiment, we show that the benefits brought by the positional encoding having the
graph inductive bias due to the graph Laplacian eigenvector structure are not particularly significant,
compared to the inductive bias of alignment brought by matching the positional encodings across
sides.
Table 2: An extended comparison with top-k accuracy and MRR on the USPTO-50k test data set.
We include models with pretraining on larger data sets, and Retrobridge (Igashov et al., 2024), a
model whose evaluation is done with a relaxed metric that does not consider charges or stereochem-
istry.

Method k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑ M̂RR ↑

Pr
e-

tr
ai

ne
d RSMILES (Zhong et al., 2022) 56.3 79.2 86.2 91.0 0.680

PMSR (Jiang et al., 2023) 62.0 78.4 82.9 86.8 0.704

Te
m

p. Retrosym (Coley et al., 2017b) 37.3 54.7 63.3 74.1 0.480
GLN (Dai et al., 2019) 52.5 74.7 81.2 87.9 0.641
LocalRetro (Chen & Jung, 2021) 52.6 76.0 84.4 90.6 0.650

Sy
nt

ho
n GraphRetro (Somnath et al., 2021) 53.7 68.3 72.2 75.5 0.611

RetroDiff (Wang et al., 2023) 52.6 71.2 81.0 83.3 0.629
MEGAN (Sacha et al., 2021) 48.0 70.9 78.1 85.4 0.601
G2G (Shi et al., 2020a) 48.9 67.6 72.5 75.5 0.582

Te
m

pl
at

e-
fr

ee

SCROP (Zheng et al., 2019) 43.7 60.0 65.2 68.7 0.521
Tied Transformer (Kim et al., 2021) 47.1 67.1 73.1 76.3 0.572
Aug. Transformer (Tetko et al., 2020) 48.3 - 73.4 77.4 0.569
Retrobridge (*) (Igashov et al., 2024) 50.3 74.0 80.3 85.1 0.622
GTA_aug (Seo et al., 2021) 51.1 67.6 74.8 81.6 0.605
Graph2SMILES (Tu & Coley, 2022) 52.9 66.5 70.0 72.9 0.597
Retroformer (Wan et al., 2022) 53.2 71.1 76.6 82.1 0.626
DualTF_aug (Sun et al., 2021) 53.6 70.7 74.6 77.0 0.619
Unaligned 4.1 6.5 7.8 9.8 0.056
DiffAlign-input 44.1 65.9 72.2 78.7 0.554
DiffAlign-PE 49.0 70.7 76.6 81.8 0.601

O
ur

s

DiffAlign-PE+skip 54.7 73.3 77.8 81.1 0.639

4.3 BENEFITS OF DIFFUSION: GUIDED GENERATION AND INPAINTING

We study the use of an external function for guided generation and inpainting, thus demonstrating
the advantages of graph-to-graph diffusion in the field of retrosynthesis as a concrete application
domain. In retrosynthesis, an interesting use-case for posthoc-conditioning is to increase the proba-
bility of the generated reactants being synthesisable, using some pre-trained synthesisability model.
To showcase the idea, we use a toy synthesisability model based on the total count of atoms in
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Objective: synthesize

= does not correspond to ground truth

= the correct reaction (possibly up to implicit
H2 not present in the data)
= inpainted form

Real (retro)synthesis path

Basic generation

With inpainting

1. Carbonylation 2. Hydrogenation 3. Friedel-Crafts Acylation

Knowledge about the desired main reactant
and a guess about side reactants

Knowledge about the type of
reaction (acylation)

Figure 7: Replicating BHC’s green synthesis of Ibuprofen using our model interactively, and com-
paring to the known synthesis path.

+
+

Product

High atom count
guidance

Low atom count
guidance

(a) Atom guidance

Product Generate one reactant conditional on another

Generate conditional on desired substructure

(b) Inpainting

Figure 8: (a) Atom count guidance lets us specify if reactants should have many or few atoms,
controlling the atom economy. (b) Examples of inpainting with our model. Parts highlighted
in yellow are fixed by a practitioner to reflect desired characteristics, and the diffusion model
completes the reaction.

the reactants (Ertl & Schuffenhauer, 2009).Figure 8a shows an example where we nudge the model
towards precursors with lower atom count with details of the procedure given in Alg. 3. More de-
tailed comments on this procedure are available in App. F. To illustrate the benefits of inpainting,
we present a hypothetical scenario of finding a known synthesis pathway, in particular, BHC’s green
synthesis of Ibuprofen (Cann & Connelly, 2000). Fig. 7 compares the output of our model to the
ground truth synthesis. We write out the steps in detail in App. H.

5 CONCLUSION

In this work, we study an important aspect of conditional graph diffusion models: the equivariance
of the denoiser. We show that a permutation equivariant model converges to a ’mean’ distribu-
tion for all graph components—a fundamental limitation stemming from symmetry in the diffusion
process. We propose aligned permutation equivariance as a solution, forcing the model to only
consider permutations that maintain alignment between conditioning and generated graphs. Our
aligned denoisers achieve state-of-the-art results among template-free methods, reaching a top-1 ac-
curacy beyond template-based methods. This approach unlocks the benefits of graph diffusion in
retrosynthesis, including flexible post-training conditioning and adjustable sampling steps during
inference—valuable properties for interactive applications and multi-step retrosynthesis planners.

A limitation is the requirement of some mapping information between conditional and generated
graphs, though not fully mapped graphs. The model handles mapping errors with additional denois-
ing steps. Another limitation is the high computational demand of iterative denoising. Advances
in accelerated diffusion sampling methods (Hoogeboom et al., 2022a; Karras et al., 2022; Lu et al.,
2022; Song et al., 2023b; Sauer et al., 2023; Shih et al., 2023) are likely to improve this aspect.
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APPENDICES

This appendix is organized as follows.

App. A presents our theoretical results on aligned permutation equivariance and accompanying
proofs. App. B provides additional details on the setup for conditional graph diffusion, includ-
ing the transition matrices, noise schedule, and data encoding as graphs. App. C includes additional
details to replicate our experimental setup. App. D provides detailed comparsion between our model
and other retrosynthetic baselines. App. F develops a method to apply arbitrary post-training con-
ditioning with discrete diffusion models, and presents case studies showcasing the usefulness of
post-training conditional inference in applications relevant to retrosynthesis. This includes generat-
ing samples with desired properties and refining the generation interactively through inpainting.
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Figure A9: Different ways to align the graphs in the architecture. All of them can be combined. The
⊕ sign means concatenation along the feature dimension, and + is the standard addition. All of the
methods can be combined together.

A ALIGNED PERMUTATION EQUIVARIANCE

A.1 VISUALIZING OUR ALIGNMENT METHODS

We visualize the various alignment methods we use in this work in Fig. A9.

A.2 PROOF THAT PERMUTATION EQUIVARIANT DENOISERS DO NOT RECOVER THE
IDENTITY DATA

Definitions Let us consider a data set D = {Xn,Yn,P
Y→X
n }Nobs

n=1 , where for all data points,
Xn = PY→X

n Yn, that is, both sides of the reactions are equivalent, up to some permutation, as
defined in the atom mapping matrix PY→X

n . It is always possible to preprocess the data such that
the rows of Yn are permuted with Yn ← PY→X

n Yn so that the resulting atom mapping between
Yn and Xn is always identity. For simplicity, we assume such a preprocessed data set in this section.

Let us assume that the one-step denoiser probability, pθ(X0 |XT ,Y), is parameterized by the neural
network Dθ(XT ,Y) ∈ RN×K such that the probability factorises for the individual nodes and
edges (so there is one output in the network for each node and each edge): pθ(X0 |XT ,Y) =∏

i

∑
k X

N
0,i,kDθ(XT ,Y)Ni,k

∏
i,j

∑
k X

E
0,i,j,kDθ(XT ,Y)Ei,j,k.
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The ideal denoiser The correct one-step denoiser Dθ(XT ,Y) = Y. This can be shown with the
Bayes’ rule by q(X0 |XT ,Y) = q(XT |X0,Y)q(X0 |Y)

q(XT |Y) = q(XT )q(X0 |Y)
q(XT ) = q(X0 |Y). Because

one X always matches with exactly one Y in the data, this is a delta distribution q(X0 |Y) =∏
i δx0,i,yi , where we define x0,i and yi as the value of the i:th node / edge. It is also easy to see that

Dθ(XT ,Y) = Y is the optimal solution for the cross-entropy loss:

−
∑

(X0,Y)

q(X0) log pθ(X0 |XT ,Y) ∝ −
∑
Y

log pθ(Y |XT ,Y)

= −
∑
Y

log

∏
i

∑
k

YN
0,i,kDθ(XT ,Y)Ni,k

∏
i,j

∑
k

YE
0,i,j,kDθ(XT ,Y)Ei,j,k

 . (13)

All of the sums
∑

k Y
N
0,i,kDθ(XT ,Y)Ni,k and

∑
k Y

E
0,i,j,kDθ(XT ,Y)Ei,j,k are maximized for each

i, j and Y if Dθ(XT ,Y) = Y. In this case, the loss goes to zero.

The following theorem states that if the neural net is permutation equivariant, it will converge to a
‘mean’ solution, where the output for each node and each edge is the marginal distribution of nodes
and edges in the conditioning product molecule, instead of the global optimum Dθ(XT ,Y) = Y.

Theorem 3. The optimal permutation equivariant denoiser Let Dθ(XT ,Y) be permutation equiv-
ariant s.t. Dθ(PXT ,Y) = PDθ(XT ,Y), and let q(XT ) be permutation invariant. The optimal
solution with respect to the cross-entropy loss with the identity data is, for all nodes i and j{

Dθ(XT ,Y)Ni,: = ŷN , ŷN
k =

∑
i Yi,k/

∑
i,k Yi,k,

Dθ(XT ,Y)Ei,j,: = ŷE , ŷE
k =

∑
i,j Yi,j,k/

∑
i,j,k Yi,j,k,

(14)

where ŷN
k and ŷE

k are the marginal distributions of node and edge values in Y.

Proof. Nodes. The cross-entropy denoising loss for the nodes can be written as

CE = −
∑

(X0,Y)

Eq(XT |X0)

∑
i,k

XN
0,i,k logDθ(XT ,Y)i,k (15)

= −
∑

(X0,Y)

Eq(XT )

∑
i,k

XN
0,i,k logDθ(XT ,Y)i,k (16)

= −
∑
Y

Eq(XT )

∑
i,k

YN
i,k logDθ(XT ,Y)i,k, (17)

where the first equality is due to q(XT |X0) containing no information about X0 at the end of the
forward process, and the second equality is due to X0 = Y in the data. Since q(XT ) is permu-
tation invariant, that is, all permuted versions PXT of XT are equally probable, we can split the
expectation into two parts Eq(XT )[·] ∝ Eq(X′

T )

∑
P[·], where X′

T contain only graphs in distinct
isomorphism classes, and

∑
P sums over all permutation matrices of size N ×N ,

CE ∝ −
∑
Y

Eq(X′
T )

∑
P

∑
i,k

YN
i,k logDθ(PX′

T ,Y)Ni,k. (18)

Due to the permutation equivariance, Dθ(PX′
T ,Y)N = PDθ(X

′
T ,Y)N , and Dθ(PX′

T ,Y)Ni,k =

Dθ(X
′
T ,Y)Nπ(i),k, where π(i) denotes the index the index i is mapped to in the permutation P.

Thus,

CE ∝ −
∑
Y

Eq(X′
T )

∑
π

∑
i,k

YN
i,k logDθ(X

′
T ,Y)Nπ(i),k (19)

= −
∑
Y

Eq(X′
T )

∑
i,k

∑
π

YN
π−1(i),k logDθ(X

′
T ,Y)Ni,k, (20)

where the equality is due to all permutations being in a symmetric position: What matters is the rela-
tive permutation between YN and Dθ(X

′
T ,Y). Now,

∑
π Y

N
π−1(i),k =

∑
π Y

N
π(i),k = C

∑
i Y

N
i,k,
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because for each node index i, all the nodes in Y are included equally often due to symmetry. This
is proportional to the marginal distribution ŷN up to some constant, and thus we have:

CE ∝ −
∑
Y

Eq(X′
T )

∑
i,k

ŷN
k logDθ(X

′
T ,Y)i,k. (21)

The optimal value for each node output i is the empirical marginal distribution Dθ(X
′
T ,Y)Ni,: =

(ŷN )⊤.

Edges With the exact same steps, we can get the equivalent of Eq. (18) for the edges:

CE ∝ −
∑
Y

Eq(X′
T )

∑
P

∑
i,j,k

YE
i,j,k logDθ(PX′

T ,Y)Ei,j,k. (22)

The permutation equivariance property for the edges is now written as Dθ(PX′
T ,Y)E =

PDθ(X
′
T ,Y)EP⊤, and Dθ(PX′

T ,Y)Ni,jk = Dθ(X
′
T ,Y)Nπ(i),π(j),k. Thus,

CE ∝ −
∑
Y

Eq(X′
T )

∑
π

∑
i,j,k

YE
i,j,k logDθ(X

′
T ,Y)Eπ(i),π(j),k (23)

= −
∑
Y

Eq(X′
T )

∑
i,j,k

∑
π

YE
π−1(i),π−1(j),k logDθ(X

′
T ,Y)Ei,j,k, (24)

with the equality holding again due to symmetry. Now, for any pair of node indices i and j, the
set of all permutations contains all pairs of node indices (π(i), π(j)) equally often due to symme-
try. These pairs correspond to edges in YE , and thus

∑
π Y

E
π−1(i),π−1(j),k =

∑
π Y

E
π(i),π(j),k

=

D
∑

i,j Y
E
i,j,k, where D is a constant that counts how many times each edge pair appeared in the set

of all permutations. This is again proportional to the marginal distribution over the edges ŷE

CE ∝ −
∑
Y

Eq(X′
T )

∑
i,j,k

ŷE
k logDθ(X

′
T ,Y)i,j,k. (25)

Again, the optimal value for each edge output (i, j) is Dθ(X
′
T ,Y)Ei,j,: = (ŷE)⊤.

A.3 PROOF THAT ALIGNED PERMUTATION EQUIVARIANT DENOISERS RECOVER THE
IDENTITY DATA

Here, we detail the steps in the proof of Theorem 1, but with aligned permutation eqivariance intead
of regular permutation equivariance, and highlight the principal differences in both calculations. We
start with versions of Eq. (17) rewritten with atom mapping explicitly, and PY→X conditioning in
the denoiser:

CE = −
∑

(X0,Y,PY →X)

Eq(XT |X0)

∑
i,k

XN
0,i,k logDθ(XT , Y, P

Y→X)i,k (26)

= −
∑

(Y,PY →X)

Eq(XT )

∑
i,k

(PY→XY N )i,k logDθ(XT , Y, P
Y→X)i,k (27)

Versions of Eq. (18) to Eq. (20) with atom mapping conditioning and utilizing aligned permutation
equivariance (instead of permutation equivariance):

CE ∝ −
∑

Y,PY →X

Eq(X′
T )

∑
P

∑
i,k

(PY→XY N )i,k logDθ(PX ′
T , Y, P

Y→X)Ni,k (28)

= −
∑

Y,PY →X

Eq(X′
T )

∑
P

∑
i,k

(PY→XY N )i,k logDθ(X
′
T , Y, P

−1PY→X)Nπ(i),k (29)

= −
∑

Y,PY →X

Eq(X′
T )

∑
i,k

∑
π

(PY→XY N )π−1(i),k logDθ(X
′
T , Y, P

−1PY→X)Ni,k (30)

= −
∑

Y,PY →X

Eq(X′
T )

∑
i,k

∑
P

(P−1PY→XY N )i,k logDθ(X
′
T , Y, P

−1PY→X)Ni,k (31)
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We could assume again for notational simplicity (not necessary) that PY→X = I in the data. In
any case, we have a cross-entropy loss where we try to predict a permutation of Y , P−1PY→XY .
Both P−1PY→X and Y are given as explicit information to the neural network, so for each P , the
optimal output is P−1PY→XY , which is a permutation of the original Y .

The primary difference in these two proofs:

• With the version with regular permutation equivariance, only the data term Y is dependent
on the permutation P in Eq. (20). This makes it possible to factor out the sum

∑
π Y

N
π−1(i),k,

leading to Eq. (21). This factorization is also why the optimal neural net output is not
dependent on P .

• With aligned permutation equivariance, the denoiser term retains dependence on P−1, and
the maximal factorization is

∑
P (P

−1Y N )i,k logDθ(X
′
T , Y, P

−1)Ni,k. Thus, for each com-
bination of P and Y , the neural net will have a different optimal output.

A.4 PROOF OF THE GENERALIZED DISTRIBUTIONAL INVARIANCE WITH ALIGNED
EQUIVARIANCE

We start by proving a useful lemma, and then continue and continue to the proof of the main theorem.

Lemma 1. (An aligned denoiser induces aligned distribution equivariance for a single reverse step)

If the denoiser function Dθ has the aligned equivariance property Dθ(RX,QY,RPY→XQ⊤) =
RDθ(X,Y,PY→X), then the conditional reverse distribution pθ(Xt−1 |Xt,Y,PY→X) has the
property pθ(RXt−1 |RXt,QY,RPY→XQ⊤) = pθ(Xt−1 |Xt,Y,PY→X).

Proof. First, let us denote the transition probabilities from t to t − 1 with Fθ(Xt,Y,PY→X),
where formally Fθ(Xt,Y,PY→X)Ni,k =

∑
k′ q(XN

t−1,i,k |XN
t,i,k,X

N
0,i,k)Dθ(Xt,Y,PY→X)Ni,k′

and Fθ(Xt,Y,PY→X)Ei,j,k =
∑

k′ q(XE
t−1,i,j,k |XE

t,i,j,k,X
E
0,i,j,k)Dθ(Xt,Y,PY→X)Ei,j,k′ . Since

the values of Fθ depend only pointwise on the values of Dθ, Fθ is aligned permutation equivariant
as well.

We continue by directly deriving the connection:

pθ(RXt−1 |RXt,QY,RPY→XQ⊤) (32)

=
∏
i

∑
k

(RXt−1)
N
i,kFθ(RXt,QY,RPY→XQ⊤)i,k

×
∏
i,j

∑
k

(RXt−1)
E
i,j,kFθ(RXt,QY,RPY→XQ⊤)Ei,j,k (33)

=
∏
i

∑
k

(Xt−1)
N
π(i),kFθ(Xt,Y,PY→X)π(i),k

×
∏
i,j

∑
k

(Xt−1)
E
π(i),π(j),kFθ(Xt,Y,PY→X)Eπ(i),π(j),k, (34)

where in the last line we used the aligned permutation equivariance definition, and the the effect of
the permutation matrix R on index i was denoted as π(i). Now, regardless of the permutation, the
products contain all possible values i and pairs i, j exactly once. Thus, the expression remains equal
if we replace π(i) with just i:

pθ(RXt−1 |RXt,QY,RPY→XQ⊤) (35)

=
∏
i

∑
k

(Xt−1)
N
i,kFθ(Xt,Y,PY→X)i,k

∏
i,j

∑
k

(Xt−1)
E
i,j,kFθ(Xt,Y,PY→X)Ei,j,k (36)

= pθ(Xt−1 |Xt,Y,PY→X), (37)

which concludes the proof.

Theorem 4. Aligned denoisers induce aligned permutation invariant distributions If the denoiser
function Dθ has the aligned equivariance property and the prior p(XT ) is permutation invariant,
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then the generative distribution pθ(X0 |Y,PY→X) has the corresponding property for any permu-
tation matrices R and Q:

pθ(RX0 |QY,RPY→XQ⊤) = pθ(X0 |Y,PY→X) (38)

Proof. Let us assume that the result holds for some noisy data level t:
pθ(RXt |QY,RPY→XQ⊤) = pθ(Xt |Y,PY→X). We will then show that the same will
hold for Xt−1, which we can use to inductively show that the property holds for X0. We begin as
follows:

pθ(RXt−1 |QY,RPY→XQ⊤) =
∑
Xt

pθ(RXt−1 |Xt,QY,RPY→XQ⊤)pθ(Xt |QY,RPY→XQ⊤)

(39)

=
∑
Xt

pθ(Xt−1 |R−1Xt,Y,PY→X)pθ(R
−1Xt |Y,PY→X).

(40)

where on the second line we used Lem. 1 and the assumption that the result holds for noise level t.
The sum over Xt contains all possible graphs and all of their permutations. Thus, the exact value of
R−1 does not affect the value of the final sum, as we simply go through the same permutations in a
different order, and aggregate the permutations with the sum. Thus,

pθ(RXt−1 |QY,RPY→XQ⊤) =
∑
Xt

pθ(Xt−1 |Xt,Y,PY→X)pθ(Xt |Y,PY→X) (41)

= pθ(Xt−1 |Y,PY→X) (42)

showing that if the result holds for level t, then it also holds for level t − 1. We only need to show
that it holds for level XT−1 to start the inductive chain:

pθ(RXT−1 |QY,RPY→XQ⊤) =
∑
XT

pθ(RXT−1 |XT ,QY,RPY→XQ⊤)p(XT ) (43)

=
∑
XT

pθ(XT−1 |R−1XT ,Y,PY→X)p(R−1XT ), (44)

where on the second line we again used Lem. 1 and the permutation invariance of p(XT ). Again, the
exact value of R−1 does not matter for the sum, since the sum goes through all possible permutations
in any case. Thus we have

pθ(RXT−1 |QY,RPY→XQ⊤) =
∑
XT

pθ(XT−1 |XT ,Y,PY→X)p(XT ) (45)

= pθ(XT−1 |Y,PY→X). (46)

Thus, since the property holds for XT−1, it also holds for XT−2, . . . , until X0. This concludes the
proof.

A.5 PROOFS THAT OUR DENOISERS ARE ALIGNED PERMUTATION EQUIVARIANT

In this section, we show for each of the three alignment methods that the corresponding denoisers
do indeed fall within the aligned permutation equivariance function class. Fig. A9 summarizes the
different alignment methods.

Atom-mapped positional encodings We start by writing out one side of the aligned permutation
equivariance condition, Dθ(RXt,QY,RPY→XQ⊤) for this particular function class, and directly
show that it equals PDθ(Xt,Y,PY→X).

Dθ(RXt,QY,RPY→XQ⊤) = fX
θ (

[
RXN

t RPY→XQ⊤Qφ
]
,RXER⊤,

[
QYN Qφ

]
,QYEQ⊤)

(47)

= fX
θ (

[
RXN

t RPY→Xφ
]
,RXER⊤,

[
QYN Qφ

]
,QYEQ⊤),

(48)
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where fθ itself is a function that is permutation equivariant for the combined X and Y graph as
input. This means that the neural net itself gives an output for the entire combined graph, but we
only consider the X subgraph as the denoiser output, denoted here as fX

θ . For clarity, we can
combine the reactant and product node features and adjacency matrices in the notation, and use the
permutation equivariance property of our GNN:

fθ(

[
RXN

t RPY→Xφ
QYN Qφ

]
,

[
RXE

t R
⊤ 0

0 QYEQ⊤

]
) (49)

=

[
R 0
0 Q

]
fθ(

[
XN

t PY→Xφ
YN φ

]
,

[
XE

t 0
0 YE

]
) (permutation equivariance of base NN)

(50)

Taking only the X part of the output and reverting to Dθ notation, we directly arrive at the result
that Dθ(RXt,QY,RPY→XQ⊤) = RDθ(Xt,Y,PY→X).

Directly adding Y to the output We again start by writing out an aligned equivariant input to
the denoiser, with fθ again denoting a network that is permutation equivariant with respect to the
combined X and Y graph:

Dθ(RX,QY,RPX→YQ⊤) = softmax(fX
θ (RX,QY) +RPY→XQ⊤QY) (51)

= softmax(RfX
θ (X,Y) +RPY→XY) (permutation equivariance of base denoiser)

(52)

= R softmax(fX
θ (X,Y) +PY→XY) (53)

= RDθ(X,Y,PX→Y) (54)

where we were able to move the permutation outside the softmax since the softmax is applied on
each node and edge separately.

Aligning Y and X at the input to the model Let’s denote by [X PY→XY] concatenation along
the feature dimension for both the nodes and edges of the graphs. Recall then that the definition
of aligning the graphs in the input is Dθ(X,Y,PY→X) = fθ([X PY→XY]), where fθ is a
permutation equivariant denoiser. Writing out the aligned equivariance condition

Dθ(RX,QY,RPY→XQ⊤) = fθ([RX RPY→XQ⊤QY]) = fθ([RX RPY→XY]) (55)

= fθ(R[X PY→XY]) = Rfθ([X PY→XY]) (56)

= Dθ(X,Y,PY→X) (57)

which shows that this method results in aligned equivariance as well.

A.6 A SINGLE-LAYER GRAPH TRANSFORMER WITH ORTHOGONAL ATOM-MAPPED
POSITIONAL ENCODINGS IS ABLE TO IMPLEMENT THE IDENTITY DATA SOLUTION FOR
NODES

Here, we show that a single-layer Graph Transformer neural net can model the identity data for the
nodes given orthogonal atom-mapped positional encodings (e.g., the graph Laplacian eigenvector-
based ones). In particular it is possible to find a θ such that Dθ(Xt,Y,PY→X)N = YN . We hope
that this section can serve as an intuitive motivation for why matched positional encodings help in
copying over the structure from the product to the reactant side.

Recall that we have N atoms on both sides of the reaction. Let us map the atom mapping indices
to basis vectors in an orthogonal basis φ = [φ1, φ2, . . . , φN ]⊤. In practice, the node input to the
neural net on the reactant side is now X∗

t = [XN
t , φ], and the node input on the product side is

Y∗ = [YN , φ].
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Now, a single-layer Graph Transformer looks as follows (as defined in the Vignac et al. (2023)
codebase):

N = [(X∗N
t )⊤, (Y∗N )⊤]⊤ (Concatenate rows) (58)

E =

[
XE

t 0
0 YE

]
(Create joined graph) (59)

N1 = MLPN (N) (Applied with respect to last dimension) (60)

E1 =
1

2
(MLPE(E) +MLPE(E)⊤) (Symmetrize the input) (61)

t1 = MLPt(t) (62)
Q,K,V = WQN1,WKN1,WV N1 (One attention head for simplicity) (63)

A1 = QK⊤ (64)
A2 = A1 ∗ (WE2E1 + 1) +WE3E1 (65)
A3 = softmax(A3) (66)

N2 = AV/
√
df (df is the embedding dim of V) (67)

N3 = N2 ∗ (Wt2t1 + 1) +Wt3t1 (68)
E2 = W(A2 ∗ (Wt4t1 + 1) +Wt5t1) (69)
t4 = MLPt4(Wt2 +W[min(N3),max(N3),mean(N3), std(N3)]

+W[min(N3),max(N3),mean(N3), std(N3)] (70)
E3 = MLPE2

(E2) +E (71)

Eout =
1

2
(E3 +E⊤

3 ) (Symmetrize the output) (72)

Nout = MLPN3
(N3) +N (73)

tout = t4 + t (74)

Now, for purposes of illustration, we can define most linear layers to be zero layers:
MLPE ,MLPt,WE2 ,WE3 ,Wt2 ,Wt3 ,Wt4 ,Wt5 = 0. In addition to this, we define MLPN

to be an identity transform. WQ and WK are both chosen as picking out the U columns of N1,
with additional overall scaling by some constant α. WV is chosen to pick out the product node la-

bels: WV N1 =

[
0

YN

]
. Now, we can easily see how the Graph Transformer can obtain the optimal

denoising solution for the nodes. Consider an input N = [(PX∗
t )

⊤, (Y)⊤]⊤, where the reactant
side is permuted. The output of the network should be PY. Focusing on the parts of the network
that compute the node features:

A1 = α2

[
Pφφ⊤P⊤ Pφφ⊤

φφ⊤P⊤ φφ⊤

]
= α2

[
I P

P⊤ I

]
, (75)

A2 = A1, (76)

A3 ≈ softmax(A2) =
1

2

[
I P

P⊤ I

]
(If α≫ 1), (77)

N2 =
A3V√
dF

=

[
I P

P⊤ I

] [
0
YN

]
/(2

√
df ) =

[
PYN

YN

]
/(2

√
df ). (78)

Here, we used the fact that we chose the positional embeddings to be an orthogonal basis, and
φφ⊤ = I, as well as the fact that PP⊤ = I for any permutation matrices. The term 1

2 in the third
equation came from the fact that each row of A1 contains two non-zero values that are also equal.
The probability gets divided between the two of them in the softmax if the logits are scaled large
enough, and the approximation becomes arbitrarily accurate.

From now on, since we are interested in the denoising output only for the reactant side, we drop out
the reactant side YN and only focus on the PYN part. We choose the final MLPN2

to scale the
output by some factor β ≫ 1:

Nout = βN2 +N (79)

nθ(PX∗
t ,Y

∗)N = softmax(βPYN +N) ≈ PYN . (80)
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Here, the approximation can be made arbitrarily accurate by scaling β to a higher value, since
the logits will become more and more peaked towards the values where PYN equals one instead
of zero. This showcases how the attention mechanism in the Graph Transformer pairs with atom
mapping-based orthogonal positional encodings to achieve the identity function from products to
reactants.

A.7 EXTENDING THEOREM 1 TO SMALLER TIME STEPS

We prove the following result characterizing the optimal denoiser output for a more restricted setup
of absorbing-state diffusion and on an identity data with no edges (i.e., just a set of nodes):

Dθ(Xt, Y )i,k =

{
Yi,k, if Xt,i is not in the absorbing state
ŷMk , if Xt,i is in the absorbing state

where ŷMk =
∑

j∈Mt
Yj,k∑

j∈Mt

∑
k Yj,k

where Mt refers to the set of nodes in the mask state. We will include the proof as an additional
comment below. In words, the optimal output for the masked nodes is the marginal distribution
of the nodes that have not been de-masked yet, that is, the mean of all possible placements of the
remaining nodes.

The analysis for graphs with edges becomes more involved, but we postulate that a similar analysis
would show that the output would converge to a mean of all possible permutations of Y that are in
agreement with the current set of subgraphs Xt.

To recap, we have the simplified scenario where we generate a set of nodes X conditioned on another
set of nodes Y , without edges. The goal is to characterize the optimal permutation equivariant
denoiser for this process at any noise level.

Definitions. Let X0 ∈ {0, 1}N×K be the initial set of N nodes, each represented by a one-hot
vector of dimension K. We condition on Y ∈ {0, 1}N×K , where X0 = Y in our data. The forward
process is an absorbing state diffusion, defined as follows for t ∈ 0, 1, . . . , T :

q(Xt,i = M |X0,i) = t/T (81)
q(Xt,i = X0,i|X0,i) = 1− t/T (82)

where M represents the additional "mask" state. We denote the denoiser as Dθ(Xt, Y ), which is
assumed to be permutation equivariant with respect to Xt.

Notation For a given Xt, we define: M(Xt) ⊂ 1, . . . , N : Set of indices of masked nodes U(Xt) =

1, . . . , N \ M(Xt): Set of indices of non-masked nodes ŷ
M(Xt)
k = 1

|M(Xt)|
∑

i∈M(Xt)
Yi,k:

Marginal distribution of node values in Y for the node indices that are masked in Xt

Result
Theorem 5. The optimal permutation equivariant denoiser Dθ(Xt, Y ) for the absorbing state diffu-
sion process at any time t and for any particular Xt is given by: Dθ(Xt, Y )i,k = Yi,k, if i ∈ U(Xt)

Dθ(Xt, Y )i,k = ŷ
M(Xt)
k , if i ∈M(Xt)

Proof. The cross-entropy loss for the denoiser at time t is:

CEt = −Eq(Xt|X0)

N∑
i=1

∑
k

X0,i,k logDθ(Xt, Y )i,k (83)

= −Eq(Xt|X0)

 ∑
i∈U(Xt)

∑
k

X0,i,k logDθ(Xt, Y )i,k +
∑

i∈M(Xt)

∑
k

X0,i,k logDθ(Xt, Y )i,k


(84)

We consider the optimal denoiser output for non-masked and masked nodes separately:

Non-masked nodes (i ∈ U(Xt)) For these nodes, the optimal output is Dθ(Xt, Y )i,k = Yi,k,
since Yi,k = X0,i,k.

25



Published as a conference paper at ICLR 2025

Masked nodes (i ∈M(Xt)) Let’s focus on a particular instantiation of Xt. Due to the permutation
equivariance of Dθ, for any permutation P that only permutes indices within M(Xt), we have:
Dθ(PXt, Y ) = PDθ(Xt, Y ). Moreover, because all nodes in M(Xt) are in the same mask state,
all such permutations of Xt are identical: Dθ(PXt, Y ) = Dθ(Xt, Y ) Combining these facts, we
conclude that for any i, j ∈ M(Xt): Dθ(Xt, Y )i = Dθ(Xt, Y )j Thus, the denoiser must output
the same value for all masked nodes in a given Xt. Now, consider the part of the cross-entropy loss
corresponding to the masked nodes for this particular Xt:

CEM
t (Xt) = −

∑
i∈M(Xt)

∑
k

X0,i,k logDθ(Xt, Y )i,k (85)

= −
∑
k

 ∑
i∈M(Xt)

X0,i,k

 logDθ(Xt, Y )m,k (86)

where m is any index in M(Xt). Observe that
∑

i∈M(Xt)
X0,i,k is proportional to the marginal

distribution of the masked nodes in X0 (which is equal to Y ). Using our defined notation, we can
rewrite the cross-entropy as: CEM

t (Xt) ∝ −|M(Xt)|
∑

k ŷ
M(Xt)
k logDθ(Xt, Y )m,k The optimal

Dθ(Xt, Y )m,k that minimizes this expression is ŷ
M(Xt)
k . Combining the results for masked and

non-masked nodes yields the stated optimal denoiser.

A.8 ELABORATION ON WHY WE CAN CHOOSE ANY NODE MAPPING MATRIX DURING
INFERENCE

We note that all node mapping matrices can be characterized by a base permutation matrix PY→X

left multiplied by different permutations R. Applying Theorem 2: pθ(X0 |Y,RPY→X) =
pθ(R

−1X0 |Y,PY→X), where R−1 is just another permutation matrix, shows that the distribu-
tion equals pθ(X0 |Y,PY→X), up to some permutation. In fact, by sampling the node mapping
matrix randomly, the distribution pθ(X0 |Y) =

∑
PY→X pθ(X0 |Y,PY→X)p(PY→X) becomes

invariant to any permutation of X0 and Y, although this is not strictly necessary in our context.

B DETAILS ON CONDITIONAL GRAPH DIFFUSION

Our transition matrices To define QN
t and QE

t , we adopt the absorbing-state formulation from
Austin et al. (2021), where nodes and edges gradually transfer to the absorbing state ⊥. Formally,
we give the generic form of the transition matrix Qt for node input XN ∈ RNX×NX 1

Qt = (1− βt)I+ βt1e
⊤
⊥, (87)

where βt defines the diffusion schedule and e⊥ is one-hot on the absorbing state ⊥. For complete-
ness, we list the other two common transitions relevant to our application. The first is the uniform
transition as proposed by Hoogeboom et al. (2021)

Qt = (1− βt)I+ βt
11

⊤

K
(88)

where βt, I are as before and K is the number of element (edge or node) types, i.e., the number of
input features for both nodes and edges. Vignac et al. (2023) also proposed a marginal transition
matrix

QN
t = (1− βt)I+ βt

1
(
mN )⊤

and QE
t = (1− βt)I+ βt

1
(
mE

)⊤
(89)

which they argued leads to faster convergence. In this case, mN ∈ RKa and mE ∈ RKb are row
vectors representing the marginal distributions for node and edge types respectively. We tested all
three types of transition matrices in early experiments and noted the absorbing state model to be
slightly better than the others. The marginal q(Xt |X0) and conditional posterior q(Xt−1 |Xt,X0)
also have a closed form for all of these transition matrices.

1The only difference between QN
t and QE

t for the absorbing-state and uniform transitions is the dimensions
of I , e, 1 and the value of K. We therefore give a generic form for both and imply choosing the right dimensions
for each case.

26



Published as a conference paper at ICLR 2025

Noise schedule We use the mutual information noise schedule proposed by Austin et al. (2021),
which leads to

t

T
= 1−I(Xt;X0)

H(X0)
=

H(X0,Xt)−H(Xt)

H(X0)
=

∑
X0,Xt

p(X0)q(Xt |X0) log
q(Xt |X0)∑

X′
0
p(X′

0)q(Xt |X′
0)∑

X0
p(X0) log p(X0)

(90)
For absorbing state diffusion, these equations lead to βt = 1

T−t+1 . Similarly, the total transition
probability to the absorbing state at time t has a simple form: q(Xt =⊥ |X0) =

t
T .

Forward process posterior For transition matrices that factorize over dimensions, we have

q(Xt−1,i,: |Xt,i,:,X0,i,:) ∼
XtQ

⊤
t ·X0,i,:Q̄t−1

X0,i,:Q̄tX⊤ (91)

where Xi,: is the one-hot encoding of ith node/edge of the graph, in row vector format.

Variational lower-bound loss Diffusion models are commonly trained by minimizing the negative
variational lower-bound on the model’s likelihood (Ho et al., 2020). Austin et al. (2021) discuss the
difference between optimizing the ELBO and cross-entropy losses and show that the two losses are
equivalent for the absorbing-state transition. We choose to use cross-entropy, similar to Vignac et al.
(2023), due to faster convergence during training. We include the formula for the ELBO in Eq. (92)
for completeness.

Lvb = EX0∼q(X0)

[
KL

[
q(XT |X0) ∥ p(XT )

]︸ ︷︷ ︸
LT

+

T∑
t=2

EXt∼q(Xt |X0)KL
[
q(Xt−1 |Xt,X0) ∥ pθ(Xt−1 |Xt)

]
︸ ︷︷ ︸

Lt−1

− EX1∼q(X1 |X0) log pθ(X0 |X1)︸ ︷︷ ︸
L0

]
(92)

We also note that we use this quantity as part of the scoring function mentioned in Sec. 4.

Data encoding and atom-mapping We illustrate our graph encoding using atom-mapping and
permutation matrices in Fig. A10.

Connection between the denoising parameterization p̃(X0 |Xt,Y) and p(Xt−1 |Xt,Y). Here,
we elaborate on how does p̃(X0 |Xt,Y) connect with p(Xt−1 |Xt,Y).

Recall that the reverse transition is factorized with respect to nodes and edges:

pθ(Xt−1 |Xt,Y) =
∏NX

i=1 pθ(X
N ,i
t−1 |Xt,Y)

∏NX

i,j pθ(X
E,i,j
t−1 |Xt,Y). (93)

We parameterize the transition as follows:

pθ(Xt−1 |Xt,Y) =
∑

X0
q
(
Xt−1 |Xt,X0

)
p̃θ
(
X0 |Xt,Y

)
. (94)

The connection between this parameterization and the probabilities pθ(X
N ,i
t−1 |Xt,Y) is obtained by

noting that both q
(
Xt−1 |Xt,X0

)
and p̃θ

(
X0 |Xt,Y

)
factorize over dimensions:

q
(
Xt−1 |Xt,X0

)
=

NX∏
i

q
(
XN ,i

t−1 |X
N ,i
t ,XN ,i

0

)NX∏
i,j

q
(
XE,i,j

t−1 |X
E,i,j
t ,XE,i,j

0

)
(95)

p̃θ
(
X0 |Xt,Y

)
=

NX∏
i

p̃θ
(
XN ,i

0 |Xt,Y
)NX∏

i,j

p̃θ
(
XE,i,j

0 |Xt,Y
)

(96)
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Figure A10: Illustrating graph encoding using atom-mapping.

=

1
1

1
1

1

1

0000 0
0000 0

0000 0
000 0
000 0 0

0000 0
0000 0
0 000 0
0000 0
0000

0
0

0
0

0
0

10 0 0
1 0 00
1 0 00

1 0 00
00 10

00 10

1 0 00
1 0 00

10 0 0

1 0 00
00 10

00 10

00 0 0
00 0 0

00 0 0

00 0 0

1 0 00
1 0 00

10 0 0

1 0 00
00 10

00 10

10 0 0

00 10

1 0 00

1 0 00

C
C

O

C

N
FC

C

O

C

N

F
C

C
C

O

N

1 2 0 0 00
0 0 1 2 01
0 0 0 0 02
1 0 0 0 10
2 0 0 0 00
0 0 1 0 00

+

1
1

1
1

1

1

0000 0
0000 0

0000 0
000 0
000 0 0

0000 0
0000 0
0 000 0
0000 0
0000

0
0

0
0

0
0

1
1

1
1

1

1

0
0
0
0

0
0

0
0
0

0

0
0
0
0

0

0
0

0

0

0
0
0

0
0

0
0
0
0

0

0
0
0
0

0

0
0

0
0

0

0
0
0
0

0

0
0
0
0

0 00000

00 0 0 1 00 0 0 0
00 0 0 0 00 0 0 0
02 0 0 0 00 0 0 0
00 0 0 0 00 0 0 0
00 0 0 0 00 0 0 0
00 2 0 0 00 0 0 0
00 1 0 0 10 0 0 0
00 0 0 0 00 0 0 0
21 0 0 1 00 0 0 0
00 1 0 0 00 0 2 0

=

00 0 1 0 00 0 0 0
00 0 0 0 00 1 0 0
02 0 0 0 00 0 0 0
01 0 0 0 02 0 0 1
00 0 0 0 00 2 0 0
00 2 0 0 00 0 0 0
00 1 0 0 00 0 0 0
00 0 0 0 10 0 0 0
21 0 0 1 00 0 0 0
00 1 0 0 00 1 2 0

Reactants Product

Atom mapping from the nodes of Y to the nodes of X

Atom mapping from the edges of Y to the edges of X

CONF CONF

CONF

XN PY→XYN PY→X
YN

Non-atom-
mapped atoms

NX NY

XE PY→XYE(PY→X)⊤ PY→X YE (PY→X)⊤

Plugging these in to Eq. (94) and expanding the sum, we get

pθ(Xt−1 |Xt,Y) =
∑
XN ,0

0

∑
XN ,1

0

· · ·
∑

X
E,NX,NX
0

(NX∏
i

q
(
XN ,i

t−1 |X
N ,i
t ,XN ,i

0

)
p̃θ
(
XN ,i

0 |Xt,Y
)

NX∏
i,j

q
(
XE,i,j

t−1 |X
E,i,j
t ,XE,i,j

0

)
p̃θ
(
XE,i,j

0 |Xt,Y
))
(97)
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Gathering terms together, we get

=

(∑
XN ,0

0

q
(
XN ,0

t−1 |X
N ,0
t ,XN ,0

0

)
p̃θ
(
XN ,0

0 |Xt,Y
))

︸ ︷︷ ︸
=pθ(X

N ,0
t−1 |Xt,Y)

· (98)

(∑
XN ,1

0

q
(
XN ,1

t−1 |X
N ,1
t ,XN ,1

0

)
p̃θ
(
XN ,1

0 |Xt,Y
))

︸ ︷︷ ︸
=pθ(X

N ,1
t−1 |Xt,Y)

· (99)

. . . (100)( ∑
X

E,NX,NX
0

q
(
XE,NX,NX

t−1 |XE,NX,NX
t ,XE,NX,NX

0

)
p̃θ
(
XE,NX,NX

0 |Xt,Y
))

︸ ︷︷ ︸
=pθ(X

E,NX,NX
t−1 |Xt,Y)

(101)

=

NX∏
i=1

pθ(X
N ,i
t−1 |Xt,Y)

NX∏
i,j

pθ(X
E,ij
t−1 |Xt,Y). (102)

C EXPERIMENTAL SETUP

C.1 COPYING TASK ON THE GRID DATASET

Data generation We generate 5 × 5 fully connected grids then noise them by flipping a fixed
portion of edges chosen at random. We set the portion of edges to be flipped to 5% of the total
number of edges (i.e., for 5× 5 grids, 31 edges get flipped).

Neural network We use the same neural network architecture for both the aligned and unaligned
denoisers. We use a graph transformer Dwivedi & Bresson (2021) with 2 layers, 1 attention head,
and dimension 16 for the hidden layer. The activation function used is ReLu, and dropout rate of
0.1.

Training hyperparameters We train both models for 10 epochs, using Adam optimizer with a
learning rate of 0.01. We set the batch size to 32.

C.2 DATA: USPTO DATA SETS

All open-source data sets available for reaction modelling are derived in some form from the patent
mining work of Lowe (2012). We distinguish 5 subsets used in previous work: 15k, 50k, MIT,
Stereo, and full (original data set). Table A3 provides key information about the subsets.

Table A3: UPSTO-50K subsets used in retrosynthesis

Subset Introduced by # of reactions Preprocessing & Data split (script)

Full Lowe (2012) 1 808 938 Dai et al. (2019)
Stereo Schwaller et al. (2018) 1 002 970 Schwaller et al. (2019b)
MIT Jin et al. (2017) 479 035 -
50k Schneider et al. (2016) 50 016 Dai et al. (2019)

15k is proposed by Coley et al. (2017a). The subset includes reactions covered by the 1.7k most
common templates. All molecules appearing in the reaction are included to model the involvement
of reagents and solvents despite not contributing with atoms to the product.

50k is preprocessed by Schneider et al. (2016). The goal of the analysis is to assign roles (reactant,
reagent, solvent) to different participants in a reaction through atom mapping. This effort led to the
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creation of an atom-mapped and classified subset of around 50k reactions, which is used nowadays
as a benchmark for retrosynthesis tasks. It is not clear how said subset was selected.

MIT is used by Jin et al. (2017). The preprocessing is described as ‘removing duplicate and
erroneous reactions’ with no further explanation of what qualifies as an erroneous reaction. The
output of this filtering is a data set of 49k reactions (from an original set of 1.8M reactions).

Stereo is proposed by Schwaller et al. (2018). The authors apply a more flexible filtering strategy
compared to USPTO-MIT. Their data set only discards 800k reactions from the original data set
because they are duplicates or they could not be canonicalized by RDKit. In addition, the data set
only considers single-product reactions (92% of the full data set), as opposed to splitting multi-
product reactions. The preprocessing steps include removing reagents (molecules with no atoms
appearing in the product), removing hydrogen atoms from molecules, discarding atom-mapping
information and canonicalizing molecules. In addition, since the original method applied to this
subset is a language model, tokenization is performed on the atoms.

Full is preprocessed by Dai et al. (2019). The processing includes removing duplicate reactions,
splitting reactions with multiple products into multiple reactions with one product, removing reactant
molecules appearing unchanged on the product side, removing all reactions with bad atom-mapping
(i.e., when the sorted mapping between products and reactants is not one-to-one), and removing bad
products (missing mapping, or not parsed by Rdkit).

Our choice Similar to many other works on retrosynthesis, we use 50k as the main data set to
evaluate our method.

C.3 NOTES ON OUR SAMPLING AND RANKING PROCEDURES

Duplicate removal Removing duplicates from the set of generated precursors is a common method-
ology in retrosynthesis, albeit often not discussed explicitly in papers. The benefit of duplicate re-
moval is to ensure that an incorrect molecule that is nevertheless judged as the best one according
to the ranking scheme does not fill up all of the top-k positions after ranking. While this does not
affect top-1 scores, not removing the duplicates would degrade the other top-k scores significantly.

Choice of scoring function Specifically, we use the following formula for approximating the
likelihood of the sample under the model.

s(X) = (1− λ)
count(X)∑
X′ count(X′)

+ λ · eelbo(X)∑
X′ eelbo(X

′)
, (103)

where count(.) returns the number of occurrences of sample X in the set of generated samples
(by default, 100), elbo(.) computes the variational lower bound of the specific sample under the
model, and λ is a weighting hyperparameter. The sums are taken over the set of generated samples.
Intuitively, the idea is to provide an estimate of the likelihood from two routes. The ELBO is an
estimate (a lower bound) of log pθ(X), and exponentiating and normalizing gives an estimate of the
probability distribution. Since the same reactants are often repeated in a set of 100 samples, the
counts can be used as a more direct proxy, although they inherently require a relatively large amount
of samples to limit the variance of this estimate.

We set the value of λ to be 0.9, although we find that the top-k scores are not at all sensitive to
variation in the exact value, as long as it is below 1, and the count information is used. Thus,
the counts seem more important than the ELBO, which may be due to the lower bound nature of
the ELBO or stochasticity in estimating its value. More accurate likelihood estimation schemes for
diffusion models, such as exact likelihood values using the probability flow ODE (Song et al., 2021),
could be a valuable direction for future research in the context of retrosynthetic diffusion models.

C.4 DETAILS ON STEREOCHEMISTRY

Our model does not explicitly consider changes in stereochemistry in the reaction, but instead, we
use the atom mappings implicitly assigned to the samples by the model to transfer the chiral tags
from the products to the reactants. The initial choice of PY→X at the start of sampling can be
considered to be the atom mapping of the generated reactants, given that the model has been trained
on correct atom mappings.
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For the chiral tags, we take the ground-truth SMILES for the product molecules from the dataset and
assign the corresponding chiral tag to the corresponding atom mapping on the generated reactants.
For cis/trans isomerism, we use the Chem.rdchem.BondDir bond field in rdkit molecules and
transfer them to the reactant side based on the atom mapping of the pair of atoms at the start and end
of the bond.

Note that when using rdkit, transferring chirality requires some special
care: The chiral tags Chem.ChiralType.CHI_TETRAHEDRAL_CCW and
Chem.ChiralType.CHI_TETRAHEDRAL_CW are defined in the context of the order in
which the bonds are attached to the chiral atom in the molecule data structure. Thus, the chiral tag
sometimes has to be flipped to retain the correct stereochemistry, based on whether the order of the
bonds is different on the reactant molecule data structure and the product molecule data structure.

C.5 DETAILS OF THE EVALUATION PROCEDURE

Top-k scores We evaluate the top-k scores by ranking the list of generated and deduplicated
samples and calculating the percentage of products for which the ground-truth reactants are in the
first k elements in the list.

Mean reciprocal rank We formally define the MRR as MRR = Ep(r)[r
−1]. Verbally, it is the

expected value of the inverse of the amount of reactant suggestions that the model makes before
encountering the ground truth, and as such measures how early on is the correct reactant encountered
in the ranked samples. It also incorporates the intuition that the difference between obtaining the
correct reactants in, say, the 9th or the 10th position, is not as significant as the difference between
the 1st and 2nd positions.

While we do not have direct access to the entire p(r) just based on the top-k scores, we can estimate
it with a uniform distribution assumption on r within the different top-k ranges. Formally, we
define four sets S1, S2, S3, S4 = {1}, {2, 3}, {4, 5}, {6, 7, 8, 9, 10} in which p(r) is assumed to be
uniform, and s(r) ∈ {1, 2, 3, 4} denotes the group that rank r belongs to. Top-k is denoted as topk,
where k ∈ {1, 3, 5, 10} in our case. Note that they are also equal to the cumulative distribution

of p(r) until k. We thus define p̂(r) =
topmax(Gs(r))

−topmax(Gs(r)−1)

|Gs(r)|
and p̂(1) = top1. For the case

where the ground truth was not in the top-10, we assume it is not recovered and place the rest of the
probability mass on p(∞). Our MRR estimate is then defined as

M̂RR =

10∑
r=1

p̂(r)
1

r
. (104)

In cases where we do not have top-k values for all {1,3,5,10} (such as the Augmented Transformer
in Table 2 for top-3), we assume that p̂(r) is constant in the wider interval between the preceding
and following top-ks (2–5 in the case of the top-3 missing).

C.6 NEURAL NETWORK ARCHITECTURE, HYPERPARAMETERS, AND COMPUTE RESOURCES

We discuss here the neural network architecture and hyper-parameters we choose. Our denoiser is
implemented as a Graph Transformer (Dwivedi & Bresson, 2021), based on the implementation of
Vignac et al. (2023) with additional graph-level level features added to the input of the model. See
Vignac et al. (2023) for an in-depth discussion of the neural network.

In all of our models, we use 9 Graph Transformer layers. When using Laplacian positional encod-
ings, we get the 20 eigenvectors of the Graph Laplacian matrix with the largest eigenvalues and
assign to each node a 20-dimensional feature vector.

We use a maximum of 15 ’blank’ nodes, in practice meaning that the models have the capacity to add
15 additional atoms on the reactant side. In another detail, following Vignac et al. (2023), we weigh
the edge components in the cross-entropy loss by a factor of 5 compared to the node components.

We used a batch size of 16 for the models where the expanded graph containing X and Y as sub-
graphs is given as input. These models were trained for approximately 600 epochs with a single
A100/V100/AMD MI250x GPU. For the model where alignment is done by concatenating Y along
the feature dimension in the input, the attention map sizes were smaller and we could fit a larger
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Figure A11: Left: An example reaction from USPTO-50k where the reactant is not
possible to predict with a synthon-based model. Right: example reactants generated
by our model (includes the ground-truth one). The SMILES-string for the reaction is
ON=C1CCc2oc3ccccc3c21»O=C1NCCc2oc3ccccc3c21.

batch of 32 with a single V100 GPU. This model was trained for 600 epochs. The training time for
all of our models was approximately three days. In early experiments and developing the model, we
trained or partially trained multiple models that did not make it to the main paper. Sampling 100
samples for one product with T = 100 from the model takes roughly 60 seconds with the current
version of our code with an AMD MI250x GPU, and 100 samples with T = 10 takes correspond-
ingly about 6 seconds. It is likely that the inference could be optimized, increasing the sample
throughput.

The reported models were chosen based on evaluating different checkpoints with 10 diffusion steps
on the validation set for different checkpoints and chose the best checkpoint based on the MRR
score.

D COMPARISION TO RETROSYNTHETIC BASELINES

Overview of retrosynthetic baselines There are three main types of retrosynthesis models (Liu
et al., 2023). Template-based models depend on the availability and quality of hard-coded chem-
ical rules (Segler & Waller, 2017; Xie et al., 2023). Synthon-based models are limited by their
definition of a reaction center, which does not necessarily hold for complex reactions (Yan et al.,
2020; Shi et al., 2020a; Wang et al., 2023). See Fig. A11 for an example of a reaction impossible
for synthon-based models but which our model gets correctly. Template-free methods are the most
scalable since they do not use any chemical assumptions in their design but perform suboptimally
compared to template-based methods on benchmarks like UPSTO-50k (Wan et al., 2022; Seo et al.,
2021). Efforts to bridge the gap between the template-based and template-free paradigms include
methods investigating pretraining (Zhong et al., 2022; Jiang et al., 2023). Note that our method is
in between template-free and template-based methods, since it uses atom-mapping information but
not an explicit (and thus limited) set of templates. We put our models in their own category in the
results table.

Methods with a different evaluation procedure Despite Igashov et al. (2024)’s RetroBridge being
a closely related to a diffusion model, we cannot include it in a straightforward comparison because
it discards atom charges from the ground truth smiles during evaluation. Specifically, the model uses
only atom types as node features and compares the generated samples to the smiles reconstructed
from the ground truth data through the same encoding (i.e., without charges too) 2. To compare
our model to RetroBridge fairly, we trained our DiffAlign-PE+Skip on uncharged atom-labels, and
evaluated it without considering atom charge nor stereochemistry. The results are shown in App. D.
Many recently published methods for retrosynthesis have capped out their top-1 scores in the 49%-
53% range (see our Table 2), indicating that the increase we achieve over RetroBridge’s top-1 score
(of over 5%) is quite significant. Furthermore, the results we achieve are with 5 times less denoising
steps (100 instead of 500). For a closer look at the performance at different step counts, we invite
the reader to compare Figure 5 in (Igashov et al., 2024) to our Figure Fig. 6. The comparison shows
that Retrobridge’s top-1 score decreases to almost 0 at a step count more than 10. In contrast, our
top-1 is close to 50% even at 5 steps, and higher than Retrobridge at 100 steps. We attribute this
improvement to our more careful analysis of alignment, and utilising multiple alignment techniques.

2This can be seen in the code shared by Igashov et al. (2024): https://github.com/igashov/
RetroBridge
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Table A4: Comparison of top-k accuracy and MRR on the USPTO-50k test set without charges and
without stereochemical information, following the evaluation setup of Igashov et al. (2024)

Model k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑ M̂RR ↑
RetroBridge (T=500) 50.8 74.1 80.6 85.6 0.622
DiffAlign-PE+Skip (T=100) 56.3 75.2 80.4 84.0 0.658

Table A5: Round-trip coverage and accuracy for different baselines. The methods are categorized as:
template-based (TB), non-template-based (NTB), and models performing their evaluation without
taking into account formal charges (NC) nor stereochemistry (NS). We achieve the highest coverage
and top-1 accuracy among non-template-based methods. Our lower top-k>1 accuracy may be due
to our model generating a higher number of unique predictions compared to competitors, visualized
in Figure Fig. A12.

Coverage (↑) Accuracy (↑)
Model k = 1 k = 3 k = 5 k = 1 k = 3 k = 5

TB GLN (Dai et al., 2019) 82.5 92.0 94.0 82.5 71.0 66.2

NTB

MEGAN (Sacha et al., 2021) 78.1 88.6 91.3 78.1 67.3 61.7
Graph2SMILES (Tu & Coley, 2022) — — — 76.7 56.0 46.4
Retroformeraug (Wan et al., 2022) — — — 78.6 71.8 67.1
DiffAlign-PE+skip (ours) 81.6 90.0 91.8 81.6 62.8 53.3

NS LocalRetro (Chen & Jung, 2021) 82.1 92.3 94.7 82.1 71.0 66.7

NS-NC RetroBridge (Igashov et al., 2024) 85.1 95.7 97.1 85.1 73.6 67.8
DiffAlign-PE+skip-NSNC (ours) 87.6 96.4 97.6 87.6 69.3 59.1

Methods with pretraining Zhong et al. (2022) and Jiang et al. (2023) pre-train their models
on the USPTO-Full and Pistachio data sets, respectively, and as such the results are not directly
comparable to models trained on the standard USPTO-50k benchmark. Pretraining with diffusion
models is an interesting direction for future research, but we consider it outside the scope of our
work. Furthermore, comparison between models with different pretraining datasets and pretraining
strategies has the danger of complicating comparisons, given that relative increases in performance
could be explained by the model, the pretraining strategy, or the pretraining dataset. As such, we
believe that standardized benchmarks like USPTO-50k are necessary when researching modelling
strategies.

Another commonly used metric used to evaluate retrosynthesis model is round-trip accuracy, in
which a forward prediction model is used to evaluate whether our samples can indeed produce the
input product. Coverage considers a sample correct if it matches exactly the ground truth or is
deemed suitable by the forward prediction oracle. Accuracy counts the percentage of valid precur-
sors over all generated samples. We use the same prediction model as previous work, i.e., Molecular
Transformer (Schwaller et al., 2019a). As can be seen from Table A5 our model outperforms all
non-template-based baselines on all thresholds. We also highlight a known tradeoff between diver-
sity and accuracy of generation in Fig. A12, which explains partly why our accuracy is lower than
other baselines (we compare to samples from RetroBridge (Igashov et al., 2024) in particular as an
illustration).
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Figure A12: We compare the diversity (number of unique predictions per product) of our samples
to RetroBridge (Igashov et al., 2024). It is important for a retrosynthetic model to generate diverse
precursors, thus offering the practitioner with multiple synthesis strategies, especially given the
limited accuracy of forward prediction models.

E ADDITIONAL ABLATIONS

Disentangling the effect of the inductive biases due to graph positional encodings vs. the induc-
tive bias of alignment. To disentangle the effect of the graph inductive bias brought by the graph
Laplacian positional encodings and the alignment inductive bias brought by matching the positional
encodings for the input and output graph, we trained two models:

1. A model where the only alignment method is the matched PE where the PE is gener-
ated from the graph Laplacian eigenvectors of the conditioning graph Y (our default PE
method).

2. A model where the only alignment method is matched PEs where the PE is generated by
sampling random Gaussian noise vectors on the conditioning graph nodes Y and placing
these same vectors on the X side.

Both contain alignment information, but the latter does not contain the additional inductive bias
brought by the graph positional encoding. We show the results at roughly 10% of the full training
budget for the results in Table 2. The results are listed in Table A6. The results are not signifi-
cantly different, indicating that the inductive bias brought by the graph positional encodings is not
as significant as the inductive bias of alignment.

Different transitions. (Vignac et al., 2023) did not originally consider the absorbing state transi-
tions we use. Instead, they used the uniform and marginal transitions. With the uniform transitions,
each step provides a non-zero chance of transitioning from one state to any of the others. This con-
verges to an uniform distribution over the node and edge states at XT . With the marginal transitions,
these transitions are biased such that the distribution of nodes and edges in p(XT ) is the marginal
distribution of the node and edge types in the original data. Since there are much more no-edges
than edges in the data, this encodes a sparsity to the graphs in p(XT ).

To provide a fair comparison, we compare our absorbing state model and these models on roughly
10% of the full training budget (80 epochs), and list the results for 512 samples from the test set in
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Model Top-1 Top-3 Top-5 Top-10 Top-50 MRR
DiffAlign-PE-Gaussian 45.51 68.55 73.24 75.78 83.20 0.5649
DiffAlign-PE-Laplacian 46.09 68.75 72.85 75.98 83.98 0.5686

Table A6: Performance comparison of the model with the only alignment method being the matched
Gaussian noise encoding versus a model with the only alignment method being the matched Lapla-
cian eigenvector-based positional encoding. Both contain alignment information, but the first does
not contain additional inductive biases about the structure of the conditioning graph Y. Results are
obtained with 512 samples form the USPTO-50k test set and 10% of the full training budget used in
Table 2.

Model Top-1 Top-3 Top-5 Top-10 Top-50 MRR
Uniform-PE+Skip 43.75 58.98 62.89 67.38 72.66 0.5156
Marginal-PE+Skip 44.73 60.94 63.28 66.60 69.92 0.5244
Absorbing-PE+Skip 49.22 70.90 74.61 77.93 84.96 0.5952

Table A7: Performance comparison of the PE+Skip models with different transition matrices, eval-
uated with 512 samples form the USPTO-50k test set and 10% of the full training budget.

Table A7. The absorbing-state model performs the best, whereas the marginal and uniform models
perform slightly worse. The marginal transitions somewhat outperform the uniform transitions.

Comparison to only using the skip connections. Here, we provide a comparison to a model
that only uses the skip connections, and no other alignment method. The results are again shown
for roughly 10% of the training budget (epoch (80) for the PE+Skip model and for the Skip-only
model in Table A8. It is evident that only having the skip connection does not work well, although
it is better than an entirely unaligned model (see Table 2). This is likely due to the skip-only model
having limited expressivity: The neural net does not get the alignment information in the input at
all, and thus is unable to use it apart from the skip connection, which enables literally copying the
Y graph from input to output.

F ADDING POST-TRAINING CONDITIONING TO DISCRETE DIFFUSION
MODELS

In this section, we show a method to add additional controls and conditions on the used discrete
diffusion model post-training. Note that this approach differs from (Vignac et al., 2023)’s in that
our method is an adaptation of reconstruction guidance (Ho et al., 2022; Chung et al., 2023; Song
et al., 2023a), while they adapt classifier-guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol,
2021; Song et al., 2021) for their conditional model. While the notation is from the point of view of
our graph-to-graph translation, the method here applies in general to any discrete diffusion model.
We start out by following (Vignac et al., 2023) and (Sohl-Dickstein et al., 2015; Dhariwal & Nichol,
2021), and then make the novel connection to reconstruction guidance. We write Bayes’ rule for an
additional condition y (e.g., a specified level of drug-likeness or synthesizability, or an inpainting
mask)

pθ(Xt−1 |Xt,Y, y) ∝ p(y |Xt−1,Xt,Y)pθ(Xt−1 |Xt,Y) (105)
= p(y |Xt−1,Y)pθ(Xt−1 |Xt,Y) (106)

where the second equation was due to the Markovian structure of the generative process (Xt−1

d-separates y and Xt). Now, we can take the log and interpret the probabilities as tensors

Model Top-1 Top-3 Top-5 Top-10 Top-50 MRR
DiffAlign-Skip 9.77 17.38 24.61 29.30 32.23 0.1517
DiffAlign-PE+Skip (Laplacian) 49.22 70.90 74.61 77.93 84.96 0.5952

Table A8: Performance comparison for a model with the only alignment method being skip connec-
tions and a model where we also use the Laplacian positional encodings, evaluated with 512 samples
form the USPTO-50k test set and 10% of the full training budget
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Pθ(y |Xt−1,Y) and Pθ(Xt−1 |Xt,Y) defined in the same space as the one-hot valued tensors
Xt−1 and Xt. We get:

logPθ(Xt−1 |Xt,Y, y) ∝ logP(y |Xt−1,Y) + logPθ(Xt−1 |Xt,Y) (107)

Similarly to (Vignac et al., 2023), we can now Taylor expand logPθ(y |Xt−1,Y) around Xt with

logP(y |Xt−1,Y) ≈ logP(y |Xt,Y) +∇X′
t
logP(y |X′

t,Y)|X′
t=Xt

(Xt−1 −Xt) (108)

Given that we are interested in the distribution w.r.t. Xt−1, the Xt terms are constant when we plug
them in to Eq. (107), resulting in

logPθ(Xt−1 |Xt,Y, y) ∝ ∇X′
t
logP(y |X′

t,Y)|X′
t=Xt

Xt−1 + logPθ(Xt−1|Xt,Y) (109)

Simplifying the notation to assume taking the gradient at Xt, we can also write

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
logPθ(y |Xt,Y)Xt−1 + logPθ(Xt−1 |Xt,Y) (110)

In practice, the equation means that given log pθ(y |Xt,Y), we get pθ(Xt−1 |Xt,Y, y) by adding
the input gradient of log pθ(y |Xt,Y) to the logits given by the regular reverse transition and re-
normalizing.

It would be possible to approximate log pθ(y |Xt,Y) by training an additional classifier, leading to
classifier guidance (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021; Song et al., 2021) and
the exact method presented in (Vignac et al., 2023). We go further by adapting these formulas to
reconstruction guidance (Ho et al., 2022; Chung et al., 2023; Song et al., 2023a). These methods and
more advanced versions (Dou & Song, 2024; Finzi et al., 2023; Boys et al., 2023; Wu et al., 2023;
Peng et al., 2024) provide different levels of approximations of the true conditional distribution.
Here, we show an approach particularly similar to (Chung et al., 2023), by approximating the true
denoising distribution p(X0|Xt,Y) directly with the denoiser output

p(y |Xt,Y) =
∑
X0

p(X0 |Xt,Y)p(y |X0) (111)

≈
∑
X0

p̃θ(X0 |Xt,Y)p(y |X0). (112)

Here p(X0 |Xt,Y) is the true, intractable distribution given by going through the entire sampling
process and p̃(X0 |Xt,Y) is the factorized distribution that is given by the denoiser output, and
’jumps to’ X0 directly. This results in the following update step:

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
log

(
Ep̃θ(X0 |Xt,Y)p(y |X0)

)
Xt−1 + logPθ(Xt−1 |Xt,Y).

(113)

Summing over all possible graphs X0 is prohibitive, however. Instead, we could sample X0 from
p̃θ(X0 |Xt,Y) with the Gumbel-Softmax trick (Jang et al., 2016) and evaluate log p(y |X0). As
long as log p(y |X0) is differentiable, we can then just use automatic differentiation to get our es-
timate of ∇Xt logPθ(y |Xt,Y). Another, more simplified approach that avoids sampling from
p̃θ(X0 |Xt,Y) is to relax the definition of the likelihood function to directly condition on the
continuous-valued probability vector P̃θ(X0 |Xt,Y) instead of the discrete-valued X0. For sim-
plicity, we adopted this approach, but the full method with Gumbel-Softmax is not significantly
more difficult to implement. The algorithm for sampling is shown in Alg. 3.

Toy Synthesisability Model: Controlling Atom Economy

The model of synthesizability that we use is

X̃0 = pθ(X0 |Xt,Y), (114)

p(y = synthesizable | X̃0) = σ(

∑
i∈S X̃0,i,d − a

b
)γ , (115)

where S is the set of non-atom-mapped nodes, a, b and γ are constants that define the synthesizability
model and d refers to the dummy node index. The intuition is that the more nodes are classified as
dummy nodes (non-atoms), the fewer atoms we have in total, leaving the atom economy higher.
Note that

∑
i∈S X̃0,i,d is the expected amount of dummy nodes from pθ(X0 |Xt,Y). We set a
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Algorithm 3 Sampling with atom-count guidance

Input: Product Y
Choose: PY→X ∈ RNX×NY

XT ∝ p(XT )
for t = T to 1 do

X̃0 = Dθ(Xt,Y, PY→X) ▷ Denoising output
X̃i

t−1 =
∑

k q(X
i
t−1 |Xi

t,X
i
0)X̃

i
0 ▷ Regular reverse transition probabilities

Xi
t−1 ∼ softmax(log X̃t−1 + γ∇Xt

log σ(
∑

i∈S X̃0,i,d−a

b )) ▷ Renormalize
Return X0

to half the amount of dummy nodes and b to one-quarter of the amount of dummy nodes. It turns
out that this leaves γ as a useful parameter to tune the sharpness of the conditioning. The gradient
estimate is then given by

∇Xt logPθ(y |Xt,Y) = γ∇Xt log σ(

∑
i∈S X̃0,i,d − a

b
), (116)

which can be directly calculated with automatic differentiation.

G HANDLING NOISY NODE MAPPINGS FOR THE TOY DATA

Sec. 4.1 introduced the graph copying as a toy data set. Here, we extend it to analyse the effect of
imperfect node mapping during training. In particular, we consider a scheme for adding ’noise’ to
the node mapping by swapping them with each other on either the conditioning, or equivalently, the
other side. We do it as follows:

1. Sample the number of pair swaps: f ∼ Poisson(λ)

2. For each of the f swaps, randomly select two nodes i, j in the graph A and swap their
mappings

The Poisson parameter λ controls the expected number of swaps, allowing us to tune the level of
noise in the node mapping. We trained small models for a 1000 steps of training, and show the
results with different noise levels in Fig. A13. Small errors in the node mapping are evidently not a
significant issue, but larger λ does start affecting performance, at least in this early training phase.
We also include a measure of similarity to the target graph: The precision is the fraction of edges
that were correctly inferred, compared to the ground-truth target.

H DETAILS FOR THE IBUPROFEN SYNTHESIS EXPERIMENT

Below we explain the synthesis steps visualized in Fig. 7 in detail:

1. The retrosynthesis begins with carbonylation, adding a ’CO’ structure. Initial basic gen-
eration yields unpromising results, so the practitioner suggests a partial reactant structure,
leading to a more viable path.

2. The model then proposes hydrogenation, a logical next step. While H2 molecules aren’t
explicitly represented in the data, they’re inferred from the context of the reaction.

3. For the third step, the practitioner identifies an opportunity for acylation (involving the
C(=O)C group), potentially leading to readily available reactants. Given this C(=O)C
structure, the model successfully completes the reaction. These steps align with the syn-
thesis plan proposed by BHC.

4. The retrosynthesis path starts with carbonylation, a well-known synthetic reaction which
adds a ‘CO’ structure to a compound. The practitioner tries basic generation but then
notices that the suggested reactant is not promising. They then suggest a partial structure
of the reactants which leads to a more sensible path.
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Figure A13: Results from training an aligned model for a 1000 steps in the graph copying task
presented in Sec. 4.1, with different levels of noise in the atom mappings. λ parameterizes a Poisson
distribution that defines the level of mistakes in the node mapping. On lower noise levels, the results
do not significantly change. However, there seems to be a limit in which the neural net training
dynamics changes to produce suboptimal results.
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Figure A14: The precision of the adjacency matrix estimates from an aligned model across training,
with different levels of node mapping noise λ. Going above λ > 0.02 nudges the training dynamics
to perform poorly on this task.

5. Next, our model proposes hydrogenation, which is a sensible suggestion in this case. The
data does not handle explicitly individual H2 molecules, but they are inferred from the
context.

6. In the third step, the practitioner notices that an acylation reaction (a reaction with the
C(=O)C group) might lead to reactants that are readily available. The model is able to
complete the rest of the reaction after knowing that C(=O)C is present. These steps match
the synthesis plan proposed by BHC.
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