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1 MORE IMPLEMENTATION DETAILS

Training Details. During training, we only train DSP and DRP on HQSeg-44K dataset while fixing
the model parameters of the pre-trained SAM model. We train Stable-SAM on 8 NVIDIA Tesla
V100 GPUs with a total batch size of 32, using Adam optimizer with zero weight decay and 0.001
learning rate. The training images are augmented using large-scale jittering (Ghiasi et al., 2021). The
input prompts are randomly sampled from mixed prompt types, including ground truth bounding
boxes, randomly sampled points (1, 3, 5, 10 positive points randomly selected from the ground truth
mask), noisy boxes (generated by adding noise (noise scale 0.4) to the ground truth bounding boxes,
where we ensure the generated noisy boxes have at least 0.5 overlap IoU with the ground truth boxes),
and coarse masks (generated by adding Gaussian noise in the boundary regions of the ground truth
masks). The model is optimized using cross entropy loss and dice loss (Milletari et al., 2016).

Inference Details. We follow the same inference pipeline of the original SAM. The mask decoder
first predicts a small mask in 256× 256 spatial resolution for each prompt, which is then up-sampled
to the original resolution 1024× 1024 as the output mask.

Evaluation Metrics. We select suitable evaluation metrics depending on testing datasets, i.e.,
1) mask mIoU, boundary mBIoU and ST for DIS, ThinObject-5K, COIFT, and HR-SOD, which
usually contain only one object in each image; 2) mask mAP and mAP50 for COCO and SGinW,
which usually contain multiple objects in each image.

Occlusion Image Synthesis. For each training image, we randomly select another image with random
scale jittering and random horizontal flipping augmentation. Then we select a random object from
the selected image as the “occluder” and paste it onto the training image to occlude the “occludee”
object. Specifically, we ensure the center of the occluder is strategically placed within the bounding
box of the occluded object in the training image. Finally, we remove the fully occluded objects and
update the ground-truth mask annotations of the partially occluded objects. The occlusion image
synthesis is enabled with a probability of 0.5 in the training stage.

More implementation details of LoRA and adapters in SAM. We introduce Adapter/LoRA
modules to the feed-forward network (FFN) of each ViT layer in SAM’s encoder for tuning. During
training, we fine-tune only the adapter/LoRA modules and SAM’s prediction layer, with all other
parameters frozen. In line with AdaptFormer (Chen et al., 2022), the adapters consist of small
bottleneck layers inserted in parallel into the FFN, containing two MLPs and a GELU activation
function between them. The bottleneck’s middle dimension is set to 64 to balance model performance
and computational efficiency. In line with LoRA (Hu et al., 2022), the module uses an encoder-
decoder structure to impose a low-rank constraint on FFN weight updates, injecting small trainable
rank decomposition matrices into each layer. In our experiments, the rank of LoRA is set to 4 for
efficiency and performance optimization. All other experimental settings remain the same as those of
the baseline and full model.

More implementation details for SAM-based interactive segmentation. In the SAM-based inter-
active segmentation experiments, setting the hyperparameter ‘multimask_output = False’ will yield
better performance, especially on SBD dataset. For a fair comparison, we use the default ‘multi-
mask_output = True’ setting to align with the SAM-based interaction segmentation implementations
potentially adopted by other works.
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Table 1: Comparison on Multi-domain Evaluation of Semantic Segmentation (MESS) benchmark,
consisting of 22 downstream datasets, 448 classes, and 25,079 images.

Model Prompt General Earth
Monitoring

Medical
Sciences Engineering Agriculture

& Biology Mean

SAM Oracle
Point

46.51 42.31 55.92 51.57 57.43 49.67
HQ-SAM 44.05 40.82 61.0 54.18 53.92 49.58
Stable-SAM (Ours) 49.10 43.23 54.45 53.52 60.92 51.15
SAM Oracle

Box

77.85 73.03 64.89 73.03 86.75 74.74
HQ-SAM 76.63 68.03 65.1 74.78 85.34 73.43
Stable-SAM (Ours) 77.91 72.84 62.93 73.12 85.63 74.21

SAM Random
Point

40.21 36.74 53.20 47.15 49.75 44.34
HQ-SAM 38.81 36.62 58.27 51.43 44.51 44.92
Stable-SAM (Ours) 42.43 37.30 50.89 48.96 53.42 45.49
SAM Noisy

Box

55.97 55.12 62.45 62.34 64.26 59.24
HQ-SAM 52.02 47.15 62.57 62.02 60.56 55.81
Stable-SAM (Ours) 59.82 58.86 62.19 64.56 68.84 62.13

Table 2: Dataset and comparison details on MESS benchmark. Models are prompted with noisy
boxes. “HQ” denotes HQ-SAM.

Dataset Domain Sensor type Mask size # Classes # Images Task SAM HQ Ours

BDD100K (Yu et al., 2020)

General

Visible spectrum Medium 19 (Medium) 1,000 Driving 48.9 43.66 51.84
Dark Zurich (Sakaridis et al., 2019) Visible spectrum Medium 20 (Medium) 50 Driving 54.34 50.85 56.81
MHP v1 (Li et al., 2017) Visible spectrum Small 19 (Medium) 980 Body parts 66.64 62.63 69.11
FoodSeg103 (Ghosh et al., 2021) Visible spectrum Medium 104 (Many) 2,135 Ingredients 57.98 56.22 64.12
ATLANTIS (Erfani et al., 2022) Visible spectrum Small 56 (Many) 1,295 Maritime 56.23 48.7 60.04
DRAM (Cohen et al., 2022) Visible spectrum Medium 12 (Medium) 718 Paintings 51.73 50.06 57.03
iSAID (Waqas Zamir et al., 2019)

Earth
Monitoring

Visible spectrum Small 16 (Medium) 4,055 Objects 65.2 62.6 67.46
ISPRS Potsdam (Khoshelham et al., 2017) Multispectral Small 6 (Few) 504 Land use 47.32 38.43 50.92
WorldFloods (Mateo-Garcia et al., 2021) Multispectral Medium 3 (Binary) 160 Floods 57.61 49.46 60.81
FloodNet (Rahnemoonfar et al., 2021) Visible spectrum Medium 10 (Few) 5,571 Floods 51.85 39.82 58.31
UAVid (Lyu et al., 2020) Visible spectrum Small 8 (Few) 840 Objects 53.62 45.43 56.82
Kvasir-Inst. (Jha et al., 2021)

Medical
Sciences

Visible spectrum Medium 2 (Binary) 118 Endoscopy 83.62 81.32 85.87
CHASE DB1 (Fraz et al., 2012) Microscopic Small 2 (Binary) 20 Retina scan 34.59 37.5 33.88
CryoNuSeg (Mahbod et al., 2021) Microscopic Small 2 (Binary) 30 WSI 72.87 72.78 73.09
PAXRay-4 (Seibold et al., 2022) Electromagnetic Large 4x2 (Binary) 180 X-Ray 58.72 58.66 55.94

Corrosion CS (Bianchi & Hebdon, 2021)

Engineering

Visible spectrum Medium 4 (Few) 44 Corrosion 53.05 51.86 55.47
DeepCrack (Liu et al., 2019) Visible spectrum Small 2 (Binary) 237 Cracks 56.36 60.84 58.2
ZeroWaste-f (Bashkirova et al., 2022) Visible spectrum Medium 5 (Few) 929 Conveyor 70.23 69.52 74.01
PST900 (Shivakumar et al., 2020) Electromagnetic Small 5 (Few) 288 Thermal 69.71 65.88 70.55
SUIM (Islam et al., 2020) Agriculture

& Biology

Visible spectrum Medium 8 (Few) 110 Underwater 56.98 47.51 62.35
CUB-200 (Welinder et al., 2010) Visible spectrum Medium 201 (Many) 5,794 Bird species 56.3 54.54 64.57
CWFID (Haug & Ostermann, 2015) Visible spectrum Small 3 (Few) 21 Crops 79.49 79.63 79.61

Mean IoU – – – – – – 59.24 55.81 62.13

2 MORE EXPERIMENTAL RESULTS

2.1 MULTI-DOMAIN EVALUATION OF SEMANTIC SEGMENTATION (MESS)

The recently released Multi-domain Evaluation of Semantic Segmentation (MESS) (Blumenstiel et al.,
2023) is a large-scale benchmark for holistic analysis of zero-shot segmentation performance. MESS
consists of 22 downstream tasks, a total of 448 classes, and 25079 images, covering a wide range of
domain-specific datasets in the fields of earth monitoring, medical sciences, engineering, agriculture
and biology and other general domains. We evaluate SAM (Kirillov et al., 2023), HQ-SAM (Ke et al.,
2023) and our Stable-SAM on MESS benchmark using the official MESS evaluation code, and report
the mean of class-wise intersection over union (mIoU).

Following MESS’s model settings, our Stable-SAM selects the first mask of the predicted multiple
masks as the output. For a fair comparison, our Stable-SAM follows HQ-SAM to fuse the SAM’s
original prediction map into our predicted segmentation map. We provide four prompt types for
evaluation. The oracle point refers to a single point sampled from the ground-truth mask using the
point sampling approach RITM (Sofiiuk et al., 2022). The random point refers to a single point
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Table 3: Comparison on PartImageNet. All models (except for SAM) are trained on PartImageNet
train set and evaluated on PartImageNet val set with various prompts.

GT box Noisy box 1 Point 3 Points

SAM 68.2 38.3 35.4 45.7
PT-SAM 72.6 51.6 36.8 55.2
HQ-SAM 72.9 52.4 37.3 56.1
Stable-SAM 73.4 60.7 44.2 61.6

Table 4: User study of noisy boxes for realistic application scenarios.

Noisy Box 1 Point
Model mIoU mBIoU ST mIoU mBIoU ST

SAM (baseline) 48.8 42.1 39.5 58.3 51.7 49.3
HQ-SAM 72.4 62.8 65.5 76.1 66.4 69.2

Ours 82.3 74.1 82.3 84.2 76.3 84.0

Table 5: Comparison on MS COCO and four HQ datasets for different backbone variants.

MS COCO Four HQ Datasets

N-Box (0.5-0.6) Noisy Box 1 Point Params (M) FPS Mem.
Model Epoch mAP mAP50 mIoU mBIoU mSF mIoU mBIoU mSF Total Trainable

SAM-Huge - 25.6 56.8 50.1 43.2 40.4 44.5 38.3 46.5 2446 2446 3.5 10.3G
HQ-SAM-Huge 12 30.0 62.6 75.2 65.5 69.3 48.0 41.1 49.5 2452.1 6.1 3.4 10.3G
Stable-SAM-Huge 1 43.9 75.7 81.8 73.5 82.3 77.2 68.9 74.6 2446.08 0.08 3.5 10.3G

SAM-Large - 27.3 60.2 48.8 42.1 39.5 43.3 37.4 45.1 1191 1191 5.0 7.6G
HQ-SAM-Large 12 31.9 65.5 72.4 62.8 65.5 43.2 44.6 37.4 1196.1 5.1 4.8 7.6G
Stable-SAM-Large 1 44.8 76.4 82.3 74.1 82.3 76.9 68.4 71.1 1191.08 0.08 5.0 7.6G

SAM-Base - 19.7 49.2 41.6 35.8 33.4 35.1 29.2 36.7 358 358 10.1 5.1G
HQ-SAM-Base 12 24.7 56.1 68.7 59.1 63.2 40.6 35.7 42.7 362.1 4.1 9.8 5.1G
Stable-SAM-Base 1 31.2 63.3 74.7 64.8 75.9 68.9 59.5 67.1 358.08 0.08 10.1 5.1G

randomly sampled from the ground-truth mask of the target object. The oracle box refers to a single
box tightly enclosing the ground-truth mask of the target object. The noisy box refers to a single box
generated by adding noise (noise scale 0.4) to the oracle box.

Table 1 tabulates the zero-shot semantic segmentation performance comparison on MESS. Our
Stable-SAM performs best when prompted with oracle point, random point and noisy box, and
achieves comparable performance when provided with oracle box. Our competitive performance on
the large-scale MESS benchmark further consolidates the powerful zero-shot generalization ability
inherent in our Stable-SAM. Table 2 shows the dataset and comparison details on 22 tasks of MESS
benchmark. Our Stable-SAM performs best on 19 out of 22 datasets.

2.2 PART-LEVEL SEGMENTATION

Our method can handle segmentation tasks when trained with segmentation targets which are
typically clear and unambiguous, object or part level. We conduct comparison experiments on
PartImageNet (He et al., 2022) dataset to validate our part-level segmentation ability. All models,
using the ViT-L backbone, are trained on PartImageNet train set and evaluated on the val set. Table 3
shows that our method outperforms the original SAM and finetuned SAMs (PT-SAM and HQ-SAM).

2.3 COMPARISON BASED ON USER-ANNOTATED BOX PROMPTS

3
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Table 6: Ablation studies on the number of prompt points. All models (except for SAM) are trained
on HQSeg-44K dataset, and evaluated on four HQ datasets with various prompt points.

# of Points 1 3 5 7 10 15 20

SAM 43.3±1.8 78.7±0.8 83.3±0.7 84.1±0.7 84.8±0.6 85.3±0.6 85.7±0.5

PT-SAM 43.0±1.9 80.1±0.7 84.3±0.6 85.2±0.6 85.6±0.4 86.1±0.4 86.3±0.3

Stable-SAM 76.9±0.8 84.0±0.6 85.8±0.5 86.5±0.4 87.0±0.4 87.5±0.3 87.8±0.3

Table 7: The DRP routing weight α1 is affected by the number of the prompt points. Fewer prompt
points needs more deformable attention indicated by larger α1. The models is trained on HQSeg-44K
dataset and evaluated on four HQ datasets.

# of Points 1 2 3 4 5 10 20

α1 0.614 0.552 0.469 0.427 0.398 0.371 0.359

We conduct a user study to provide a more realistic evaluation of our method. Five participants are
asked to provide box annotations for the highlighted target object in each image. Participants are
instructed to complete each box annotation within 5 seconds to ensure consistency throughout the
process. Annotations are collected using the Label Studio platform. The user-annotated boxes are sub-
sequently used as prompts to evaluate the performance of each segmentation method. Table 4 shows
that user-annotated boxes provide better segmentation performance across all methods compared to
generated noisy boxes. We also assess the quality of the user-annotated boxes by comparing them to
the ground truth boxes derived from the mask annotations. The average IoU between user-annotated
boxes and ground truth boxes is approximately 0.753, indicating that user-annotated boxes are more
accurate than generated noisy boxes. Under the user-provided box prompt, our method continues to
outperform other methods by a large margin.

2.4 BACKBONE VARIANTS

Table 5 tabulates the performance comparison on different backbone variants. Our Stable-SAM
consistently performs better than other methods on all backbone variants.

2.5 ABLATION STUDIES ON THE NUMBER OF PROMPT POINTS

Table 6 shows the performance curve of SAM, PT-SAM and Stable-SAM when handling various
number of prompt points. We also show the performance standard deviation to indicate the segmenta-
tion stability. The results show that our Stable-SAM has larger performance gains when handling
lower-quality prompts, i.e., fewer prompt points.

2.6 ANALYSIS ON THE DRP ROUTING WEIGHT α1

Table 7 shows the DRP routing weight α1 is increased from 0.469 to 0.614 when we change the point
prompt from three points to one point. It indicates that lower-quality prompts rely more on DSP
features to shift attention to the desirable regions.

We further conduct additional experiments to manipulate the output strength of the DRP and examine
its impact on segmentation quality for different prompt qualities. Specifically, we evaluate segmen-
tation performance at different α1 values for both ambiguous (one point) and precise (ten points)
prompts. For a fair comparison, we use the same set of point prompts for each α1 value.

Table 8 show that larger α1 values (indicating stronger DSP activation) lead to better segmentation
performance for the ambiguous one point prompt. This suggests that increasing the output strength of
the DRP is particularly beneficial for less informative prompts. In contrast, segmentation performance
is less sensitive to variations in α1 for precise prompts, suggesting that when prompts provide clearer
guidance, the system achieves satisfactory results even with lower activation levels.
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Table 8: The DRP routing weight α1 is affected by the number of the prompt points. Fewer prompt
points needs more deformable attention indicated by larger α1. The models is trained on HQSeg-44K
dataset and evaluated on four HQ datasets.

α1 0.0 0.2 0.4 0.5 0.6 0.8 1.0

1 point 43.3 73.2 75.9 76.5 76.9 76.5 76.0
10 points 84.8 86.1 87.0 86.9 86.7 86.7 86.5

Table 9: Comparison on MS COCO and four HQ datasets for different Stable-SAM variants. The
“finetuning decoder” denotes finetuning the mask decoder when training Stable-SAM.

MS COCO Four HQ Datasets

N-Box (0.5-0.6) Noisy Box 1 Point
Model mAP mAP50 mIoU mBIoU mSF mIoU mBIoU mSF

SAM 27.3 60.2 48.8 42.1 39.5 43.3 37.4 45.1

Stable-SAM (finetuning decoder) 25.7 56.5 78.5 69.2 79.9 76.0 67.1 78.2
Stable-SAM (spatial attention) 29.8 64.9 69.3 59.8 57.8 51.6 44.5 49.1
Stable-SAM 44.8 76.4 82.3 74.1 82.3 76.9 68.4 71.1

3 RELATION TO OTHER METHODS

Deformable Attention. Our method is unique in its idea and design on solely adjusting the feature
sampling locations and amplitudes by training the offset network, without involving the original
model parameters. In contrast, conventional deformable attention methods (Dai et al., 2017; Xia
et al., 2022) train both the offset network and original network parameters, which is undesirable
when adapting powerful foundation models in deployment, especially in finetuning large foundation
models. Figure 1 shows the difference between our deformable sampling plugin and conventional
deformable attention.

We apply the conventional deformable attention in our Stable-SAM by finetuning the mask decoder
during training. Table 9 shows that the conventional deformable attention (Stable-SAM (finetuning
decoder)) exhibits the worst generalization ability on MS COCO, even worse than the original SAM
model. This further validates the necessity and better performance of our deformable sampling plugin
paradigm, i.e., adapting the foundation model by only adjusting the feature sampling locations and
amplitudes, while fixing the original model features and parameters.

Spatial Attention. The spatial attention (Woo et al., 2018; Hou et al., 2021) can adjust the image spa-
tial feature weights, and thus can be regarded as a soft feature sampling method. We directly replace
DSP with spatial attention in our Stable-SAM to investigate if spatial attention offers comparable
effectiveness. Table 9 shows that spatial attention performs much worse than our DSP, although it
consistently improves the segmentation performance and stability on all datasets. This indicates that
simply adjusting the feature weights is insufficient to adapt SAM for handling suboptimal prompts.

4 MORE DISCUSSIONS

4.1 DISCUSSION ON MODEL SCALABILITY TO NOISY TRAINING DATA

Increasing the amount of training data could improve the model’s robustness and generalization.
More noisy data could help the model learn to handle a wider variety of input prompts, especially
in real-world scenarios where user-provided prompts are often imprecise or ambiguous. As the
model is exposed to more diverse and challenging inputs, it may become better at distinguishing
relevant features and handling uncertainty in segmentation. However, introducing excessive noisy
data could cause the model to overfit to the noise, leading to instability in some cases. Our method,
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offset net

Attention Feature Resampled
Feature Attention

feature
resampling

Our Deformable Sampling Plugin

Frozen! Frozen!

offset net

Attention Feature Resampled
Feature Attention

feature
resampling

Conventional Deformable Attention

Trained! Trained!

Figure 1: Method difference between our deformable sampling plugin and conventional deformable
attention.

which dynamically calibrates attention based on prompt quality, mitigates some risks of noisy data by
guiding the model to focus on relevant image regions without being overwhelmed by noise.

We also understand the concerns about the scalability of our method when scaling up the training
data. While our method is designed to efficiently handle noisy data with limited resources, it can still
benefit from larger training sets. As the training dataset grows, we can fine-tune additional parameters
of Stable-SAM to further improve segmentation stability. Our method’s lightweight design, with
only 0.08M learnable parameters, allows for fine-tuning additional parameters without significantly
increasing model complexity or computational cost. This additional fine-tuning of more parameters
applied to larger datasets, can further boost performance and stability, as the model adapts more
precisely to the increased diversity of data and ambiguous prompts. This highlights the flexibility of
our approach, which performs well with limited data but can also benefit from additional fine-tuning
of more parameters when the training dataset increases in size and noise.

4.2 DISCUSSION ON POTENTIAL SEGMENTATION BIAS

We emphasize that our method is designed without inherent bias towards large or small objects. If the
prompt explicitly specifies the background, our method adapts accordingly, without constraining the
model to prioritize the foreground. Although our method avoids introducing bias, we acknowledge that
the model may still be influenced by dataset bias. For instance, if the training dataset predominantly
contains foreground objects, the model may skew predictions towards the foreground, potentially
neglecting background regions. Thus, we also highlight the flexibility of our method. If users wish
to personalize segmentation targets, such as focusing on specific background regions, Stable-SAM
can be easily fine-tuned to meet this requirement. This adaptability is a key strength, enabling our
approach to effectively mitigate dataset bias and address a wide range of user needs and scenarios
beyond typical foreground segmentation.

4.3 DISCUSSION ON THE MOTIVATION BEHIND DSP (DYNAMIC SAMPLING PLUGIN)

Problem motivation. The primary motivation for adjusting the attention sampling positions through
learnable offsets is to overcome the inherent limitations of traditional fixed-grid attention, especially
in the presence of noisy prompts. In the original SAM architecture, the mask decoder uses a regular
grid sampling strategy, assuming that the initial prompt provides an accurate indication of the target
region. However, in real-world scenarios where prompts are imprecise, fixed-grid sampling can cause
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the attention mechanism to focus on unintended areas, often capturing background or partially correct
features.

Method motivation. Our approach introduces learnable offsets to adapt the sampling positions
dynamically, enabling attention to more precisely target the correct regions, even with ambiguous
or noisy prompts. The learnable offsets enable the attention mechanism to "deform" the regions
it focuses on in a data-driven manner, akin to how a person might adjust their focus when given
unclear instructions. Essentially, the model learns from diverse training examples how to "interpret"
and refine ambiguous or noisy prompts, using the learned offsets to direct attention to the most
contextually relevant regions of the image.

4.4 DISCUSSION ON THE CHOICE OF PARAMETER-EFFICIENT FINE-TUNING (PEFT) AND FULL
RETRAINING

The decision to use PEFT rather than retraining all components of SAM primarily depends on the
scale and type of the training dataset. SAM was pretrained on the SA-1B dataset, containing 1 billion
masks and 11 million images, which endows it with a generalized ability to segment a wide range
of objects across various domains. In contrast, our downstream dataset, HQSeg-44K, contains only
44,000 images. Due to the significant difference in dataset scale, PEFT is a strategic choice to prevent
overfitting while effectively adapting the pre-trained SAM to our target segmentation tasks with a
small training budget.

Numerous studies have demonstrated that PEFT methods are particularly effective when adapting
large pretrained models to downstream tasks with limited data. This approach retains the generalizable
features learned during pre-training, fine-tuning only a small subset of additional parameters. This
paradigm is well-established in parameter-efficient fine-tuning research (as summarized in the PEFT
surveys (Han et al., 2024; Xin et al., 2024)). By using PEFT, we aim to retain SAM’s foundational
representation power while mitigating overfitting, which is more likely to occur if we were to retrain
the entire model on a relatively small dataset.

In our case, finetuning only the DSP and DRP modules ensures that SAM retains its generality and
adaptability while becoming more robust to noisy and ambiguous prompts, maintaining computational
efficiency. In contrast, retraining SAM’s entire model compromises its integrity and significantly
impairs performance, as shown by the large performance drop of FT-SAM (finetuning SAM’s whole
model) in Table 2 of the main paper.

5 STABILITY VISUALIZATION

Figure 2-12 show extensive visualization comparisons between SAM and Stable-SAM, under box,
1-point and 3-points prompts of diverse qualities. We also visualize the image activation map for
the token-to-image cross-attention in SAM’s second mask decoder layer to better understand its
response to low-quality prompts. The important features are highlighted by the orange circles, with
larger radius indicating higher attention score. SAM yields unsatisfactory segmentation results
when provided with low-quality prompts, and even a minor prompt modification leads to unstable
segmentation output. In contrast, our Stable-SAM produces consistent and accurate mask predictions
even under prompts of diverse qualities, by shifting more feature sampling attention to the target
object.
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Figure 2: Visual results for box prompts. Within each image pair given the same prompt (green box),
the subfigures represent the results of SAM and Stable-SAM, respectively.
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Figure 3: Visual results for box prompts.
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Figure 4: Visual results for box prompts.
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Figure 5: Visual results for 1-point prompt.
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Figure 6: Visual results for 1-point prompt.
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Figure 7: Visual results for 1-point prompt.
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Figure 8: Visual results for 1-point prompt.
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Figure 9: Visual results for 1-point prompt.
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Figure 10: Visual results for 3-points prompt.
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Figure 11: Visual results for 3-points prompt.
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Figure 12: Visual results for 3-points prompt.
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