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Summary
Goal-conditioned reinforcement learning (GCRL) aims to train agents capable of achiev-

ing arbitrary goals, a task made significantly harder in offline settings where rewards and en-
vironment interaction are unavailable. Contrastive Reinforcement Learning (CRL) is a goal-
conditioned framework that learns value functions through contrastive objectives, enabling ef-
fective policy learning from offline datasets without reward labels or environment interaction.
In parallel, model-based reinforcement learning (MBRL) has shown that learning predictive
representations of environment dynamics can significantly improve policy performance and
sample efficiency. While both approaches learn features that anticipate future states, their
integration remains underexplored. In this work, we investigate whether model-based predic-
tive representations can enhance CRL’s similarity-based value estimation. We propose Model-
based Representations for Contrastive Reinforcement Learning (MR-CRL), a simple exten-
sion that augments CRL with predictive state and dynamics encoders trained using a novel
cross-entropy loss objective over latent dynamics predictions. We evaluate multiple integra-
tion strategies within the CRL architecture and find that MR-CRL outperforms the original
CRL baseline on 4 out of 18 tasks in the OGBench benchmark, with significant gains in both
low- and high-dimensional environments. While gains are not universal, our results suggest
that model-based inductive biases can enhance training goal-reaching on some tasks.

Contribution(s)
1. We propose MR-CRL, a simple extension to contrastive reinforcement learning that inte-

grates model-based predictive representations into the critic architecture.
Context: Context: MR-CRL draws on well-established insights from two distinct rein-
forcement learning paradigms: model-based RL and contrastive RL. We investigate the
utility of incorporating model-based representations into a contrastive, model-free setting.

2. We introduce a cross-entropy loss for training predictive state and dynamics representations,
drawing on techniques from self-supervised and model-based learning.
Context: Context: Prior work in model-based representation learning for model-free rein-
forcement learning primarily uses L2 reconstruction losses. Our proposed loss, inspired by
cross-entropy objectives in self-supervised and model-based RL literature, improves train-
ing stability and representation quality.

3. We evaluate multiple integration strategies for using model-based features within CRL’s
actor and critic networks and analyze their tradeoffs across tasks.
Context: Context: Our ablation study helps clarify how predictive state and state-action
embeddings influence contrastive value learning.

4. We show that MR-CRL improves over CRL in 4 out of 18 tasks in the OGBench benchmark,
particularly in low-dimensional and structured settings.
Context: Context: While improvements are not universal, results suggest that model-based
inductive biases can benefit contrastive goal-conditioned RL in specific domains.
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Abstract

Goal-conditioned reinforcement learning (GCRL) aims to train agents capable of
achieving arbitrary goals, a task made significantly harder in offline settings where re-
wards and environment interaction are unavailable. Contrastive Reinforcement Learn-
ing (CRL) is a goal-conditioned framework that learns value functions through con-
trastive objectives, enabling effective policy learning from offline datasets without re-
ward labels or environment interaction. In parallel, model-based reinforcement learning
(MBRL) has shown that learning predictive representations of environment dynamics
can significantly improve policy performance and sample efficiency. While both ap-
proaches learn features that anticipate future states, their integration remains underex-
plored. In this work, we investigate whether model-based predictive representations
can enhance CRL’s similarity-based value estimation. We propose Model-based Rep-
resentations for Contrastive Reinforcement Learning (MR-CRL), a simple extension
that augments CRL with predictive state and dynamics encoders trained using a novel
cross-entropy loss objective over latent dynamics predictions. We evaluate multiple
integration strategies within the CRL architecture and find that MR-CRL outperforms
the original CRL baseline on 4 out of 18 tasks in the OGBench benchmark, with sig-
nificant gains in both low- and high-dimensional environments. While gains are not
universal, our results suggest that model-based inductive biases can enhance training
goal-reaching on some tasks.

1 Introduction

Goal-conditioned reinforcement learning (GCRL) seeks to train agents capable of reaching arbi-
trary goal states, enabling general-purpose policies across many tasks. When learning from offline
datasets—without reward labels or online environment interaction—this problem becomes espe-
cially challenging.

Contrastive Reinforcement Learning (CRL), introduced by Eysenbach et al. (2022), offers an ele-
gant solution to this challenge by learning state representations through contrastive objectives that
directly encode goal-reaching behavior. Rather than relying on traditional temporal difference learn-
ing Sutton (1988), CRL trains a critic to discriminate between state-action pairs that lead to desired



RLBrew Workshop @ RLC 2025

future states versus those that do not. The key insight is to parameterize the critic as an inner prod-
uct between learned state-action embeddings and goal embeddings, creating a similarity metric that
naturally captures goal-conditioned value functions. This approach enables agents to navigate to
specified future states by leveraging the learned associations between current state-action pairs and
their reachable outcomes.

Meanwhile, model-based reinforcement learning has demonstrated significant advances in sample
efficiency and performance by learning predictive representations of environment dynamics. Meth-
ods such as Dreamer (Hafner et al., 2024) and SALE (Fujimoto et al., 2023) show that training
neural networks to predict future states and representations can inject valuable inductive biases into
policy learning. These predictive models capture temporal structure and controllable aspects of the
environment, leading to more informed decision-making and improved generalization.

Notably, both CRL and MBRL learn representations that anticipate future states—yet these frame-
works have remained largely disconnected. While CRL learns to associate state-action pairs with
future goal states through contrastive objectives, model-based methods learn explicit predictive mod-
els of state transitions.

In this work, we investigate whether model-based predictive representations can enhance goal-
conditioned policy learning within the CRL framework. We hypothesize that these predictive em-
beddings, which capture structured and temporally coherent information through dynamics predic-
tion, will offer a beneficial inductive bias for CRL’s similarity-based value functions.

We propose Model-based representations for Contrastive Reinforcement Learning (MR-CRL), a
contrastive reinforcement learning framework enhanced with model-based representations. Our key
contributions are:

• We introduce a novel training objective for model-based representation learning, using cross-
entropy loss over latent dynamics predictions. This approach is inspired by insights from self-
supervised learning methods (Grill et al., 2020; Oquab et al., 2023) and discrete embeddings in
modern MBRL works (Hafner et al., 2024). Our proposed loss increases training stability of the
model-based representations.

• We investigate multiple strategies for integrating learned state and dynamics embeddings into
CRL’s actor and critic networks, enabling richer goal-conditioned value estimation.

• We demonstrate that MR-CRL outperforms the original CRL baseline on 4 out of 18 tasks in
the OGBench benchmark, with substantial improvements in both low-dimensional and high-
dimensional environments.

2 Related Works

2.1 Representation Learning

The goal of representation learning is to learn a mapping from the input space to the latent space
such that the mapping can be generalized to unseen data. Strong interest has risen especially in
self-supervised methods with the promise of training on primarily unlabeled data. One such ap-
proach is done through autoencoders such as Masked Autoencoders (He et al., 2022) which learns
to reconstruct the original input. Alternatively, the input can be randomly augmented to provide
two variations of the same input, one of which is passed to the online network and the other to the
target network, as is done in BYOL (Grill et al., 2020). The model is then trained to minimize the
difference in features between the online and target network.

DINO is another effective method of representation learning in images that combines label-free
knowledge distillation with self-supervised learning (Caron et al., 2021). Containing an architec-
turally identical student network and a teacher network, the student learns to match the teacher
network’s output by minimizing the cross-entropy loss, while the teacher’s weights are updated
through an exponential moving average (EMA) of the student’s weights. To encourage local-global
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correlations, a multi-crop strategy is performed on the single input image to produce two global
crops and several local crops. Only the two global crops are provided to the teacher, whereas the
student receives all the image crops. DINO is then extended through the addition of iBOT losses
(Zhou et al., 2022) and a more efficient implementation in DINOv2 (Oquab et al., 2023).

A different learning paradigm is done through contrastive learning. Instead of only augmenting the
same image to extract positive samples, contrastive learning techniques such as MoCo and SimCLR
uses both positive samples and negative samples, where the negative samples comes from different
images (He et al., 2020; Chen et al., 2020). The features are learnt such that the similarity in features
between positive samples are minimized, while the distance to negative samples are maximized.
CLIP then extends this by combining text with images by training on image+caption pairs (Radford
et al., 2021).

2.2 Reinforcement Learning

Reinforcement learning can be broadly split into model-based and model-free methods. The model-
based method similar to our proposed method is the use of world models, first proposed by Ha &
Schmidhuber (2018) and further developed by the Dreamer series of models (Hafner et al., 2019;
2020; 2024), which aims to learn a dynamics model that is then used to perform imaginary rollouts
without the need to interact with the environment. TD-MPC extends this by learning the dynamics
of a learnt latent space instead of operating directly on the pixel space as done by Dreamer (Hansen
et al., 2022).

In contrast, a model-free approach that our work extends is Contrastive RL (CRL) (Eysenbach et al.,
2022). The underlying principle behind CRL is to provide a method of learning features that can
directly perform goal-conditioned RL, in contrast to decoupling the representation learning and
goal-conditioned RL. This is accomplished by employing an actor critic method, where the critic
is parameterized by two representations whose inner product represents the value function. Further
work demonstrates that providing a single goal to CRL is sufficient for it to perform goal-conditioned
RL, without the need for any intrinsic or extrinsic rewards (Liu et al., 2024).

2.3 Representation Learning in RL

Representation learning has been applied to RL in order to produce a latent space that the policy
can more easily learn in. Methods of creating these state representations include using autoencoders
(Finn et al., 2016) or through contrastive learning objectives (Laskin et al., 2020). SALE takes
a different approach and learns both the state and state-action embeddings, thus providing repre-
sentations of both the observation space and the dynamics model (Fujimoto et al., 2023). These
embeddings are then appended to the input state and action. In contrast to world model methods, the
embeddings are only used to improve the input to the value function, as opposed to using them for
imaginary rollouts. This work is then extended in MR.Q, which foregoes the input state and action
into the value function while incorporating the reward and termination losses into the learning of the
state and state-action embeddings (Fujimoto et al., 2025).

3 Background

3.1 Model-Free Reinforcement Learning

Reinforcement learning (RL) is a framework in which an agent interacts with an environmentM,
making sequential decisions to maximize cumulative reward r. At each time step t, the agent ob-
serves a state st ∈ S, selects an action at ∈ A, receives a reward r(st, at), and transitions to a new
state st+1 according to the dynamics of the environment. The goal of the agent is to learn a policy
π(a|s) that maximizes expected discounted return over time.



RLBrew Workshop @ RLC 2025

Among the many classes of RL algorithms, this work focuses on actor-critic methods (Konda &
Tsitsiklis, 1999). In these methods, a critic network estimates the value of a state-action pair, typi-
cally in the form of a Q-function:

Q(s, a) = E

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
, (1)

where γ is a discount factor and the expectation is taken over trajectories induced by the policy and
environment dynamics. The actor network uses the critic network to update the policy in a direction
that increases expected returns.

In our work, we adopt the Deterministic Deep Policy Gradient (DDPG) algorithm (Lillicrap et al.,
2019), a model-free actor-critic method for continuous control. The actor is represented by a deter-
ministic policy π(s; θπ), which maps states to actions. The actor is trained with loss:

Lactor(θ
π) = −Es∼D [Q(s, π(s; θπ))] , (2)

where D is the replay buffer. This loss encourages the actor to choose actions that maximize the
critic’s predicted value, i.e., the expected return.

3.2 Model-Based Representation Learning for Model-Free Reinforcement Learning

A growing body of work has investigated how predictive representations, learned via model-based
objectives, can benefit model-free actor-critic algorithms (Fujimoto et al., 2023; 2025). These ap-
proaches aim to inject structure and temporal coherence into the learned embeddings, improving
generalization and sample efficiency without explicitly planning over future trajectories.

In these approaches, two neural networks are used to encode latent dynamics: a state encoder z1 :
S → Rd that maps raw observations to compact representations, and a state-action encoder z2 :
Rd × A → Rd that predicts the next state’s embedding from the current state representation z1(s)
and action a. These encoders are trained with a dynamics reconstruction loss:

Ldynamics(st+1, st, at) = ∥sg(z′1(st+1))− z2(z1(st), at)∥
2
, (3)

where sg denotes stopgrad and z′1 is a target encoder whose parameters are updated periodically
every p iterations. This loss encourages z2 to produce accurate predictions of the future latent state.
This structured learning objective encourages representations that capture controllable aspects of the
environment and are predictive of future states. It promotes temporally coherent representations that
model the environment’s dynamics without explicitly constructing a generative model.

To capture long-range and self-consistent representations, the final loss is summed over a rolled-out
trajectory of length H:

Lmodel =

H∑
h=1

Ldynamics(st+h, st+h−1, at+h−1) (4)

Once trained, the encoders can be used to augment the actor and critic networks in various ways.
For the actor, one can condition the policy on both the raw state and its representation, i.e.,
π(a | s, z1(s)), or even use the representation alone, π(a | z1(s)). For the critic, value functions
can be defined using a combination of state and action embeddings, Q(s, a, z1(s), z2(z1(s), a)) or
Q(z2(z1(s), a)) depending on whether raw inputs are retained. We explore several such architectural
variants in Section 5.2.
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3.3 Goal-Conditioned Reinforcement Learning

In goal-conditioned reinforcement learning (GCRL), the agent is tasked with reaching a specific goal
state sg ∈ S. The environment is defined by states st ∈ S, actions at ∈ A, initial state distribution
p0(s), transition dynamics p(st+1 | st, at), and a goal distribution pg(sg). Each goal defines a
different task, making GCRL a form of multi-task RL (Veeriah et al., 2018; Schaul et al., 2015).

We adopt a goal-reaching reward defined by the likelihood of arriving at the goal in the next time
step: rg(st, at) = (1− γ) p(st+1 = sg | st, at). Such a reward definition avoids the need for user-
defined distance metrics and aligns with prior work on goal-reaching objectives (Andrychowicz
et al., 2018; Pong et al., 2020; Eysenbach et al., 2022). The agent learns a goal-conditioned policy
π(a | s, sg) that maximizes the expected return over sampled goals:

max
π

Esg∼pg, τ∼π(·|sg)

[ ∞∑
t=0

γtrg(st, at)

]
. (5)

We define the corresponding goal-conditioned Q-function as

Qπ
sg (s, a) = Eτ∼π(·|sg)

[ ∞∑
t′=t

γt
′−trg(st′ , at′) | st = s, at = a

]
. (6)

This formulation allows learning policies that are capable of reaching and remaining at arbitrary
goal states, using shared experience across many goals.

3.4 Contrastive Reinforcement Learning

Contrastive reinforcement learning (CRL) is a goal-conditioned reinforcement learning framework
that learns value functions using contrastive objectives derived from self-supervised representation
learning (Eysenbach et al., 2022). Rather than relying on traditional bootstrapped temporal differ-
ence (TD) targets, CRL reframes value estimation as a discriminative task: identifying whether a
given state-action pair (s, a) leads to a specific goal state g in the future.

At the core of CRL is a critic function that measures the compatibility between state-action pairs
and goal states. This critic is parameterized as a dot product between two learned representations:

f(s, a, g) = ϕ(s, a)⊤ψ(g), (7)

where ϕ(s, a) encodes the state-action pair and ψ(g) encodes the goal. This similarity score serves
as an unnormalized proxy for the Q-function:

Qπ
g (s, a) ∝ exp(f(s, a, g)). (8)

The critic is trained via a contrastive binary classification loss, which encourages high similarity
between state-action pairs and future goal states they actually reach (positive pairs), and low simi-
larity for mismatched pairs (negative samples). This loss, known as the NCE-binary objective (Ma
& Collins, 2018), is defined as:

Lcontrastive = log σ
(
ϕ(s, a)⊤ψ(s+f )

)
+ log

(
1− σ

(
ϕ(s, a)⊤ψ(s−f )

))
, (9)

where s+f is a goal actually reached in the future from (s, a) and s−f is a randomly sampled goal
state. Minimizing this loss encourages the critic to act as a probabilistic classifier that captures
goal-reaching likelihoods under the current policy.

The actor is trained using the learned critic to select actions that increase the probability of reaching
a desired goal. We adopt a deterministic actor, trained with a modified DDPG-style objective. Given
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the offline nature of the training setting, we add a behavior cloning loss to ensure policy stability.
The full actor loss is:

Lactor = −Es,g [f(s, π(s, g), g)] + αEs,a

[
∥π(s, g)− a∥2

]
, (10)

where α is a weighting coefficient for the behavior cloning regularization.

This contrastive formulation leads to a simple yet effective actor-critic algorithm for goal-reaching
tasks. Unlike traditional TD-based RL, CRL requires no value bootstrapping, target networks, or
auxiliary rewards, and is naturally suited for learning from static offline datasets.

4 Methodology

Our method trains state encoders to learn predictive representations with model-based losses, and
uses the state encoder features within the critic networks of CRL. Prior works has proven that the
learned Q-function of CRL is equivalent to the state occupancy measure (Eysenbach et al., 2022),
and that by learning the proxy to the Q-function, the Markovian dynamics can also be learnt (Ma-
zoure et al., 2023). Eysenbach et al. (2022) demonstrates the ability of CRL to learn non-linear
environment dynamics within a simple visual maze-like environment. However, we hypothesize
that using explicit predictive representations can help the critic learn more informative similarity
scores between state-action pairs and future goal states using fewer training steps, thus enhancing
the performance of CRL in offline settings.

4.1 Training the Encoder for Model-Based Representations

We incorporate the state encoders z1 : S → Rd that maps raw observations to latent features, and a
state-action encoder z2 : Rd×A → Rd that predicts the future latent state from the current encoded
state and action.

Our experiments found that training state encoders with L2 loss, as in the prior work of Fujimoto
et al. (2023; 2025), did not yield significant gains over the CRL baseline. Furthermore, the state en-
coder losses (Eq. 4) were non-smooth and non-monotonic, indicating that the network was struggling
to learn the dynamics. This is further explored within Section 5.2. We instead propose using cross-
entropy (CE) loss to learn more effective representations. CE is advantageous for two reasons: (1)
In self-supervised learning, especially in teacher-student frameworks like DINO and BYOL (Caron
et al., 2021; Grill et al., 2020; Oquab et al., 2023; Hinton et al., 2015), CE encourages the student
to match the teacher’s semantic structure, yielding richer, transferable features. (2) In model-based
RL, DreamerV3 (Hafner et al., 2024) uses discrete latents and KL-divergence (a form of CE) to
enhance stability and generalization. These findings suggest CE promotes structure and information
retention, making it well-suited for learning predictive encoders in RL.

Let m(·) denote a projection head, and τs, τt be the respective temperatures for the student and
teacher outputs. The L2 dynamics loss (Eq. 3) is replaced by CE:

Ldynamics = CE (sg(softmax(m′(z′1(st+1)/τt))), softmax(m(z2(z1(st), at)/τs))) , (11)

wherem′, z′1 denote slowly updated target networks and sg denotes stopgrad. Similar to prior model-
based representation works, this loss is computed over horizon segments of length H to enforce
temporal consistency.

4.2 Contrastive RL with Learned Encoders

To exploit these representations, we redefine the critic used in contrastive RL. Inspired by Fujimoto
et al. (2023), we append the predictive features from the learned encoders as additional inputs to the
existing critic encoders of CRL. The critic function f(s, a, g) is now expressed as:

f(s, a, g) = ϕ(s, a, z′1(s), z
′
2(z

′
1(s), a))

⊤ψ(g), (12)
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where ϕ, the critic’s state-action encoder, is a function of the state, action, and their predictive
embeddings computed using frozen target encoders z′1 and z′2, and ψ(g) is the critic’s goal encoder.

Since the critic encoder ϕ is trained to align with future goal states reachable from (s, a), it benefits
from incorporating model-based features—specifically, the predictive embedding z2(z1(s), a) and
the compact state representation z1(s). Together, these components provide temporally rich infor-
mation about future dynamics and concise, informative representations of the current state. Their
effectiveness is validated in Section 5.1.

In the ablations in Section 5.2, we explored how the inclusion of model-based representations affects
other components of the architecture—namely the goal encoder ψ and the policy network π. We
also tested the effect of omitting z1(s) altogether. Our results indicate that while incorporating
these changes can lead to performance gains on several tasks, they can also degrade performance
on others. This highlights an important tradeoff: although model-based features introduce useful
inductive bias, their utility can vary across environments depending on the nature of the task and the
quality of the learned representations.

The actor and critic networks are trained following the standard CRL framework, using the DDPG
objective for the actor and the contrastive binary classification loss (Eq. 9) for the critic.

4.3 Training Procedure

Networks

Encoders
State encoder z1(s)
State-action encoder z2(a, z1(s))
Projector m(·)
Contrastive RL actor-critic
Critic goal ψ(g)
Critic state-action ϕ(s, a, z1(s), z2(z1(s), a))
Policy a ∼ π(s, g)

Training Loop

for t in 1 : T
Sample batch (s, a, r, s′, g) from

replay buffer.
Update encoder networks z1, z2,m

with dynamics loss (Eq. 11).
Update critic networks ϕ, ψ with

contrastive loss (Eq. 9).
Update policy π(s, g) with

actor loss (Eq. 2).
if t%p = 0 then

Update target networks:
z′1, z

′
2,m

′ ← z1, z2,m

Algorithm 1: Networks and training loop describing MR-CRL.

Algorithm 1 outlines the training procedure. At each training step, the encoders and CRL actor-critic
networks are updated with a training batch. The weights of the frozen encoder target networks are
copied every p training steps, similarly to Fujimoto et al. (2023).

5 Experiments

Benchmark We evaluate our method on the OGBench benchmark (Park et al., 2025), a diverse suite
designed for offline goal-conditioned reinforcement learning. OGBench includes tasks that require
long-horizon planning, stitching subgoals, and reasoning over noisy or suboptimal data, providing
a comprehensive testbed for general-purpose policy learning. Our experiments span 18 tasks drawn
from six environment families, covering both state-based locomotion and manipulation domains.

Specifically, we use three categories of manipulation tasks: Puzzle, which requires solving L̈ights
Out-̈style grid puzzles via robot-arm button presses; Cube, which involves rearranging and stacking
colored blocks; and Scene, which requires sequential manipulation of drawers, buttons, and other
interactive objects. Each of these tasks features variants based on grid size or data type, such as
play (expert-like) and noisy (highly noised expert trajectories) datasets. For locomotion, we use
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three maze-based navigation environments: PointMaze, AntMaze, and HumanoidMaze. These tasks
involve controlling agents with increasing degrees of freedom—ranging from a 2D point mass to
a quadrupedal ant and a 21-DoF humanoid robot—to reach goal locations in challenging mazes.
Dataset variants include navigate (expert-like), explore (random), and stitch (disjoint segments),
each presenting unique algorithmic challenges.

Baseline The main baseline we compare to is CRL (Eysenbach et al., 2022), as this work directly
extends upon the original method.

Experimental Setup We set the behavior cloning weight to α = 0.15 and the student temperature
to τs = 1.0. The teacher temperature τt is annealed using a cosine schedule, starting at 0.04 and
increasing to 0.07 as done in Oquab et al. (2023). Following standard setup (Park et al., 2025), we
train each agent for 1 million steps on offline datasets and evaluate performance over 20 episodes.
Target networks are updated every p = 250 steps, and model-based representation losses are com-
puted over rollout horizons of length H = 15, consistent with prior work (Fujimoto et al., 2023;
2025). A warmup period of 50k steps was included, where the target networks were updated every
step without updating the actor and critic. All networks—z1, z2, ϕ, ψ, and π—are implemented as
three-layer multilayer perceptrons (MLPs) with 512 hidden units per layer and GELU activations.
We train using a batch size of 1024 and a learning rate of 10−4.

5.1 Results

MR-CRL is compared against CRL as a baseline in Table 1. In the PointMaze environment, MR-
CRL significantly outperforms the baseline with a score of 24 compared to the 0 from CRL. The

Environment Dataset CRL MR-CRL

PointMaze pointmaze-medium-stitch-v0 0± 1 24 ± 9
pointmaze-large-stitch-v0 0± 0 1 ± 3

AntMaze antmaze-large-navigate-v0 83± 4 84± 6
antmaze-medium-stitch-v0 53 ± 6 32± 8

antmaze-large-stitch-v0 11 ± 2 0± 0
antmaze-medium-explore-v0 3± 2 14 ± 6

antmaze-large-explore-v0 0± 0 5 ± 6

HumanoidMaze humanoidmaze-medium-navigate-v0 60± 4 63± 7
humanoidmaze-medium-stitch-v0 36 ± 2 20± 5

humanoidmaze-large-stitch-v0 4 ± 1 0± 0

Cube cube-single-play-v0 19 ± 2 0± 1
cube-single-noisy-v0 38 ± 2 27± 4
cube-double-noisy-v0 2± 1 2± 1

Scene scene-play-v0 19 ± 2 0± 0

Puzzle puzzle-3x3-play-v0 3± 1 17 ± 6
puzzle-4x4-play-v0 0± 0 0± 0
puzzle-3x3-noisy-v0 30 ± 6 4± 2
puzzle-4x4-noisy-v0 0± 0 0± 0

Table 1: Results of experiments on OGBench datasets with standard deviations provided after the
± sign. Scores for CRL are taken directly from published work that uses eight seeds (Park et al.,
2025), whereas scores for MR-CRL are averaged across four seeds. For methods whose difference
in scores are statistically significant, as determined by a Welch’s Test with significance level 0.05,
the better score is bolded. MR-CRL outperforms CRL on 4/18 tasks but underperforms on 8/18
tasks.
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improvement is explained through the consistently lower state-action encoder loss as shown in Fig-
ure 1. For a simple two-dimensional state space such as PointMaze, it is easy to learn the dynamics
of the environment, as opposed to more complex higher-dimensional environments such as Cube
and Puzzle. The strong state-action representations are then key to the performance improvement.
Furthermore, this result shows that state and state-action embeddings are beneficial even for low-
dimensional tasks, which was first proposed by Fujimoto et al. (2023).

Both CRL and MR-CRL perform comparably for antmaze-navigate, but differences appear between
the stitch and explore variations, with CRL doing better on stitch and MR-CRL outperforming on
explore. One interpretation of these results is that because the explore dataset contains random
exploratory actions, it provides high coverage of the state-space which reduces the chances of out-
of-distribution states during evaluation. This high coverage can then be captured in the state and
state-action encoders, whereas CRL does not have an explicit mechanism to do so.

In the Cube and Scene environments, MR-CRL significantly underperforms CRL likely due to an
overestimation of the state encoder which leads to an overconfident critic prediction. Thus, the learnt
embeddings are negatively impacting the critic’s ability to learn strong contrastive representations.

Finally, for the Puzzle environment, which is the highest dimensional environment, MR-CRL greatly
improves on the baseline for the play variant but underperforms on the noisy variant. One possible
explanation of this result can be that because the noisy variant explores more of the high-dimensional
state-space, it takes longer to learn the more vast dynamics. In contrast, the play variant’s trajectories
are more confined to a subset of expert trajectories, thus providing a smaller, simplified state space.
Future work should explore if increasing the training time produces better results for the noisy
variants and other environments with complex dynamics.

5.2 Ablations

Ablations were conducted on where the state and state-action encoders are used, as well as applying
an exponential moving average on the update of the state and state-action encoders. Furthermore, L2
loss on the encoders was tested as opposed to the cross entropy loss used in the other models, while
keeping the rest of the model the same. The different ablations are outlined and named in Table 2,
with the results shown in Table 3. Although the results show that no one method is consistently better
across all environments, some models perform better at specific environments. The No state encoder
model performs noticeably better on the PointMaze and HumanoidMaze environments, which may
suggest that focusing purely on learning the dynamics of the environment through the state-action
encoder may be beneficial even though the critic network is smaller. Meanwhile, the EMA target
model produces strong and consistent performance on puzzle-3x3-play and puzzle-3x3-noisy, while
all other methods exhibit a difference in score between the two variants. This may imply that the
EMA encoder may help with stabilizing the training especially when the state space is extremely
large. However, this model is unable to solve the PointMaze environment.

z1(s)
on actor

z1(s)
on ϕ

z2(z1(s), a)
on ϕ

z1(s)
on ψ

EMA
encoder

L2
loss Model name

✗ ✓ ✓ ✗ ✗ ✗ Baseline
✗ ✗ ✓ ✗ ✗ ✗ No state encoder
✗ ✓ ✓ ✓ ✗ ✗ Goal encoder
✓ ✓ ✓ ✗ ✗ ✗ Actor encoder
✗ ✓ ✓ ✗ ✓ ✗ EMA target
✗ ✓ ✓ ✗ ✗ ✓ L2 loss

Table 2: Ablations conducted and the associated model names.



RLBrew Workshop @ RLC 2025

Dataset Baseline No state
encoder

Goal
encoder

Actor
encoder

EMA
target

L2
loss

pointmaze-medium-stitch-v0 24 32 26 1 0 7

antmaze-large-navigate-v0 84 60 90 88 88 86
antmaze-medium-stitch-v0 32 34 23 28 33 45

antmaze-medium-explore-v0 14 21 16 18 22 5

humanoidmaze-medium-navigate-v0 63 80 67 64 65 43
humanoidmaze-medium-stitch-v0 20 30 23 23 29 47

cube-single-noisy-v0 27 28 37 21 26 22
cube-double-noisy-v0 2 2 1 2 5 7

puzzle-3x3-play-v0 17 16 25 7 21 20
puzzle-3x3-noisy-v0 4 4 0 22 22 0

Table 3: Results of ablations. Aside from the baseline model which is averaged across four seeds,
all results are performed using a single seed. The best score in each environment is bolded. Relative
to the baseline, all methods improve and lose performance on some tasks.

Figure 1: Comparison of the encoder loss (Eq. 4) curves when training encoders with L2 reconstruc-
tion loss (Eq. 3) versus the proposed CE loss (Eq. 11). The proposed CE loss yields much smoother
loss curves with non-zero and non-saturating error.

With regards to the L2 loss model, it performs well on the antmaze-stitch and humanoid-stitch
environments, but overall it does not outperform the baseline model and it only exceeds CRL on
humanoid-medium-stitch. Figure 1 shows that the L2 encoder loss (Eq. 3) curve is much less smooth
and monotonic than the CE encoder loss (Eq. 11) curve, showcasing the CE loss enhances training
stability. Furthermore, the L2 encoder loss can degenerate to near-zero values on some tasks, while
the CE loss stays non-zero.

In addition to ablations on the model architecture, some preliminary ablations were conducted on
the training strategy. Initial tests showed that excluding the warmup period, where only the target
networks are updated, caused a deterioration in the results. Future work will explore further ablations
to the training strategy of the encoders, such as the scheduling of the target network updates.

6 Conclusion

We introduced MR-CRL, a simple yet effective extension to contrastive reinforcement learning that
integrates model-based predictive representations. By training encoders with a novel cross-entropy
loss and incorporating their outputs into the CRL architecture, we achieve improved performance on
a subset of tasks in the OGBench benchmark. While not all tasks benefited from the representations,
our results suggest that model-based inductive biases can enhance contrastive value learning.
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