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MambaMOS: LiDAR-based 3D Moving Object Segmentation with
Motion-aware State Space Model

Anonymous Authors

ABSTRACT
LiDAR-based Moving Object Segmentation (MOS) aims to locate
and segment moving objects in point clouds of the current scan
using motion information from previous scans. Despite the promis-
ing results achieved by previous MOS methods, several key issues,
such as the weak coupling of temporal and spatial information, still
need further study. In this paper, we propose a novel LiDAR-based
3D Moving Object Segmentation with Motion-aware State Space
Model, termed MambaMOS. Firstly, we develop a novel embedding
module, the Time Clue Bootstrapping Embedding (TCBE), to en-
hance the coupling of temporal and spatial information in point
clouds and alleviate the issue of overlooked temporal clues. Sec-
ondly, we introduce the Motion-aware State Space Model (MSSM)
to endow the model with the capacity to understand the temporal
correlations of the same object across different time steps. Specif-
ically, MSSM emphasizes the motion states of the same object at
different time steps through two distinct temporal modeling and
correlation steps. We utilize an improved state space model to rep-
resent these motion differences, significantly modeling the motion
states. Finally, extensive experiments on the SemanticKITTI-MOS
and KITTI-Road benchmarks demonstrate that the proposed Mam-
baMOS achieves state-of-the-art performance. The source code of
this work will be made publicly available.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Vision for
robotics;

KEYWORDS
Moving Object Segmentation; State Space Model; Spatio-Temporal
Fusion

1 INTRODUCTION
LiDAR-based Moving Object Segmentation (MOS) task is pivotal
for accurately delineating moving entities such as cars or pedes-
trians within the current LiDAR scan, serving as a fundamental
component of autonomous perception [5, 46]. MOS contributes in
two main ways. First, it ensures stable operation for autonomous
driving systems by providing accurate 3D dynamic semantic scene
understanding [8, 39]; Second, it assists in removing the “ghost
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effect” caused by object motion during mapping in simultaneous
localization and mapping, resulting in a clean static map [7, 24].

Chen et al. [5] propose a learning-basedMOSmethod that projects
point clouds onto a planar representation and utilizes a sequence of
these representations to incorporate temporal information for MOS.
Similar paradigms like [8, 20, 32, 39, 46] achieve low latency but
suffer from geometric loss introduced by projection, leaving room
for improvement in terms of accuracy and generalization. Non-
projection methods [29, 41] perform feature extraction directly
in the 3D space and have achieved precise segmentation results
and excellent generalization. However, these methods cannot suf-
ficiently couple the temporal-spatial features of multi-scan point
clouds and suffer from the issue of “weak coupling between tem-
poral and spatial information”. Specifically, due to the changing
spatial positions of moving objects over time, trailing artifacts will
be formed in the aggregated point cloud. Without incorporating
timestamp information to differentiate each scan in the aggregated
point cloud, these artifacts may be confused with larger objects
in terms of their similar appearance (e.g., moving cars and parked
trucks). The evolution of timestamp information reflects the motion
of objects, and the moving objects can also be identified through
the evolution of their timestamp information.

Based on the above observations, we hypothesize that the tem-
poral information of objects is the dominant information for de-
termining their motion, and strengthening the coupling between
the temporal and spatial information of objects will facilitate the
segmentation of moving objects. However, the aforementioned
methods [29, 41] directly concatenate the timestamp information
of each point with the spatially occupied information to form a
4D point cloud that contains temporal-spatial features and employ
a Convolutional Neural Network (CNN) to learn these temporal-
spatial features, as shown in Figure 1 (a). Although they are effective,
the neglect of the dominant role of timestamp information and the
lack of deeper coupling between temporal and spatial information
hinder further improvement in their segmentation performance.

In this work, we rethink the issue of effectively encoding shallow
temporal and spatial features and facilitating sufficient interaction
among deep temporal and spatial features. For cases where simply
concatenating timestamp information with spatial information fails
to highlight the importance of temporal information, we propose
an effective embedding approach named Time Clue Bootstrapping
Embedding (TCBE), which emphasizes the expressive power of
temporal information through attention mechanisms and enhances
the mutual coupling between temporal and spatial information by
treating temporal information as an independent channel separate
from spatial information.

Although TCBE can enhance the coupling between temporal
and spatial information to some extent compared to the previous
embedding approach, it can only be applied to shallow layers and
cannot further deepen the coupling between temporal and spatial

https://doi.org/XXXXXXX.XXXXXXX
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(a) previous methods
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···
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serialize

···
···

4DCNN

Input

Figure 1: A brief comparison of other non-projection meth-
ods (sub-figure (a)) with ours (sub-figure (b)). The previous
methods treated temporal information 𝑡 and spatially occu-
pied information𝑂 equally, without deeply integrating them.
In contrast, our method emphasizes the primacy of temporal
information at each point more through our designed TCBE
and achieves a deeper coupling of temporal and spatial in-
formation with MSSM, which aligns more closely with the
fundamental principles of motion recognition.

information. Recently, the work of [23] introduced a projection-
based method and for the first time incorporated the self-attention
mechanism core of transformers [40] into MOS, achieving better
performance far surpassing the methods of the same paradigm.
However, studies [10, 15] have shown that the quadratic computa-
tional complexity of the transformer model in managing large input
sequences presents challenges in achieving a balance between train-
ing cost and accuracy. Fortunately, the State Space Model (SSM)
introduced by Mamba [15] offers a promising solution, providing
us with the opportunity to achieve comparable long-range context
modeling capabilities to the transformer [40] while maintaining
linear time complexity. Inspired by this advancement, we proceed
to develop the Motion-aware Space State Model (MSSM). In the
designed MSSM, we decouple the aggregated point cloud features
into multiple single-scan features and learn the appearance fea-
tures expressed by single-scan features and the motion features
expressed by the aggregated features separately. Then, by using
the cross-product attention between these two features, we achieve
spatial appearance interpretation of multiple-scan features from
single-scan features and temporal information supplementation of
single-scan features from multiple-scan features, thereby enabling
the deep-level coupling between temporal and spatial information
with the assistance of SSM and achieving linear complexity.

Through extensive experiments, we demonstrate that the combi-
nation of TCBE and MSSM can effectively achieve strong coupling

between temporal and spatial information, and achieve state-of-
the-art performances on SemanticKITTI-MOS [3, 5] and KITTI-
Road [13] benchmarks. Our contributions are summarized as fol-
lows:

• We rethink the problem of the weak coupling between tem-
poral and spatial information that existed in the previous
methods and propose a novel LiDAR-based moving object
segmentation framework, here in MambaMOS. To the best of
our knowledge, this work represents the first attempt to uti-
lize SSM in MOS, providing directions for future extensions
of SSM in the MOS domain.

• An effective Time Clue Bootstrapping Embedding method
(TCBE) is introduced, which enhances the coupling capa-
bility of temporal and spatial information to some extent,
improving the expressive power of motion object features.

• A novel temporal-spatial information coupling module based
on SSM (MSSM) is proposed, which enables deep-level cou-
pling between temporal and spatial features and enhances
the perception of moving objects through the complemen-
tary nature of single-scan and multiple-scan features.

2 RELATEDWORK
Existing MOS methods can be categorized into two categories:
Projection-based methods [5, 8, 20, 39] and Non-Projection-based
methods [23, 24, 29, 30, 41]. Projection-based methods involve pro-
jecting a 3D point cloud onto a compact 2D plane as the model
input, while Non-Projection-based methods are processed directly
within the 3D point cloud space.

2.1 Projection-based methods
Projection-based MOS methods can be divided into Range View
(RV) methods [5, 8, 20, 39] and Bird’s-Eye View (BEV) ones [32, 46].
There has been extensive work in the field of object detection and
segmentation in 3D LiDAR data using RV images [9, 12, 21], which
use the original single scan point cloud through the spherical pro-
jection [31] to obtain 2D RV image as the model input. In motion
perception tasks, the temporal information needed to perceive mo-
tion is usually provided by the residual images obtained from the
residual processing of the RV images of the current scan and the
past few scans [5, 8, 20, 39]. Chen et al. [5] directly concatenate
the RV images and the corresponding multi-scan residual images
as input, whereas Sun et al. [39] proposed a dual-branch model
structure, which used two encoders to extract features from the RV
images and the multi-scan residual images respectively. Different
from [39], Kim et al. [20] use a branch in its model to decouple
the movable objects into moving objects and static objects using
additional semantic labels, which enhances the model’s capacity to
understand the dynamic scenario. Cheng et al. [8] focus more on
the feature extraction of motion features, which coincides harmo-
niously with our viewpoint and have achieved leading performance
with additional semantic labels.

Unlike the above RV-based methods, the BEV methods present
the point cloud features from a top-down perspective, which main-
tains the consistency of the object scale in the point cloud and
makes it easier to understand and process features [45]. Mohapa-
tra et al. [32] first proposed moving object segmentation in BEV,
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which achieved faster running speed but lower accuracy than RV-
based methods. Zhou et al. [46] employed polar coordinates to
transform point clouds into Bird’s-Eye View (BEV) representation.
They utilized a dual-branch CNN to extract appearance and motion
features from multiple BEV scans, resulting in improved accuracy
and efficiency. Although the above projection-based methods are
efficient, there is a loss of geometric information in the process of
returning the final result to the 3D point cloud space, which limits
the performance of such methods.

2.2 Non-projection-based methods
Non-projection-based methods, which directly operate on point
clouds in 3D space, circumvent the loss of geometric information
inherent in projection-based approaches. Consequently, these meth-
ods hold the theoretical advantage of achieving superior segmenta-
tion performance. 4DMOS [29] inputs the voxelized point cloud su-
perposition representation of multiple scans into a sparse 4D CNN
and fuses the prediction results of multiple different scans of mov-
ing objects by a binary Bayesian filter as an additional post-process,
which improved the confidence score of judging the moving object
in the current scan and achieved excellent segmentation results.
Similarly, InsMOS [41] is also based on a 4D point cloud as input, but
they assist in segmenting moving objects by fusing BEV representa-
tions containing object instance information at different resolutions.
Li et al. [23] proposed a dual-branch model that integrates 3D point
clouds and 2D images, and employed Transformer [40] to fuse
multi-scale point cloud and image features, aiming to enhance the
coupling of temporal and spatial characteristics. Li et al. [24] uti-
lized cylindrical coordinates to voxelize the aggregated point cloud
input and employed a CNN to obtain moving object segmentation
results and further applied MOS in the task of LiDAR-based local-
ization to improve its robustness in dynamic scenes. MapMOS [30]
improves that selecting fixed past scans will lead to some moving
objects not being perceived due to occlusion. Therefore, a strategy
of moving target perception based on a local map constructed by
past scans is proposed, and state-of-the-art performance is achieved
on the validation set of the SemanticKITTI-MOS benchmark. In
addition to the learning-based methods mentioned above, there are
also many non-learning-based methods, including map-cleaning
methods [2, 19, 25, 26, 36] and map-based methods [6, 34, 37]. Map-
cleaning methods remove the moving objects offline by the geomet-
ric information of the target [2, 19, 25, 26, 36]. Map-based methods,
on the other hand, require a pre-built map to remove the objects
that are moving throughout the mapping process [6, 34, 37].

In general, existing MOS methods have not thoroughly explored
the coupling between temporal and spatial features, which lim-
its their understanding of motion states. In contrast, our method
achieves shallow coupling of temporal and spatial features during
the embedding stage and deep coupling within each stage of the
model. This deep coupling establishes a robust correlation between
temporal and spatial clues, enhancing the model’s comprehension
of motion scenes. Importantly, our method achieves state-of-the-art
performance without any post-processing modules on the MOS
task.

3 METHOD
3.1 Preliminaries
State Space Model. SSM [14] is a sequential model that can map a
one-dimensional input 𝑥 (𝑡) ∈ R sequence to an output sequence
𝑦 (𝑡) ∈ R. The process is represented by a series of continuous
hidden states ℎ(𝑡) ∈ R𝑁 of state size 𝑁 . In general, the SSM of a
continuous-time system can be represented by the following linear
Ordinary Differential Equation (ODE) as depicted in Equation (1),

ℎ′ (𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥 (𝑡)
𝑦 (𝑡) = 𝐶ℎ(𝑡) (1)

where the parameters 𝐴 ∈ R𝑁×𝑁 , 𝐵 ∈ R𝑁×1 and 𝐶 ∈ R1×𝑁

establish the correlation between the state and output variables.
Discretization. It is essential that the original SSM equations

be transformed into a discrete form to fit the discretized data in the
task. The discretized SSM can be written as Equation (2),

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡

𝑦𝑡 = 𝐶ℎ𝑡
(2)

The discretization parameters 𝐴, 𝐵 can be described by the Zero-
Order Hold (ZOH) rule with timescale parameters Δ as Equation (3),

𝐴 = 𝑒Δ𝐴

𝐵 = (Δ𝐴)−1
(
𝑒Δ𝐴 − 𝐼

)
· Δ𝐵

(3)

Selective Scans Mechanism. Mamba [15] proposed a selective
scan mechanism that effectively adjusts the parameters through the
parameterized projection of the input sequence, enabling the SSM
to selectively filter the input sequence features. This has advanced
the research of SSM in the time-varying domain.

MambaMOS Principles. To address the weak coupling of tem-
poral and spatial information in existing MOS methods, we try to
adapt Mamba from a Natural Language Processing (NLP) to MOS
task. An intriguing discovery emerged: the MOS task inherently in-
volves selecting a moving subset of elements from an unordered set,
akin to the selective copying mechanism in NLP [1, 15]. Leveraging
this insight, we introduced MambaMOS based on the selective copy-
ing mechanism. This enhancement equips Mamba to effectively
address MOS tasks, enabling the model to adaptively select the
moving target while reducing operational costs.

3.2 MambaMOS
Overview Architecture. The proposed MambaMOS leverages a
U-Net [35] style overall architecture as shown in Figure 2. Firstly,
the 4D point cloud set as input will be transformed into an ordered
sequence after the serialization process.

Simultaneously, they are encoded through the meticulously de-
signed TCBE (Sec. 3.3). Next, the point cloud is sent into the encoder-
decoder construct to model deep features. It includes the encoder
with a 5-stage block depth of [2, 2, 2, 6, 2] and the decoder with a
4-stage block depth of [2, 2, 2, 2]. It should be noted that the point
cloud pooling strategy is used in the encoder of all stages except
for the first. The scale change factor of the point cloud passing
the pooling layer is 2. Moreover, at the beginning of the block, an
efficient position encoding block is leveraged to capture the local
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Figure 2: The overview of our proposed MambaMOS. The previous 𝐹 − 1 scans, after undergoing viewpoint transformation, are
overlaid with the current scan to form a 4D point cloud. This 4D point cloud is then serialized to obtain a sequence as input. After
passing through TCBE, the coupling degree between temporal and spatial information in the input is enhanced and fed into a
symmetric encoder-decoder architecture (the pink box). Each stage of the encoder/decoder consists of a pooling/unpooling
layer and 𝑁 blocks (the blue box). MSSM serves as the core of each block to achieve deep-level coupling of temporal and spatial
features. Finally, the MOS result in the current scan can be obtained from the output of the decoder by a linear layer.

attention of the feature following the idea of most point transformer
works [22, 43, 44].

The point cloud features after layer normalization will pass
through the MSSM (Sec. 3.4), the core insight of the entire block,
where the motion features of the objects will be enhanced. The final
output of the block is the layer normalization and a multi-layer
perceptron. And residual connections are extensively applied in
each of our blocks to avoid vanishing gradients [16]. Finally, the
logits of each point can be obtained by a linear layer. And points
are deserialized to extract the segmentation result.

Input Representation. At the current time (𝑡 = 0), given a
LiDAR scan 𝑆𝑡 =

{
𝑝𝑖 ∈ R4}𝑁𝑡−1

𝑖=0 with 𝑁𝑡 points 𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 1]𝑇
represented by homogeneous coordinates. The goal is to segment
the moving points in the current scan 𝑆0 using the continuous
point cloud set 𝑆 = {𝑆𝑡 }𝐹−1

𝑡=0 including the current scan 𝑆0 and its
past 𝐹 − 1 scans. To aggregate the 𝐹 scans point cloud data into a
4D point cloud input containing temporal-spatial information and
eliminate self-motion, we need to transform the past 𝐹 − 1 scans to
the perspective of the current scan and convert the homogeneous
coordinates to Cartesian coordinates separately. Given the pose
transition matrix𝑇 0

𝑡 from scan 𝑡 to the current scan, the perspective

transition from the point cloud at time 𝑡 to the current point cloud
can be expressed as Equation (4).

𝑆𝑡→0 =
{
𝑝′𝑖 = 𝑇 0

𝑡 · 𝑝𝑖 | 𝑝𝑖 ∈ 𝑆𝑡
}𝑁𝑡−1
𝑖=0 (4)

Thus, the 4D point cloud set 𝑆 ′ =
{
𝑝′
𝑖
∈ R4}𝑁−1

𝑖=0 with 𝑁 =∑𝐹−1
𝑡=0 𝑁𝑡 points can be represented as Equation (5). To distinguish

each scan in the 4D point cloud, we add the corresponding time
step of each scan as an additional dimension of the point and obtain
the spatio-temporal point representation 𝑝′

𝑖
= [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑡𝑖 ]𝑇 .

𝑆 ′ = {𝑆0, 𝑆1→0, ..., 𝑆𝑡→0} (5)

Serialization. The SSM, as the core of MambaMOS, typically
takes in a sequence of data, such as natural language. Therefore, it
is necessary to obtain the sequence 𝑆 ′𝑜 from the unordered 4D point
cloud set 𝑆 ′ by serialization. The serialization can be understood as
a projection functionΨ that transforms the unordered set 𝑆 ′ into the
sequence 𝑆 ′𝑜 . Thus, the process of serialization and deserialization
can be described as Equation 6, where Ψ−1 is the inverse projection
function. One approach to serialize point clouds is by sorting the
coordinate of each point [27]. However, this serialization method
fails to adequately preserve the local spatial relationships of the
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objects, which may result in spatially close point clouds being far
apart in the final sequence.

Space-filling curves are mathematical curves that can project
data in 𝑁 -dimensional space to one-dimensional continuous space:
Z𝑁 → Z, which have been applied in recent 3D scene under-
standing works [42, 43]. Inspired by them, our serialization process
utilizes z-order curves [33] and Hilbert curves [17], which preserve
neighborhood relationships in the original 3D point cloud effec-
tively.

𝑆 ′𝑜 = Ψ(𝑆 ′)
𝑆 ′ = Ψ−1 (𝑆 ′𝑜 )

(6)

3.3 Time Clue Bootstrapping Embedding
Previous methods [29, 30, 41] have not effectively emphasized the
dominance of temporal information for each point. This is evident
in their equal treatment of spatial occupied information obtained
from LiDAR and the corresponding timestamp information from
the scan aggregation process. However, the direct overlaying for
temporal and spatial information, which belong to different modal-
ities, does not fully exploit the supervisory role of one modality on
the other. Therefore, we propose the Time Clue Bootstrapping Em-
bedding (TCBE). It emphasizes temporal information over spatial
information based on the principle that time evolution drives the
motion of objects, thereby enhancing the coupling of temporal and
spatial information.

The structure of TCBE is illustrated in the bottom right of Fig-
ure 2. Specifically, TCBE embeds the spatial and temporal informa-
tion of each point in the ordered point cloud sequence 𝑆 ′𝑜 using
1D convolution to obtain the corresponding spatial feature 𝑓𝑠 and
temporal feature 𝑓𝑡 in embedded dimension, both of which possess
local characteristics. Firstly, the initial coupled temporal and spatial
feature 𝑓𝑐𝑜𝑢 is obtained by adding the temporal feature 𝑓𝑡 and the
spatial feature 𝑓𝑠 , which serves as an alternative implementation of
previous embedding methods. Then, in order to emphasize the dom-
inance of temporal information over spatial information, 𝑓 ′𝑡 which
reflects the local temporal evolution trends, obtained through 1D
convolution without changing its channels, is multiplied element-
wise by 𝑓𝑠 . Finally, the time-guided spatial feature 𝑓𝑇𝐺𝑆 is added to
the initial coupled temporal and spatial feature 𝑓𝑐𝑜𝑢 , resulting in
the enhanced temporal and spatial coupling information 𝑓 ′𝑐𝑜𝑢 . After
undergoing 1D convolution, batch normalization, and activation
functions, 𝑓 ′𝑐𝑜𝑢 serves as the output of TCBE.

3.4 Motion-aware State Space Model
Although there are some similarities in form between the selective
copy task [1, 15] in NLP and the MOS task as mentioned before,
the direct application of Mamba [15] cannot effectively exploit the
temporal features. This is attributed to the fact that the original
Mamba [15] is designed for one-dimensional natural language with
a certain causal relationship. However, the serialized multi-scan
point cloud sequence cannot reflect strong causality. Thus, we
propose MSSM to compensate for the shortcomings of Mamba [15]
on MOS.

Themain design idea ofMSSM is to enhance the originalMamba’s
perception of temporal features regarding moving objects by using

cross-product attention between single-scan features and multi-
scan features. As shown in the upper left of Figure 2, it is mainly
composed of linear layers, activation function 𝜎 , and an SSM with
the selective scans mechanism. Let the input point cloud feature
with batch size 𝐵, sequence length 𝑁 , and number of channels 𝐶
be characterized by 𝑓𝐼 ∈ R𝐵×𝑁×𝐶 , which will go through three
branches. We derive the main branch of Mamba [15] to obtain
the upper and the middle branches of our MambaMOS. The upper
branch is used to extract the appearance features of each object in
the single-scan point cloud. And the middle branch focuses more
on the temporal features of moving objects in the 4D point cloud.
Since the MOS task only focuses on moving objects, we aim for the
MSSM to assign lower attention to unmovable objects such as roads
or tree trunks. Therefore, a feature weighting process is required.
Inspired by the gated attention units [18], we employ a simple gat-
ing mechanism as the bottom branch of MSSM to allocate weights
to features in each hidden state, thereby determining whether the
features are expressed.

Specifically, to obtain the single scan feature 𝑓𝑆 ∈ R𝐵′×𝑁𝑝×𝐶

with 𝐵′ = 𝐵 × 𝐹 at this time, the upper branch firstly performs Re-
versed Aggregation (RA), which separates each scan of 𝑆 ′ and con-
catenates them as a separate batch after 0-padding to 𝑁𝑝 . Then the
appearance features of the single scan 𝑓 ′

𝐴
can be obtained through

the process of 1D convolution and single scan aggregation. This
process can be written as:

𝑓 ′𝐴 = 𝜎 (Conv1d (RA (𝑓𝐼 ))) (7)

The middle branch employs 1D convolution to obtain the tem-
poral and appearance features of moving objects in multiple scans.
The output of this process is denoted as 𝑓 ′

𝑀
. Subsequently, 𝑓 ′

𝑀
is

fused with the output of upper branch 𝑓 ′
𝐴
through the cross-product

attention to obtain 𝑓𝑀𝐺 . The fusion process can be described as
follows:

𝑓𝑀𝐺 = Sigmoid
(
𝑓 ′𝑀

)
⊗ 𝑓 ′𝐴 + 𝑓 ′𝑀 (8)

In the subsequent design, we follow the idea of the original
Mamba, that is, the final output 𝑓 ′ of the block is obtained by
element-wise multiplication of the result of the main branch and
the result 𝑓𝐺 of the gated branch after a linear projection. This
process is described as follows:

𝑓 ′ = SSM (𝜎 (𝑓𝑀𝐺 )) ⊗ 𝑓𝐺 (9)

3.5 Loss Function
Before performing the loss calculation, we first deserialize the ob-
tained sequence segmentation results to correspond to the initial
unordered point cloud set as Euqation 6. Afterwards, following the
majority of 3D segmentation methods, we adopt the combination
of cross-entropy loss (Lce) and Lovász-Softmax loss [4] (Lls) as the
joint loss L = Lce + Lls for supervised training.

4 EXPERIMENT
4.1 Experiment Setups
We perform a variety of experiments to verify the proposed Mam-
baMOS on the SemanticKITTI-MOS dataset [3, 5]. Sequences 00∼07
and 09∼10 are used as the training set, sequence 08 is used as the
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validation set, and sequences 11∼21 are used as the test set, fol-
lowing the same division as previous MOS methods [8, 30, 41].
The KITTI-road dataset [13] is also utilized in the experiments for
comparison with other MOS methods, and the same partitioning
approach as [8] is maintained. The entire training is conducted on
four NVIDIA RTX A6000 GPUs with 48G VRAM for 50 epochs with
a batch size of 4. AdamW [28] with a weight decay of 0.005 is used
as the optimizer, and the learning rate is set to 0.00032. A grid size
of 0.09𝑚 is applied to voxelize the input aggregated point cloud,
and scans of 𝐹 = 8 are used for input same as [5, 8, 39]. Moreover,
common point cloud data augmentation approaches such as ran-
dom rotation and random flipping are applied during training to
enhance the generalization capacity of MambaMOS. All ablation
experiments were conducted on eight NVIDIA GeForce RTX 3090
GPUs, using a four-scan input (𝐹 = 4), a batch size of 8, and com-
pleted using automatic mixed precision. We report the voxelized
moving object IoU for ablations. Additionally, similar to [5, 8, 20],
we employed additional semantic labels for training as well. During
the validation and testing stages, Intersection-over-Union (IoU) [11]
is adopted as the metric to evaluate the performance. Following
previous methods [23, 24, 30], all experiments provide IoU for the
moving objects as IoU𝑀𝑂𝑆 as the main evaluation metric which can
be described as Equation 10 with True Positive 𝑇𝑃 , False Positive
𝐹𝑃 and False Negative 𝐹𝑁 :

𝐼𝑜𝑈𝑀𝑂𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(10)

4.2 Moving Object Segmentation Performance
We analyze the comparison with other SoTA methods from both
quantitative and qualitative perspectives.

Quantitative Analysis. Table 1 presents the quantitative com-
parison results of MambaMOS with state-of-the-art methods in the
MOS benchmark [3, 5]. All results reported for each method are
the best-reported results in their respective papers. Due to some
methods [8, 39, 41] using the KITTI-Road dataset [13] as additional
training data in their comparisons, we follow the principle of fair
comparison by using consistent training data, distinguishing it with
a symbol † from the original comparison on the table.

Without using additional training data, MambaMOS successfully
outperforms almost all methods on the benchmark. Specifically,
MambaMOS surpasses Two-streamMOS [23], which integrates
point clouds and images as input, by 4.4% and 2.6% on the validation
set and hidden test set. We attribute this significant improvement
largely to the geometric losses present in non-projection-based
methods. In the comparison with non-projection-based methods,
MambaMOS achieves superior performance on the validation than
LiDAR-IMU-GNSS [24], which includes ground optimization as an
additional pre-processing, by 3.3%, and leads it by 0.7% on the test
set, owing to the stronger coupling of temporal and spatial informa-
tion in MambaMOS. Despite MambaMOS using a fixed number of
scans as input, it still surpasses MapMOS [30], which leverages a lo-
cal map instead, with a significant margin of 9.6% on the hidden test
set. After incorporating additional training data, MambaMOS, when
trained with the same settings as before, still outperforms other
methods under comparable conditions. MambaMOS surpasses the
state-of-the-art MF-MOS [8] by 3.4%, and outperforms InsMOS [41],

Table 1: Comparison with state-of-the-art methods on the
SemanticKITTI-MOS benchmark. † denotes using additional
KITTI-Road for training.

Method IoU𝑀𝑂𝑆 (%)
Validation 08 Test 11-21

LiMoSeg [32] 52.6 -
LMNet [5] 67.1 54.5
SSF-MOS [38] 70.1 -
MotionSeg3D [39] 71.4 64.9
RVMOS [20] 71.2 74.7
4DMOS [29] 77.2 65.2
InsMOS [41] 73.2 -
MF-MOS [8] 76.1 -
MotionBEV [46] 76.5 69.7
MapMOS [30] 86.1 66.0
Two-streamMOS [23] 77.9 73.0
LiDAR-IMU-GNSS [24] 79.0 74.9
MambaMOS 82.3 75.6

LMNet† [5] 63.8 60.5
MotionSeg3D† [39] 69.3 70.2
MotionBEV† [46] 64.6 74.9
InsMOS† [41] 69.4 75.6
MF-MOS† [8] - 76.7
MambaMOS† 73.3 80.1

which utilizes an additional instance bounding box for determining
moving instance, by 3.9% and 4.5%, on the validation set and hidden
test set respectively.

To further analyze the advantages brought by our method, we
have conducted a detailed comparison of the segmentation perfor-
mance of existing methods on the SemanticKITTI-MOS validation
set for different distances, as shown in Table 2. The metrics in Ta-
ble 2 are either reported in their respective papers or determined
using their publicly available weights. The weights for other meth-
ods such as RVMOS [20], Two-streamMOS [23], and LiDAR-IMU-
GNSS [24] are either undisclosed or not reported in the papers,
hence not included in the comparison.

As known, the point cloud distribution becomes sparser as the
object distance from the LiDAR increases. As shown in Table 2, most
MOS methods achieve satisfactory segmentation results at close dis-
tances. However, their segmentation performance sharply declines
when the distance reaches the range of 20𝑚 and 50𝑚. Furthermore,
beyond a distance of 50𝑚, some projection-based methods such as
LMNet [5], MotionSeg3D [39], and MotionBEV [46] fail to discern
the motion attributes of the objects. Although MF-MOS [8], with
its focus on motion features, surpasses the non-projection-based
methods like 4DMOS [29] and InsMOS [41] in segmenting distant
moving objects, it is still limited in recognizing themotion attributes
of distant objects due to geometric losses caused by the projection
process, which prevents the strong coupling of spatial information
and temporal information for the objects. On the other hand, Mam-
baMOS demonstrates precise segmentation of moving objects even
in cases of extremely sparse point clouds. This indirectly supports
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Table 2: MOS performance on the SemanticKITTI-MOS validation set for points at different distances. R denotes recall and P
denotes precision.

Method Close (<20𝑚) Medium (>=20𝑚, < 50𝑚) Far (>= 50𝑚)
IoU𝑀𝑂𝑆 R P IoU𝑀𝑂𝑆 R P IoU𝑀𝑂𝑆 R P

LMNet [5] 70.72 76.89 89.80 43.88 54.30 69.56 0.00 0.00 -
MotionSeg3D† [39] 71.66 79.97 87.35 52.21 59.27 81.40 4.99 4.99 100.00
MotionBEV [46] 80.85 85.40 93.81 56.35 59.89 90.50 0.00 0.00 -
4DMOS [29] 78.43 82.11 94.59 68.71 72.62 92.74 41.00 41.00 100.00
InsMOS [41] 75.29 88.78 83.21 57.67 66.81 80.84 10.88 10.89 98.63
MF-MOS [8] 79.31 84.98 92.23 54.67 64.10 78.81 47.97 50.08 91.94
MambaMOS 83.69 87.30 95.29 72.48 78.24 90.78 94.44 97.73 96.56

the viewpoint delivered in our work: reinforcing temporal infor-
mation can effectively improve the MOS performance when the
spatial features of the targets are not prominent.

Qualitative Analysis. As shown in Figure 3, MambaMOS has
achieved significant performance improvements compared to other
methods on the SemanticKITTI-MOS validation set [3, 5]. We have
conducted a detailed analysis of this phenomenon as shown in
the figure. MF-MOS [8], InsMOS [41], and 4DMOS [29] all fail to
correctly determine the motion attributes of the objects, resulting
in a large number of false negative results. It can be attributed to
they only rely on a weak coupling between spatial and temporal
information for motion estimation. Slow-moving objects or distant
moving objects do not exhibit obvious characteristics in terms of
spatial information, somethods [8, 29, 41] that do not strengthen the
temporal information perform poorly in their estimation. However,
MambaMOS effectively addresses this problem by incorporating
strong temporal information coupling. Furthermore, to reduce false
positive predictions, we also categorize stationary vehicles as a
movable class for training, following the method of [5, 8, 20], which
further enhances the model’s understanding of motion scenes.

4.3 Ablation Study
Since the SSM receives sequential features, different spatial serial-
ization combinations will have an impact on overall performance.
We explore the influence of the serialization combination of 𝑧-
curve [33] and Hilbert curve [17], which have good spatial locality
characteristics, on the performance of MOS. As the spatial filling
curves traverse the spatial points based on the order of 𝑥 , 𝑦, and 𝑧,
prioritizing 𝑦 will yield different serialization results compared to
prioritizing 𝑥 . We denote this variant with 𝑇 . As shown in Table 6,
richer serialization methods yield better performance on the vali-
dation set. This is because multiple serialization methods capture
different contextual relationships of sequences, reducing overfitting
while enhancing the model’s understanding of dynamic objects.

Table 4 presents two methods proposed in our study to enhance
the coupling of temporal and spatial information. We conducted
ablation experiments to demonstrate that the proposed modules can
enhance the model’s perception of moving objects. When MSSM is
not used, we replaced it with the original Mamba block [15], and
we employed a simple 3D convolution for information embedding
when TCBE is not applied.

Table 3: Ablation about the serialization combination on the
SemanticKITTI-MOS validation set.

Pattern IoU𝑀𝑂𝑆 (%)
Z 75.11
Hilbert 76.38
Z+Z𝑇 76.57
Hilbert+Hilbert𝑇 76.41
Z+Z𝑇 +Hilbert+Hilbert𝑇 77.46

Table 4: Ablation about each module in MambaMOS on the
SemanticKITTI-MOS validation set.

Component IoU𝑀𝑂𝑆 (%)MSSM TCBE

% % 75.21
! % 77.07
% ! 76.62
! ! 77.46

From the experimental results, it can be observed that when only
MSSM or TCBE is applied compared to the baseline, the perfor-
mance is improved by 1.86% and 1.41%. This indicates that both
MSSM and TCBE can enhance the coupling of temporal and spatial
features and improve the model’s perception of motion features.
However, when only MSSM is applied, the performance is improved
by 0.45% compared to TCBE. This is because MSSM, based on the
interaction between single-scan features and multi-scan features,
focuses more on deep-level spatio-temporal information coupling
and can learn the motion attributes of objects more comprehen-
sively. Finally, by joining TCBE on the basis of MSSM, the emphasis
on temporal information during the embedding phase is further
enhanced, which aligns with the fundamental logic of motion recog-
nition and achieves optimal performance, surpassing the baseline
by 2.25%.

4.4 Generalization Performance Analysis
Since the majority of the SemanticKITTI dataset [3] was collected
in residential areas, to test the broader environmental adaptability
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Figure 3: Visualization comparison results ofMambaMOSwithMF-MOS [8], InsMOS [41], and 4DMOS [29] on the SemanticKITTI
validation set. We overlay their respective predictions for the current scan and the past seven scans to visually demonstrate the
results of MOS.

of MambaMOS, we fine-tune it on the KITTI-Road dataset [13]
to evaluate its generalizability to new environments. We follow
the same data partitioning strategy as MF-MOS [8], InsMOS [41],
and MotionSeg3D [39], and compared it with methods that use
fixed scans as input with publicly available weights. The original
weights of all methods shown in Table 5 are open-source and trained
exclusively on the SemanticKITTI-MOS [3, 5] dataset. They were
then fine-tuned for 10 epochs on the KITTI-Road training set [13] to
obtain the final results. The results indicate that even with a small
amount of data and minimal fine-tuning, MambaMOS still achieves
better results than previous methods, demonstrating its excellent
generalization capability for adapting to new environments.

5 CONCLUSION
This paper introduces MambaMOS, a novel framework for moving
object segmentation, aiming to address the issue of weak spatio-
temporal coupling in existing methods. Specifically, we introduce
the Time Clue Bootstrapping Embedding to achieve the shallow
coupling of temporal and spatial information of the objects. Further-
more, we underscore the importance of temporal information as
the primary cue for recognizing motion attributes, thereby enhanc-
ing the model’s sensitivity to motion features. To achieve deeper
spatio-temporal coupling, we propose theMotion-aware State Space

Table 5: Comparison of fine-tune performance with state-of-
the-art methods on the KITTI-Road dataset.

Method IoU𝑀𝑂𝑆

LMNet [5] 87.4
MotionBEV [46] 80.5
4DMOS [29] 81.0
InsMOS [41] 83.9
MF-MOS [8] 87.9
MambaMOS 89.4

Model, which facilitates interaction between single-scan and multi-
scan features. Leveraging the SSM’s linear complexity and strong
contextual modeling capability, the MSSM achieves strong spatio-
temporal coupling of features. Extensive experiments validate the
effectiveness of our method, demonstrating state-of-the-art per-
formance on both SemanticKITTI-MOS and KITTI-Road datasets.
Additionally, this paper marks the pioneering application of SSM
to the MOS task, and establishes a significant connection between
point cloud segmentation in 3D vision and natural language tasks,
offering valuable insights for future research directions.
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