
Appendices
A Some Useful Lemmas

In this paper, there are some equivalent forms of the generalization error we will study, e.g., Eq. (2)
and Eq. (5) in the main text, which are presented in the following lemma.

Lemma A.1. Let Wi = W̃i,Ui
and W i = W̃i,Ui

. For any learning algorithm A, the following
equations hold

Eµ(A) =
1

n

n∑
i=1

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+

i , Z̃+
i )
]
, (12)

=
1

n

n∑
i=1

E
W̃i

[
E
Ẑi,Ui|W̃i

[
(−1)Ui

(
ℓ(W̃−

i , Ẑi)− ℓ(W̃+
i , Ẑi)

)]]
, (13)

=
1

n

n∑
i=1

EZ̃+
i

[
EWi,W i,Ui|Z̃+

i

[
(−1)Ui

(
ℓ(W i, Z̃

+
i )− ℓ(Wi, Z̃

+
i )
)]]

. (14)

Proof. This lemma is a consequence of Lemma 2.1, with further utilizing some symmetric properties.
Recall Eq. (1) in Lemma 2.1,

Eµ(A) =EZ̃+
[n]

,Z̃−
[n]

[
1

n

n∑
i=1

[
E
W̃−

i |Z̃+
[n]

,Z̃−
i
ℓ(W̃−

i , Z̃+
i )− E

W̃+|Z̃+
[n]

ℓ(W̃+, Z̃+
i )

]]
,

=E
Z̃+

[n]
,W̃

[
1

n

n∑
i=1

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+, Z̃+

i )
]]

,

=
1

n

n∑
i=1

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+, Z̃+

i )
]
.

Note that Eq. (2) in the main text is from the second equation above, which is used to derive individual
IOMI bounds in Section 3.

Similar to the standard setting for CMI bounds, where the role of each Z̃+
i and Z̃−

i can be exchanged,
a key observation here is that for each i, W̃+

i and W̃−
i can also be exchanged arbitrarily. That is to

say,

Eµ(A) =
1

n

n∑
i=1

E
Z̃−

i ,W̃i

[
ℓ(W̃+

i , Z̃−
i )− ℓ(W̃−

i , Z̃−
i )
]

(15)

also holds true. Notice that we do not change the definitions of any the random variable, e.g.,
W̃+ = A(Z̃+

[n], R) and W̃−
i = A(Z̃+

[n]∼i, R).

What differs from the standard CMI is that the roles of the whole sequences Z̃+
[n] and Z̃−

[n] are not

exchangeable with each other. Here, when we exchange each Z̃+
i and Z̃−

i , we need to keep the other
positions in S unchanged.

By introducing Ui ∼ Unif({0, 1}), we have

Eµ(A) =
1

n

n∑
i=1

E
Z̃+

i ,W̃i

[
ℓ(W̃−

i , Z̃+
i )− ℓ(W̃+

i , Z̃+
i )
]
,

=
1

n

n∑
i=1

E
Z̃i,W̃i,Ui

[
ℓ(W̃i,Ui

, Z̃i,Ui
)− ℓ(W̃i,Ui

, Z̃i,Ui
)
]
.
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To obtain Eq. (13), notice that Ẑi = Z̃i,Ui , we have

Eµ(A) =
1

n

n∑
i=1

E
Ẑi,W̃i,Ui

[
ℓ(W̃i,Ui

, Ẑi)− ℓ(W̃i,Ui , Ẑi)
]

=
1

n

n∑
i=1

E
Ẑi,W̃i,Ui

[
(−1)Ui

(
ℓ(W̃−

i , Ẑi)− ℓ(W̃+
i , Ẑi)

)]
. (16)

This, as we have already seen in Eq. (5) in the main text, is used to derive hypotheses-conditioned
CMI bounds in Section 4. It’s easy to see that when Ui = 0, Eq. (16) becomes Eq. (12), and when
Ui = 1, we obtain Eq. (15) via Eq. (16).

To obtain Eq. (14), we let Wi = W̃i,Ui
, W i = W̃i,Ui

, and fix Ẑi = Z̃+
i . Similarly,

Eµ(A) =
1

n

n∑
i=1

EZ̃+
i

[
EWi,W i,Ui|Z̃+

i

[
(−1)Ui

(
ℓ(W i, Z̃

+
i )− ℓ(Wi, Z̃

+
i )
)]]

.

This is used to derive supersample-conditioned CMI bounds in Section 4. It’s easy to see that both
Ui = 0 and Ui = 1 will give us Eq. (12).

Like all the previous information-theoretic bounds, the following lemma is widely used in our paper.
Lemma A.2 (Donsker-Varadhan (DV) variational representation of KL divergence [44, Theorem 3.5]).
Let Q, P be probability measures on Θ, for any bounded measurable function f : Θ → R, we have
DKL(Q||P ) = supf Eθ∼Q [f(θ)]− lnEθ∼P [exp f(θ)].

We also invoke some other lemmas as given below.
Lemma A.3 (Hoeffding’s Lemma [26]). Let X ∈ [a, b] be a bounded random variable with mean µ.

Then, for all t ∈ R, we have E
[
etX
]
≤ etµ+

t2(b−a)2

8 .
Lemma A.4 (Popoviciu’s inequality [45]). Let M and m be upper and lower bounds on the values
of any random variable X , then Var(X) ≤ (M−m)2

4 .

The following lemma is from [35, Lemma 2.8], we provide a self-contained proof.

Lemma A.5. Let h(x) = ex−x−1
x2 be the Bernstein function. If a random variable X satisfies

E [X] = 0 and X ≤ b, then E
[
eX
]
≤ eh(b)E[X

2].

Proof. It’s easy to verify that h(x) is an increasing function for x > 0. Thus, h(x) ≤ h(b) for x ≤ b.
Then,

ex = x+ 1 + x2h(x) ≤ x+ 1 + x2h(b).

For the bounded random variable X with zero mean, we have

E
[
eX
]
≤ E [X] + 1 + E

[
X2h(b)

]
≤ eh(b)E[X

2].

The last inequality is by ex ≥ x+ 1. This completes the proof.

B Further Elaborations on SCH Stability

We note that the reason we introduce four types of SCH stability in Definition 2.1 is that solely using
β2 in our bounds might be too loose, as it considers the supremum over all sources of randomness. By
incorporating SCH stabilities, we aim to demonstrate that theoretically, we can achieve significantly
tighter stability parameters.

The basic set up is as follows. Assume a random sample S gives rise to W . For each Zi ∈ S, we
construct Si by replacing Zi with another independently drawn instance; call training result W i, the
neighbor of W .

In a), γ1-SCH-A stability measures the difference between the loss of w and the expected loss of its
neighbor W i at a worst z and the worst possible w. While in (b), γ2-SCH-B stability measures the
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square of this difference, not in the worst case, but in an average case, where the average is over an
independently Z ′ for the loss evaluation, the training sample, and the algorithm randomness. Since
“average is smaller than worst”, γ2 ≤ γ1.

In c), we consider the difference between the loss of W and the loss of its neighbor when evaluated at
the worst possible Zi that when included in S gives rise to W . The expected value of this difference
is γ3-SCH-C stability.

In d), γ4-SCH-D stability measures the expected squared difference between the loss of W and the
loss of its neighbor when evaluated at Zi (a member of S). For a similar “average smaller worst”
reason, one expects that γ4 ≤ γ3.

We expect that γ2, γ3, and γ4 are all smaller than β1. This is because in β1, we consider the worst
evaluated instance, whereas in the other cases, we take the expectation over all instances. Additionally,
in Theorem 4.1, we expect that E

W̃i
∆1(W̃i)

2 ≤ β2
1 , this is because β1-stability holds for all the

possible s and si, namely it holds for all the (w,wi) pair (that shares the same randomness) while in
E
W̃i

∆1(W̃i)
2, we take the expectation of these pairs.

We expect γ2 ≤ γ4 due to the following reason: first by Jensen’s inequality, we have
ES,R,Z′

[
ℓ(W,Z ′)− EW i|W ℓ(W i, Z ′)

]2 ≤ EW,W i,Z′
[
ℓ(W,Z ′)− ℓ(W i, Z ′)

]2
, then since Z ′ is an

independent of both W and W ′, Z ′ can be regarded as a testing point for both W and W ′, we could ex-
pect that the expectation of ℓ(W,Z ′)−ℓ(W i, Z ′) is small. While in ES,Z′

i,R

[
ℓ(W,Zi)− ℓ(W i, Zi)

]2
,

Zi is a training point for obtaining W , so ℓ(W,Zi) could be small in general, and Zi is a test-
ing point for W i. Therefore, it is reasonable to expect EW,W i,Z′

[
ℓ(W,Z ′)− ℓ(W i, Z ′)

]2 ≤
ES,Z′

i,R

[
ℓ(W,Zi)− ℓ(W i, Zi)

]2
, namely γ2 ≤ γ4.

As a concrete example, let ℓ be zero-one loss and assume A is an interpolating algo-
rithm and and randomly makes predictions for unseen data. By Jensen’s inequality, γ2

2 ≤
EW,W i,Z′

[
ℓ(W,Z ′)− ℓ(W i, Z ′)

]2
= EW,Z′ [ℓ(W,Z ′)] − 2EW,W i,Z′

[
(ℓ(W,Z ′)ℓ(W i, Z ′))

]
+

EW i,Z′
[
ℓ(W i, Z ′)

]2
, where we use ℓ2 = ℓ for zero-one loss. Since Z ′ is an unseen data for

both W and W i, we have γ2
2 ≤ EW i,Z′

[
ℓ(W i, Z ′)

]2
+ 1

2 − 1
2 = EW i,Z′

[
ℓ(W i, Z ′)

]2
. While in

this case γ2
4 = EW i,Zi

[
ℓ(W i, Zi)

]2
so γ2 ≤ γ4.

C Omitted Proofs and Additional Discussions in Section 3

C.1 Proof of Theorem 3.1

Proof. Let g(w̃+, z̃+i ) = E
W̃−

i |w̃+

[
ℓ(W̃−

i , z̃+i )
]
−ℓ(w̃+, z̃+i ) be the average loss difference between

w̃+ and its neighboring hypothesis, and let f = t · g for t > 0 in Lemma A.2. Let Z̃+′

i be an
independent copy of Z̃+

i , then

E
W̃+,Z̃+

i

[
g(W̃+, Z̃+

i )
]
≤ inf

t>0

I(W̃+; Z̃+
i ) + logE

W̃+,Z̃+′
i

[
etg(W̃

+,Z̃+′
i )
]

t
. (17)

Since Z̃+′

i is independent of both W̃−
i and W̃+, and W̃−

i and W̃+ are identically distributed, we
have

E
W̃+,Z̃+′

i

[
g(W̃+, Z̃+′

i )
]
= E

W̃−
i ,Z̃+′

i

[
ℓ(W̃−

i , Z̃+′

i )
]
− E

W̃+,Z̃+′
i

[
ℓ(W̃+, Z̃+′

i )
]
= 0.

By the definition of γ1-SCH-A stability,

sup
w̃+,z

∣∣∣EW̃−
i |w̃+

[
ℓ(W̃−

i , z)
]
− ℓ(w̃+, z)

∣∣∣ ≤ γ1,
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so g(W̃+, Z̃+′

i ) is a zero-mean random variable bounded in [−γ1, γ1]. By Lemma A.3, we have

E
W̃+,Z̃+

i

[
g(W̃+, Z̃+

i )
]
≤ inf

t>0

I(W̃+; Z̃+
i ) + logE

W̃+,Z̃+′
i

[
etg(W̃

+,Z̃+′
i )
]

t

≤ inf
t>0

I(W̃+; Z̃+
i ) +

t2γ2
1

2

t

=

√
2γ2

1I(W̃
+; Z̃+

i ),

where the last equality is obtained by optimizing the bound over t, i.e. letting t =

√
I(W̃+;Z̃+

i )

2γ2
1

.

Recall Eq. (12) in Lemma A.1 and applying Jensen’s inequality to the absolute function, the first
bound is then obtained by

|Eµ(A)| ≤ 1

n

n∑
i=1

∣∣∣EW̃+,Z̃+
i

[
g(W̃+, Z̃+

i )
]∣∣∣ ≤ γ1

n

n∑
i=1

√
2I(W̃+; Z̃+

i ),

Furthermore, by the chain rule of mutual information,

I(W̃−
i ; Z̃+

i |W̃+) + I(W̃+; Z̃+
i ) = I(W̃+; Z̃+

i |W̃−
i ) + I(W̃−

i ; Z̃+
i ). (18)

Notice that I(W̃−
i ; Z̃+

i ) = 0 in the RHS, we have

I(W̃+; Z̃+
i ) ≤ I(W̃+; Z̃+

i |W̃−
i ),

which will give us the second bound. This concludes the proof.

Remark C.1 (Comparison with Mutual Information Stability [46, 23]). To compare with the mutual
information stability I

(
W̃+; Z̃+

i |Z̃+
[n]\i

)
, recall Eq.(18): I(W̃+; Z̃+

i |W̃−) = I(W̃−
i ; Z̃+

i |W̃+) +

I(W̃+; Z̃+
i ), and similarly we also have I(W̃+; Z̃+

i |Z̃+
[n]\i) = I(Z̃+

[n]\i; Z̃
+
i |W̃+) + I(W̃+; Z̃+

i ).

Thus, we only need to compare I(W̃−
i ; Z̃+

i |W̃+) and I(Z̃+
[n]\i; Z̃

+
i |W̃+). Notice that for a determin-

istic A, we have I(W̃−
i ; Z̃+

i |W̃+) ≤ I(Z̃+
[n]\i, Z̃

−
i ; Z̃+

i |W̃+). Since Z̃−
i ⊥⊥

(
W̃+, Z̃+

[n]

)
, we further

have I(Z̃+
[n]\i, Z̃

−
i ; Z̃+

i |W̃+) = I(Z̃+
[n]\i; Z̃

+
i |W̃+), which gives us the desired result:

I(W̃+
i ; Z̃+

i |W̃−) ≤ I
(
W̃+; Z̃+

i |Z̃+
[n]\i

)
.

C.2 Proof of Theorem 3.2

Proof. The proof is nearly the same to the proof of Theorem 3.1, except that now the randomness
of the algorithm is given for each DV auxiliary function, so the randomness of W̃i is completely
controlled by Z̃.

Let g(w̃+, z̃+i , r) = E
W̃−

i |w̃+,r

[
ℓ(W̃−

i , z̃+i )
]
− ℓ(w̃+, z̃+i ) and let f = t · g for t > 0 in Lemma A.2.

Let Z̃+′

i be an independent copy of Z̃+
i , then

E
W̃+,Z̃+

i |r

[
g(W̃+, Z̃+

i , r)
]
≤ inf

t>0

I(W̃+; Z̃+
i |R = r) + logE

W̃+,Z̃+′
i |r

[
etg(W̃

+,Z̃+′
i ,r)

]
t

.

Notice that

E
W̃+,Z̃+′

i |r

[
g(W̃+, Z̃+′

i , r)
]
= E

W̃−
i ,Z̃+′

i |r

[
ℓ(W̃−

i , Z̃+′

i )
]
− E

W̃+
i ,Z̃+′

i |r

[
ℓ(W̃+

i , Z̃+′

i )
]
= 0

still holds since Z̃+
i and Z̃−

i are i.i.d. drawn.
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Thus, g(W̃+, Z̃+′

i , r) is a zero-mean random variable bounded in [−β2, β2]. By Lemma A.3, the
remaining part is routine:

E
W̃+,Z̃+

i |r

[
g(W̃+, Z̃+

i , r)
]
≤
√
2β2

2I(W̃
+; Z̃+

i |R = r).

Thus,

|Eµ(A)| ≤ 1

n

n∑
i=1

∣∣∣EW̃+,Z̃+
i ,R

[
g(W̃+, Z̃+

i , R)
]∣∣∣ ≤ β2

n

n∑
i=1

ER

√
2IR(W̃+; Z̃+

i ),

This completes the proof.

C.3 Proof of Theorem 3.3

Proof. Let h(x) = ex−x−1
x2 be the Bernstein function. Similar to the proof of Theorem 3.1,

we let g(w̃+, z̃+i ) = E
W̃−

i |w̃+

[
ℓ(W̃−

i , z̃+i )
]
− ℓ(w̃+, z̃+i ). We have already known that

E
W̃+,Z̃+′

i

[
g(W̃+, Z̃+′

i )
]
= 0 and

∣∣∣g(W̃+, Z̃+′

i )
∣∣∣ ≤ γ1. By Lemma A.5,

logE
W̃+,Z̃+′

i

[
etg(W̃

+,Z̃+′
i )
]
≤h(γ1t)t

2E
W̃+,Z̃+′

i

[(
E
W̃−

i |W̃+

[
ℓ(W̃−

i , Z̃+′

i )
]
− ℓ(W̃+, Z̃+′

i )
)2]

≤h(γ1t)t
2γ2

2 ,

where the second inequality is by the definition of γ2-SCH-B stability.

Plugging the above into Eq. (17),

E
W̃+,Z̃+

i

[
g(W̃+, Z̃+

i )
]
≤ inf

t>0

I(W̃+; Z̃+
i ) + logE

W̃+,Z̃+′
i

[
etg(W̃

+,Z̃+′
i )
]

t

≤ inf
t>0

I(W̃+; Z̃+
i )

t
+ h(γ1t)tγ

2
2 .

Usually we have γ2
2 ≤ γ2

1 ≤ γ1, we let t = 1/γ1, then

h(γ1t)tγ
2
2 =

h(1)γ2
2

γ1
≈ 0.72

γ2
2

γ1
.

Thus,

|Eµ(A)| ≤ γ1
n

n∑
i=1

I(W̃+; Z̃+
i ) +

0.72γ2
2

γ1
.

This concludes the proof.

D Omitted Proofs in Section 4

D.1 Proof of Theorem 4.1

Proof. We now prove the first bound. Let g(w̃i, ẑi, ui) = (−1)ui
(
ℓ(w̃−

i , ẑi)− ℓ(w̃+
i , ẑi)

)
. By

Lemma A.2, we have

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i) + logEẐi,U ′
i |w̃i

[
etg(w̃i,Ẑi,U

′
i)
]

t
. (19)

Since U ′
i ⊥⊥ Ẑi, we have EU ′

i
[g(w̃i, ẑi, U

′
i)] = EU ′

i

[
(−1)U

′
i

(
ℓ(w̃−

i , ẑi)− ℓ(w̃+
i , ẑi)

)]
= 0 for any

w̃i and ẑi. Ergo,
EẐi|w̃i

[
EU ′

i

[
g(w̃i, Ẑi, U

′
i)
]]

= 0.
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By the definition of ∆1(w̃i),∣∣∣g(w̃i, Ẑi, U
′
i)
∣∣∣ = ∣∣∣ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

∣∣∣ ≤ sup
zi∈Zw̃i

∣∣ℓ(w̃−
i , zi)− ℓ(w̃+

i , zi)
∣∣ ≤ ∆1(w̃i).

Thus, g(w̃i, Ẑi, U
′
i) is a zero-mean random variable bounded in [−∆1(w̃i),∆1(w̃i)] for a fixed w̃i.

By Lemma A.3, we have

EẐi,U ′
i |w̃i

[
etg(w̃,Ẑi,U

′
i)
]
≤ e

t2∆1(w̃i)
2

2 .

Plugging the above into Eq. (19),

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i) +
t2∆1(w̃i)

2

2

t
(20)

=∆1(w̃i)

√
2I(Ẑi;Ui|W̃i = w̃i).

Recall Eq. (14) in Lemma A.1 and by Jensen’s inequality for the absolute function, the first bound is
obtained:

|Eµ(A)| ≤ 1

n

n∑
i=1

E
W̃i

[
∆1(W̃i)

√
2IW̃i(Ẑi;Ui)

]
. (21)

To prove the second bound, we return to Eq. (20), and take expectation over W̃i first. By Jensen’s
inequality,

E
Ẑi,Ui,W̃i

[
g(W̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i) +
t2E

W̃i
[∆(W̃i)

2]
2

t
(22)

=

√
2E

W̃i

[
∆(W̃i)2

]
I(Ẑi;Ui|W̃i).

Therefore, we have the second bound as below

|Eµ(A)| ≤ 1

n

n∑
i=1

√
2E

W̃i

[
∆(W̃i)2

]
I(Ẑi;Ui|W̃i). (23)

For the second part of Theorem 4.1, notice that it’s valid to let γ3 = E
W̃i

[
∆(W̃i)

]
, then recall

Eq. (21),

|Eµ(A)| ≤ 1

n

n∑
i=1

E
W̃i

[
∆(W̃i)

√
2IW̃i(Ẑi;Ui)

]
≤

√
2γ3
n

n∑
i=1

√
sup

w̃i∈(Ws)2s∈Zn

Iw̃i(Ẑi;Ui).

This completes the proof.

D.2 Proof of Theorem 4.2

Proof. The proof is similar to [18, Theorem 2.1]. By the chain rule,

I(Ẑi;Ui, W̃i) = I(Ẑi;Ui|W̃i) + I(Ẑi; W̃i). (24)

Since H(Ẑi|Ui, W̃i) = H(Ẑi|Wi, Ui, W̃i) = H(Ẑi|Wi), we have I(Ẑi;Ui, W̃i) = H(Ẑi) −
H(Ẑi|Ui, W̃i) = H(Ẑi) − H(Ẑi|Wi) = I(Ẑi;Wi). Thus, I(Ẑi;Ui, W̃i) = I(Ẑi;Wi). Recall
Eq. (24) and by the non-negativity of mutual information, we have I(Ẑi;Ui|W̃i) ≤ I(Wi; Ẑi). Note
that I(Wi; Ẑi) = I(W̃+

i ; Z̃+
i ) = I(W ;Zi). This completes the proof.
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D.3 Proof of Theorem 4.3

Proof. We first return to Eq. (19) in the previous proof, and we have already known that g(w̃i, Ẑi, U
′
i)

is a zero-mean random variable bounded in [−∆1(w̃i),∆1(w̃i)] for a fixed w̃i.

By Lemma A.5, we have

logEẐi,U ′
i |w̃i

[
etg(w̃i,Ẑi,U

′
i)
]
≤h (∆1(w̃i)t) t

2EẐi,U ′
i |w̃i

[
g(w̃i, Ẑi, U

′
i)

2
]

=h (∆1(w̃i)t) t
2EẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
.

Plugging the above into Eq. (19),

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i)

t
+ h (∆1(w̃i)t) tEẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
.

(25)

Let t = 1
∆1(w̃i)

, we have

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ ∆1(w̃i)I(Ẑi;Ui|W̃i = w̃i)+0.72

EẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
∆1(w̃i)

.

Let Λ(w̃i) = EẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]/
∆1(w̃i)

2, then

|Eµ(A)| ≤ 1

n

n∑
i=1

E
W̃i

[
∆1(W̃i)

(
IW̃i(Ẑi;Ui) + 0.72Λ(W̃i)

)]
.

For the second part, if A is further β2-uniform stable, recall Eq. (25) and by the non-decreasing
property of h, we have

EẐi,Ui|w̃i

[
g(w̃i, Ẑi, Ui)

]
≤ inf

t>0

I(Ẑi;Ui|W̃i = w̃i)

t
+h (β2t) tEẐi|w̃i

[(
ℓ(w̃−

i , Ẑi)− ℓ(w̃+
i , Ẑi)

)2]
.

Let t = 1
β2

and taking expectation over W̃i, we have

E
Ẑi,Ui,W̃i

[
g(W̃i, Ẑi, Ui)

]
≤β2I(Ẑi;Ui|W̃i) + 0.72

E
Ẑi,W̃i

[(
ℓ(W̃−

i , Ẑi)− ℓ(W̃+
i , Ẑi)

)2]
β2

=β2I(Ẑi;Ui|W̃i) + 0.72
γ2
4

β2
,

where the equality is by the definition of γ4-SCH-D stability.

Thus,

|Eµ(A)| ≤ 1

n

n∑
i=1

β2I(Ẑi;Ui|W̃i) + 0.72
γ2
4

β2
.

This concludes the proof.

D.4 Proof of Theorem 4.4

We present a stronger version of Theorem 4.4.
Theorem D.1. Under the same conditions in Theorem 4.1, and we further assume that A is γ2-SCH-B
stable and symmetric with respect to S, i.e. it does not depend on the order of the elements in the
training sample. Let ∆̄1(W̃ ) = 1

n

∑n
i=1 ∆1(W̃i)

2, we have

EW,S

[
(LS(W )− Lµ(W ))

2
]
≤ 6

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
+

1

n
+ 4γ2

2 .

21



Then Theorem 4.4 is a corollary of Theorem D.1.

Proof of Theorem 4.4. For β2-uniform stable algorithm, by ∆̄1(W̃ ) ≤ β2
2 and γ2

2 ≤ β2
2 , we have

EW,S

[
(LS(W )− Lµ(W ))

2
]
≤6β2

2

n

(
I(E;U |W̃ ) +

log 3

2

)
+

1

n
+ 4β2

2

=4β2
2

(
1.5I(E;U |W̃ ) + 0.82

n
+ 1

)
+

1

n
.

This completes the proof.

Before we prove Theorem D.1, we need to first obtain the following lemma.

Lemma D.1. Under the same conditions in Theorem 4.1, let ∆̄1(W̃ ) = 1
n

∑n
i=1 ∆1(W̃i)

2, we have

EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− LS(W )

)2
 ≤ 3

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
.

Proof of Lemma D.1. Here we borrow some proof techniques used in [58, Thm. 2].

Let g(w̃, ẑi, ui) = (−1)ui
(
ℓ(w̃−

i , ẑi)− ℓ(w̃+
i , ẑi)

)
and let G ∼ N (0, 1) be an independent standard

Gaussian random variable. Let f = t · ( 1n
∑n

i=1 g)
2 in Lemma A.2, then

EE,U |w̃

( 1

n

n∑
i=1

g(w̃, Ẑi, Ui)

)2
 ≤ inf

t>0

I(E;U |W̃ = w̃) + logEE,U ′|w̃

[
et(

1
n

∑n
i=1 g(w̃,Ẑi,U

′
i))

2]
t

= inf
t>0

I(E;U |W̃ = w̃) + logEE,U ′|w̃

[
EG

[
e

G
√

2t
n

∑n
i=1 g(w̃,Ẑi,U

′
i)
]]

t
(26)

= inf
t>0

I(E;U |W̃ = w̃) + logEG,E|w̃

[∏n
i=1 EU ′

i

[
e

G
√

2t
n g(w̃,Ẑi,U

′
i)
]]

t

≤ inf
t>0

I(E;U |W̃ = w̃) + logEG

[
e

G2t
∑n

i=1 ∆1(w̃i)
2

n2

]
t

(27)

≤ inf
t∈

(
0, n2

2
∑n

i=1
∆1(w̃i)

2

)
I(E;U |W̃ = w̃) + log

(
1
/√

1− 2t
∑n

i=1 ∆1(w̃i)2

n2

)
t

(28)

= inf
t∈

(
0, n2

2
∑n

i=1
∆1(w̃i)

2

) I(E;U |W̃ = w̃)− 1
2 log

(
1− 2t

∑n
i=1 ∆1(w̃i)

2

n2

)
t

,

where Eq. (26) is by the moment generating function of Gaussian distribution: EG

[
eλG

]
= e

λ2

2

for all λ ∈ R, Eq. (27) is by Lemma A.3 and Eq. (28) is by the moment generating function of
chi-squared distribution: EG

[
eλG

2
]
≤ 1√

1−2λ
for λ < 1

2 .

Let t = n2

3
∑n

i=1 ∆1(w̃i)2
be substituted to the last equation above, we have

EE,U |w̃

( 1

n

n∑
i=1

g(w̃, Ẑi, Ui)

)2
 ≤ 3

n2

n∑
i=1

∆1(w̃i)
2

(
I(E;U |W̃ = w̃) +

log 3

2

)
. (29)
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Let ∆̄1(w̃) =
1
n

∑n
i=1 ∆1(w̃i)

2, and taking expectation over W̃ for both sides,

E
E,U,W̃

( 1

n

n∑
i=1

g(W̃ , Ẑi, Ui)

)2
 ≤ 3

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
. (30)

Applying Jensen’s inequality to the square function, we have

EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− LS(W )

)2
 ≤ E

E,U,W̃

( 1

n

n∑
i=1

g(W̃ , Ẑi, Ui)

)2
.

Combining Eq. (30) with the inequality above will concludes the proof.

We are now in a position to prove Theorem D.1.

Proof of Theorem D.1.

EW,S

[
(LS(W )− Lµ(W ))

2
]

=EW,S

( 1

n

n∑
i=1

ℓ(W,Zi)− EZ′ [ℓ(W,Z ′)]

)2


=EW,S

( 1

n

n∑
i=1

ℓ(W,Zi)−
1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
+

1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− EZ′ [ℓ(W,Z ′)]

)2


≤2EW,S

( 1

n

n∑
i=1

ℓ(W,Zi)−
1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

])2


︸ ︷︷ ︸
B1

+ 2EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− EZ′ [ℓ(W,Z ′)]

)2


︸ ︷︷ ︸
B2

,

where the last inequality is by (x + y)2 ≤ 2x2 + 2y2. Notice that B1 can be bounded by using
Lemma D.1. We now focus on B2. Since EZ′ [ℓ(W,Z ′)] = 1

n

∑n
i=1 EZ′ [ℓ(W,Z ′)], we have

B2 =EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)

]
− 1

n

n∑
i=1

EZ′
[
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

]
+ EW i|W

[
ℓ(W i, Z ′)

]])2


=EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)− EZ′

[
ℓ(W i, Z ′)

]]
− 1

n

n∑
i=1

EZ′
[
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

]])2


≤2EW,S

( 1

n

n∑
i=1

EW i|W
[
ℓ(W i, Zi)− EZ′

[
ℓ(W i, Z ′)

]])2


︸ ︷︷ ︸
B3

+ 2EW

( 1

n

n∑
i=1

EZ′
[
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

]])2


︸ ︷︷ ︸
B4

.
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For B3, we apply Jensen’s inequality to move the expectation over W i outside of the square function,

B3 ≤EW 1,W 2,...,Wn,S

( 1

n

n∑
i=1

ℓ(W i, Zi)− EZ′
[
ℓ(W i, Z ′)

])2


=ES′,S,R

( 1

n

n∑
i=1

ℓ(A(Si, R), Zi)− EZ′
[
ℓ(A(Si, R), Z ′)

])2
.

Notice that S′, S and R are all independent with each other (so W i, Zi and Z ′
i are also independent

with each other). If we further let A be symmetric, namely W i does not dependent on i, then the
inequality above is equivalent to

B3 ≤EW,S′

( 1

n

n∑
i=1

ℓ(W,Z ′
i)− EZ′ [ℓ(W,Z ′)]

)2


=EW

ES′

( 1

n

n∑
i=1

ℓ(W,Z ′
i)− EZ′ [ℓ(W,Z ′)]

)2
.

Hence, the inner expectation in the RHS above is just the variance of the sample mean of n i.i.d
bounded random variables. Recall that ℓ(·, ·) ∈ [0, 1], thereby

B3 ≤ EW

[
VarZ′(ℓ(W,Z ′))

n

]
≤ 1

4n
,

where the second inequality is by Lemma A.4.

Then, for B4, we also apply Jensen’s inequality to the square function, and by the definition of
γ2-SCH-B stability, we have

B4 ≤EW,Z′

( 1

n

n∑
i=1

ℓ(W,Z ′)− EW i|W
[
ℓ(W i, Z ′)

])2


≤ 1

n

n∑
i=1

EW,Z′

[(
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

])2] ≤ γ2
2 .

Putting everthing together, we have

EW,S

[
(LS(W )− Lµ(W ))

2
]
≤2B1 + 2B2

≤2B1 + 4B3 + 4B4

≤2B1 +
1

n
+ 4γ2

≤ 6

n
E
W̃

[
∆̄1(W̃ )

(
IW̃ (E;U) +

log 3

2

)]
+

1

n
+ 4γ2

2 ,

where the last inequality is by Lemma D.1. This completes the proof.

D.5 Proof of Theorem 4.5

Proof. Let g(z̃+i , wi, w̄i, ui) = (−1)ui
(
ℓ(w̄i, z̃

+
i )− ℓ(wi, z̃

+
i )
)
. Again, by Lemma A.2, we have

EWi,W i,Ui|z̃+
i

[
g(z̃+i ,Wi,W i, Ui)

]
≤ inf

t>0

I(Wi,W i;Ui|Z̃+
i = z̃+i ) + logEWi,W i,U ′

i |z̃
+
i

[
etg(z̃

+
i ,Wi,W i,U

′
i)
]

t
.

(31)
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Similar to the previous proofs, it’s easy to see that g(z̃+i ,Wi,W i, U
′
i) is a zero-mean random variable

bounded in [−∆2(z̃
+
i ),∆2(z̃

+
i )]. Thus,

EWi,W i,Ui|z̃+
i

[
g(z̃+i ,Wi,W i, Ui)

]
≤ inf

t>0

I(Wi,W i;Ui|Z̃+
i = z̃+i ) +

t2∆2(z̃
+
i )2

2

t
. (32)

To prove the first bound, we let t =
√

I(Wi,W i;Ui|Z̃+
i =z̃+

i )

2∆2(z̃
+
i )2

, then

EWi,W i,Ui|z̃+
i

[
g(z̃+i ,Wi,W i, Ui)

]
≤ ∆2(z̃

+
i )

√
2I(Wi,W i;Ui|Z̃+

i = z̃+i ).

Recall Eq. (14) in Lemma A.1, hence,

|Eµ(A)| ≤ 1

n

n∑
i=1

EZ̃+
i

[
∆2(Z̃

+
i )

√
2IZ̃

+
i (Wi,W i;Ui)

]
. (33)

To prove the second bound, we take expectation over Z̃+
i for Eq. (32),

EWi,W i,Ui,Z̃
+
i

[
g(Z̃+

i ,Wi,W i, Ui)
]
≤ inf

t>0

I(Wi,W i;Ui|Z̃+
i ) +

t2E
Z̃

+
i
[∆2(Z̃

+
i )2]

2

t
.

Let t =

√
I(Wi,W i;Ui|Z̃+

i )

2E
Z̃

+
i
[∆2(Z̃

+
i )2]

, then

EWi,W i,Ui,Z̃
+
i

[
g(Z̃+

i ,Wi,W i, Ui)
]
≤
√

2EZ̃+
i

[
∆2(Z̃

+
i )2
]
I(Wi,W i;Ui|Z̃+

i ).

Ergo,

|Eµ(A)| ≤ 1

n

n∑
i=1

√
2EZ̃+

i

[
∆2(Z̃

+
i )2
]
I(Wi,W i;Ui|Z̃+

i ). (34)

This completes the proof.

E Omitted Proof in Section 6

E.1 Proof of Proposition 1

Proof. By Jensen’s inequality and triangle inequality, for any i ∈ [n], we have

ES,R,Z′

[(
ℓ(W,Z ′)− EW i|W

[
ℓ(W i, Z ′)

])2]
≤EW,W i,Z′

[(
ℓ(W,Z ′)− ℓ(W i, Z ′)

)2]
=EW,W i,Z′

[(
ℓ(W,Z ′)− ℓ(w∗, Z ′) + ℓ(w∗, Z ′)− ℓ(W i, Z ′)

)2]
≤2EW,Z′

[
(ℓ(W,Z ′)− ℓ(w∗, Z ′))

2
]
+ 2EW i,Z′

[(
ℓ(W i, Z ′)− ℓ(w∗, Z ′)

)2]
≤4BEW

[
(Lµ(W )− Lµ(w

∗))
1
κ

]
,

where the last inequality is by the definition of the Bernstein condition. This completes the proof.

E.2 Proof of Theorem 6.1

Proof. Let g(∆ℓi, ui) = (−1)ui∆ℓi. Notice that |g(∆Li, U
′
i)| ≤ β2 and g(∆Li, U

′
i) is agian

zero-mean, then

E∆Li,Ui [g(∆Li, Ui)] ≤
I(∆Li;Ui) + logE∆Li,U ′

i

[
etg(∆Li,U

′
i)
]

t

≤β2

√
2I(∆Li;Ui).
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Thus,

|Eµ(A)| ≤ β2

n

n∑
i=1

√
2I(∆Li;Ui).

To prove the disintegrated CMI bound, we let g be defined in the same way, and the remaining
development is the same with the proof in Theorem 4.5.

For the second inequality, notice that I(∆Li;Ui) ≤ I(∆Li;Ui|Z̃+
i ) by using the chain rule of

mutual information and the independence between Z̃+
i and Ui. In addition, moving the expectation

over Z̃+
i inside the square-root function by Jensen’s inequality, we have EZ̃+

i

√
IZ̃

+
i (∆Li;Ui) ≤√

I(∆Li;Ui|Z̃+
i ).

E.3 Proof of Theorem 6.2

Proof. Before we prove Theorem 6.2, we first show the following lemma.

Lemma E.1. For any i ∈ [n], we have
∑n

i=1 I(Fi, F̄i;Ui|Z̃+
i ) ≤ I(F[n], F̄[n];U |Z̃+

[n]).

Proof of Lemma E.1. First, by I(Fi, F̄i;Ui|Z̃+
i ) = H(Ui) − H(Ui|Fi, F̄i, Z̃

+
i ) and

I(Fi, F̄i;Ui|Z̃+
[n]) = H(Ui) − H(Ui|Fi, F̄i, Z̃

+
[n]), and notice that H(Ui|Fi, F̄i, Z̃

+
[n]) ≤

H(Ui|Fi, F̄i, Z̃
+
i ), we have

I(Fi, F̄i;Ui|Z̃+
i ) ≤ I(Fi, F̄i;Ui|Z̃+

[n]). (35)

Then, using the chain rule,

I(Fi, F̄i;Ui|Z̃+
[n]) + I(F[n]\i, F̄[n]\i;Ui|Z̃+

[n], Fi, F̄i) = I(F[n], F̄[n];Ui|Z̃+
[n]).

By the non-negativity of mutual information, we have

I(Fi, F̄i;Ui|Z̃+
[n]) ≤ I(F[n], F̄[n];Ui|Z̃+

[n]). (36)

Furthermore, by the independence of each Ui (i.e. I(Ui;U[n]\i|Z̃+
[n]) = 0), we have

n∑
i=1

I(F[n], F̄[n];Ui|Z̃+
[n]) ≤ I(F[n], F̄[n];U |Z̃+

[n]). (37)

Combining Eq. (35-37) will conclude the proof.

We now prove Theorem 6.2.

For a given Z̃[n], the number of distinct values of their predictions, denoted by k, are upper bounded
by the growth function of F evaluated at n,

k ≤
d∑

i=1

(
n
i

)
≤ (

en

d
)d,

where the second inequality is by Sauer-Shelah lemma [53, 57] for n > d+ 1.

Thus,

I(F[n], F̄[n];U
∣∣Z̃+

[n]) ≤ H(F[n], F̄[n]

∣∣Z̃+
[n]) ≤ H(F[n]

∣∣Z̃+
[n]) +H(F̄[n]

∣∣Z̃+
[n]) ≤ 2d log

(en
d

)
.

(38)
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By Jensen’s inequality and Lemma E.1, we have

1

n

n∑
i=1

√
I(Fi, F̄i;Ui|Z̃+

i ) ≤

√√√√ 1

n

n∑
i=1

I(Fi, F̄i;Ui|Z̃+
i ) ≤

√
I(F[n], F̄[n];U

∣∣Z̃+
[n])

n
.

Plugging Eq. (38) into the inequality above,

1

n

n∑
i=1

√
I(Fi, F̄i;Ui|Z̃+

i ) ≤ O

(√
d

n
log
(n
d

))
,

which completes the proof.

F CLB Exampls

In Example 1, [21, Thm. 17] demonstrates the non-vanishing behavior of individual IOMI and
e-CMI. This is primarily attributed to the dimension-dependent nature of IOMI and CMI. Specifically,
there are certain dimensional settings where IOMI can grow faster than O(n), as shown in [21,
Thm.4], and CMI approaches a certain fraction of its upper bound, as illustrated in Example 1,
resulting in non-vanishing behavior. Specifically, in Example 1, [21] employs the birthday paradox
[37, Sec. 5.1] problem to demonstrate that for a large value of d, the probability that no pair of
instances in Z̃ sharing the same non-zero coordinate (referred to as event E0) is smaller than a
constant probability (that could be independent of n). Particularly, it is shown that if d ≥ 2n−1

1−c1/(2n−1) ,

then P (E0) ≥ c ≥
(
1− 2n−1

d

)2n−1
. As an example, [21] chooses d = 2n2, resulting in c ≥ 0.1.

Failure of I(W ;Zi) Consider the case where d = 2n2. For the individual CMI [49, 70],
I(W ;Ui|Z̃i), we have the following:

I(W ;Ui|Z̃i) = log 2−H(Ui|W, Z̃i) ≥ 0.1 · log 2.

This inequality holds because when event E0 does not occur, one can determine the value of Ui

completely, as the returned hypothesis is a weighted sum of the sample. In other words, examining
the non-zero coordinates of W is sufficient to determine Ui. For an in-depth derivation of this
inequality, readers are referred to the updated version of [21], where their corrected proof involves
Fano’s inequality. Furthermore, using the relation I(W ;Zi) ≥ I(W ;Ui|Z̃i) [70], we conclude that
I(W ;Zi) ∈ Ω(1).

Failure of I(Ẑi;Ui|W̃i) Notably, our hypotheses-conditioned CMI also does not vanish for the
same reason. More precisely, when W̃i and Ẑi are given, there exists a constant probability (indepen-
dent of n) that allows us to fully determine the returned hypothesis based on Ẑi, thereby determining
the value of Ui.

Failure of I(∆Li;Ui) Furthermore, even the loss difference based CMI (e.g., as shown in Theo-
rem 6.1), which provides the tightest CMI measure, still does not vanish. This is attributed to the fact
that if the hypothesis W is independent of certain Z, there exists a constant probability where the
loss becomes zero (recall that the loss is the negative inner product of W and Z). Consequently, one
can determine the value of Ui by observing the sign of the random variable ∆Li. This also indicates
the limitations of e-CMI and f -CMI in capturing the generalization behavior for Example 1.

In Example 2, following the approach in [21], the training sample S = {Zi}ni=1 ∼ µn can be repre-
sented as S = z0

R0
(ε1, ε2, . . . , εn), where {εi}ni=1 is a sequence of independent Rademacher random

variables, i.e., εi ∼ Unif({−1, 1}). The empirical risk is given by LS(W ) = − −L
nR0

⟨W,
∑n

i=1 εi⟩.
In this case, the ERM solution is WERM = z0 if sign(

∑n
i=1 εi) = 1, and WERM = −z0 if

sign(
∑n

i=1 εi) = −1. It is clear that

sup
w,wi,z

∣∣ℓ(w, z)− ℓ(wi, z)
∣∣ ≤ sup

w,wi,z

L||w − wi|| ≤ 2LR0.
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Hence, we observe that β2 is now a constant, whereas IOMI has an upper bound:
∑n

i=1 I(W ;Zi) ≤
I(W ;S) ≤ I(W ; sign(

∑n
i=1 εi)) ≤ H(sign(

∑n
i=1 εi)) ≤ 1, where the second inequality follows

from the Markov chain S − sign(
∑n

i=1 εi)−W . This provides us with a generalization bound of
2LR0√

n
. Meanwhile, the actual generalization error satisfies Eµ(A) ≥ LR0√

2n
(see [21, AppendixB] for

a derivation). Thus, the IOMI bound is tight up to a constant, and the stability bound β2 itself is
vacuous. It is worth noting that I(Ẑi;Ui|W̃i) ≤ I(W ;Zi) ≤ 1 by Theorem4.2, indicating that the
CMI bound is also tight.

We would like to note that the failures of chained mutual information bounds [2] are not demonstrated
in the counterexamples presented in [21]. Notably, when the hypothesis is quantized, it becomes more
challenging to guess Ui or Zi. Therefore, exploring the potential of chained information-theoretic
bounds, which do not necessarily rely on stability notions, could be another avenue to explain the
generalization behavior observed in these counterexamples.

G Additional Applications

G.1 Compression Schemes

We now consider the algorithm that has a compression scheme [30]. Formally, a sample compression
scheme of size k ∈ N is a pair of maps (A1,A2). Specifically, for all samples s with n > k,
A1 : Zn → Zk compresses the sample into a length-k subsequence A1(s) ⊆ s. Then A2 :
Zk → W could be some arbitrary mapping. Hence, A(·) = A2(A1(·)). Let K be the index set
for S selected by A1, and let K be the selected index set for Si. In this case, our supersample-
conditioned CMI has an upper bound: I(Wi,W i;Ui|Z̃+

i ) ≤ I(K,K;Ui|Z̃+
i ) ≤ H(K,K|Z̃+

i ) ≤
2 log

(
n
k

)
≤ 2k log n. Then, if A is further β2-uniform stable, then we have the generalization bound

Eµ(A) ≤ O(β2

√
k log n). If β2 < O(1/

√
n), this bound improves the bound in [58]. It is unclear if

we can obtain any improved bound for stable compression schemes [7], in which case [19] provides
an optimal bound that removing the log n factor for the realizable setting. A main difficulty is that an
interpolating algorithm is usually unstable due to the fitting-stability tradeoff [54, Sec. 13.4].

G.2 Distillation Algorithm

The high-probability generalization property of distillation algorithm is studied in [16]. In the first
training stage of distillation, we obtain a w∗

s from a highly complex hypothesis space W1 based on
a training sample s. Same to [16], we assume that the first learning stage is α-sensitive, namely
||w∗

s − w∗
si || ≤ α = O(1/n). In the second stage, the algorithm A will select a hypothesis that is

λ-close to w∗
s from a less complex hypothesis space W2 = {w ∈ W : ||w−w∗

s ||∞ ≤ λ}. Let the loss
function ℓ be L-Lipschitz with respect to the first argument. Consequently, γ3 ≤ L||w∗

s −w∗
si || ≤ Lα.

Then, by Theorem 4.1, we have Eµ(A) ≤ Lα 1
n

∑n
i=1

√
2H(Ui) =

√
2 log 2Lα. Notice that the loss

here may not necessarily be bounded or sub-Gaussian, rendering previous bounds inapplicable.

G.3 Regularized Empirical Risk Minimization

Regularized Empirical Risk Minimization (ERM) learning rules involve minimizing the empirical
risk and a regularization function jointly: argminw∈W LS(w) + freg(w), where freg : W → R.
Here we specifically consider Tikhonov regularization [54], namely freg(w) = λ||w||2, where λ > 0
is a tradeoff coefficient. The regularized ERM algorithm A aims to find

w = arg min
w∈W

LS(w) + λ||w||2.

This regularization term ensures strong convexity of the training objective. Based on Theorem 4.3,
we can derive the following results.
Corollary G.1. Assume that the loss function ℓ is convex and L-Lipschitz. Then, for the regularized
ERM algorithm with Tikhonov regularization, we have

|Eµ(A)| ≤ 2L2

λn

(
1

n

n∑
i=1

I(Ẑ;Ui|W̃i) + 0.72

)
.
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Proof of Corollary G.1. By invoking [54, Corollary 13.6], we know that γ4 ≤ β2 = 2L2

λn . Plugging
the value of β2 will give us the desired result.

Corollary G.2. Assume that the loss function is ρ-smooth and nonnegative. Let λ ≥ 2ρ
n . Then, for

the regularized ERM algorithm with Tikhonov regularization, we have

|Eµ(A)| ≤ 48ρL̂n

λn

(
1

n

n∑
i=1

I(Ẑ;Ui|W̃i) + 0.72

)
.

Proof of Corollary G.2. By invoking [54, Corollary 13.7], we know that γ4 ≤ β2 = 48ρL̂n

λn . Plugging
the value of β2 will give us the desired result.

Although these bounds do not enhance the convergence rate of O(1/n) in these settings, they con-
sistently offer tighter results compared to uniform stability-based bounds if 1

n

∑n
i=1 I(Ẑ;Ui|W̃i) ≤

0.28. In addition, the expected empirical risk L̂n appears in the bound of Corollary G.2. While λ has
a lower bound, L̂n could not be arbitrarily small for the regularized ERM.

Notice that previous information-theoretic bounds could not obtain the convergence rate of O(1/n)
as in our results unless ICMI or CMI itself decays with O(1/n).

H Additional Discussions and Open Problems

Stochastic Gradient Descent (SGD) Since the influential work of [22], stability approaches have
been widely employed to provide generalization guarantees for (sub)gradient-based optimization
algorithms, such as SGD, under certain conditions like the convex-smooth-Lipschitz loss. More
recently, [5] extended the results of [22] to the non-smooth loss function in the SCO setting.

In contrast, information-theoretic (weight/hypothesis-based) bounds are typically used to analyze
the noisy version of SGD, known as SGLD [43, 40, 18, 49, 60]. Directly analyzing SGD poses
challenges because the returned hypothesis W contains a significant amount of information about S
or Zi, resulting in potentially large (even infinite) mutual information. The prevalent approach to
applying information-theoretic bounds to SGD is by introducing noise [41, 61], but this has been
shown to yield non-vanishing bounds in [21, Thm. 4].

The combination of information-theoretic bounds with stability for analyzing the generalization
of SGD presents a promising future direction. However, some potential difficulties may arise.
For instance, if we continue to use the Gaussian noise perturbation method for the weight-based
information-theoretic bounds, we would need to characterize the stability property for the perturbed
SGD, which might require techniques employed in [38]. Additionally, when combining stability
notions with loss difference based CMI (or e-CMI/f -CMI) bounds, as they cannot be unrolled using
the chain rule and data processing inequality as in the case of weight-based IOMI/CMI bounds, it may
not be possible to bound such CMI terms using trajectory-based quantities. This raises doubts about
the potential for obtaining more informative generalization bounds compared to the stability-based
bounds themselves.

Generalization Bounds beyond Mutual Information In the information-theoretic literature, it is
common to replace mutual information with alternative distributional measures, such as Wasserstein
distance based bounds and total variation based bounds [50]. A promising future direction is to
incorporate the stability property of algorithms into these bounds, as demonstrated in this work. It is
worth noting that obtaining KL divergence-based bounds should be straightforward since they rely on
the same foundational Lemma A.2 as discussed in this paper.
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