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Abstract: Model-based reinforcement learning (RL) methods are appealing in the1

offline setting because they allow an agent to reason about the consequences of actions2

without interacting with the environment. While conventional model-based methods3

learn a 1-step model, predicting the immediate next state, these methods must be4

plugged into larger planning or RL systems to yield a policy. Can we model the5

environment dynamics in a different way, such that the learned model directly indicates6

the value of each action? In this paper, we propose Contrastive Value Learning (CVL),7

which learns an implicit, multi-step dynamics model. This model can be learned8

without access to reward functions, but nonetheless can be used to directly estimate the9

value of each action, without requiring any TD learning. Because this model represents10

the multi-step transitions implicitly, it avoids having to predict high-dimensional11

observations and thus scales to high-dimensional tasks. Our experiments demonstrate12

that CVL outperforms prior offline RL methods on complex robotics benchmarks.13

1 Introduction14

While control from offline demonstrations is relevant to many real-world applications (e.g. sample-efficient15

pre-training for robots, [1]) in case the ability for online data collection is limited, it often requires16

the algorithms to find policies that are not well-supported by the training data. Instead of learning via17

trial-and-error, offline RL algorithms must leverage logged historical data to learn about the outcome of18

different actions, potentially by capturing environment dynamics as a proxy signal. Many prior approaches19

for this offline learning setting have been proposed, whether in model-free [2, 3, 4] or model-based [5, 6]20

settings. Our focus will be on those that address this prediction problem head-on: by learning a predictive21

model of the environment which can be used in conjunction with most model-free algorithms.22

Prior model-based methods [7, 8, 5, 6] learn a model that predicts the observation at the next time step.23

This model is then used to generate synthetic data that can be passed to an off-the-shelf RL algorithm.24

While these approaches can work well on some benchmarks, they can be complex and expensive: the25

model must predict high-dimensional observations, and determining the value of an action may require26

unrolling the model for many steps. Learning a model of the environment has not made the RL problem27

any simpler. Moreover, as we will show later in the paper, the environment dynamics are intertwined with28

the policy inside the value function; model-based methods aim to decouple these quantities by separately29

estimating them. On the other hand, we show that one can directly learn a long-horizon transition model30

for a given policy, which is then used to estimate the value function. A natural use case for learning this31

long-horizon transition model (specifically, a state occupancy measure) from unlabelled data is multi-task32

pretraining, where the implicit dynamics model is trained on trajectory data across a collection of tasks,33

often exhibiting positive transfer properties. As we demonstrate in our experiments, this multi-task34

occupancy measure can then be finetuned using reward-labelled states on the task of interest, greatly35

improving performance upon existing pretraining methods as well as tabula rasa approaches.36

In this paper, we propose to learn a different type of model for learning from offline data, a model which (1)37

will not require predicting high-dimensional observations and (2) can be directly used to estimate Q-values38

without requiring either model-based rollouts or model-free temporal difference learning. Precisely, we39

will learn an implicit model of the discounted state occupancy measure, i.e. a function which takes in40

a state, action and future state and outputs a scalar proportional to the likelihood of visiting the future41
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Figure 1: Contrastive Value Learning: A stylized illustration of trajectories (grey) and the rewards at future states
(e.g., +8, -5). (Left) Q-learning estimates Q-values by “backing up” the rewards at future states. (Right) Our method
learns the Q-values by fitting an implicit model to estimate the likelihoods of future states (blue), and taking the
reward-weighted average of these likelihoods.

state under some fixed policy. We will learn this implicit model via contrastive learning, treating it as42

a classifier rather than a generative model of observations. Once learned, we predict the likelihood of43

reaching every reward-labeled state. By weighting these predictions by the corresponding rewards, we44

form an unbiased estimate of the Q-function. Whereas methods like Q-learning estimate the Q-function45

of a state “backing up” reward values, our approach goes in the opposite direction, “propagating forward”46

predictions about where the robot will go.47

We name our proposed algorithm Contrastive Value Learning(CVL). CVL is a simple algorithm for48

model-free control from offline data which learns the future state occupancy measure using contrastive49

learning and re-weights it with the future reward samples to construct a quantity proportional to the true50

value function. Because CVL represents multi-step transitions implicitly, it avoids having to predict51

high-dimensional observations and thus scales to high-dimensional tasks. Using the same algorithm, we52

can handle settings where reward-free data is provided, which cannot be directly handled by classical53

offline RL methods such as FQI [9] or BCQ [3]. We compare our proposed method to competitive offline54

RL baselines, notably CQL [4] and CQL+UDS [10] on an offline version of the multi-task Metaworld55

benchmark [11], and find that CVL greatly outperforms the baseline approaches as measured by the56

rliable library [12]. Additional experiments on image-based tasks from this same benchmark show57

that our approach scales to high-dimension tasks more seamlessly than the baselines. We also conduct58

a series of ablation experiments highlighting critical components of our method.59

2 Related works60

Prior work has given rise to multiple offline RL algorithms, which often rely on behavior regularization61

in order to be well-supported by the training data. The key idea of offline RL methods is to balance62

interpolation and extrapolation errors, while ensuring proper diversity of out-of-dataset actions. Popular63

offline RL algorithms such as BCQ and CQL rely on a behavior regularization loss [2] as a way to control64

the extrapolation error. This regularization term ensures that the learned policy is well-supported by the data,65

i.e. does not stray too far away from the logging policy. The major issue with current offline RL algorithms66

is that they fail to fully capture the entire distribution over state-action pairs present in the training data.67

To directly learn a value function using policy or value iteration, one needs to have information about68

the transition model in the form of sequences of state-action pairs, as well as the reward emitted by this69

transition. However, in some real-world scenarios, the reward might only be available for a small subset70

of data. For instance, in the case of recommending products available in an online catalog to the user, the71

true long-term reward (user buys the product) is only available for users who have browsed the item list for72

long enough and have purchased a given item. It is possible to decompose the value function into reward-73

dependent and reward-free parts, as was done by [13] through the successor representation framework [14].74

More recent approaches [15, 16, 17] use a generative model to learn the occupancy measure over future75

states for each state-action pair in the dataset; its expectation corresponds to the successor representation.76

However, learning an explicit multi-step model such as [15] can be unstable due to the bootstrapping term77

in the temporal difference loss. Similarly to model-based approaches, our method will learn a reward-free78

representation of the world, but will do so without having to predict high-dimensional observations and79

without having to do costly autoregressive rollouts. Thus, while our critic is trained without requiring80

rewards, it is much more similar to a value function than a standard 1-step model.81
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Learning a conditional probability distribution over a highly complex space can be a challenging task,82

which is why it is often easier to instead approximate it using a density ratio specified by an inner product83

in a much lower-dimensional latent space. To learn an occupancy measure over future states without84

passing via the temporal difference route, one can use noise-contrastive estimation [NCE, 18, 19] to85

approximate the corresponding log ratio of densities as an implicit function. Contrastive learning was86

originally proposed as an alternative to classical maximum likelihood estimation, but has since then seen87

successes in static self-supervised learning [20, 21]. In reinforcement learning, NCE was shown to improve88

the robustness of state representations to exogenous noise [22, 23, 24] and, more recently, to be an efficient89

replacement for traditional goal-conditioned methods [17].90

3 Preliminaries91

Reinforcement learning. We assume a Markov decision process M defined by the tuple92

M = 〈S, S0,A, T , r, γ〉, where S is a state space, S0 ⊆ S is the set of starting states, A is an93

action space, T =P[·|st,at] :S×A→∆(S) is a one-step transition function1, r :S×A→ [rmin,rmax] is94

a reward function and γ∈ [0,1) is a discount factor. The system starts in one of the initial states s0∈S0.95

At every timestep t=1,2,3,.., the policy π :S→∆(A), samples an action at∼π(·|ot). The environment96

transitions into a next state st+1∼T (·|st,at) and emits a reward rt=r(st,at). Define (sk,ak)
K
k=1 as a97

length-K trajectory. With Markovian policy π(a |s), define the discounted occupancy measure as98

Pπt:t+K({st+k,at+k}Kk=1),(1−γ)

H∑
∆t=1

γ∆t−1P[St+∆t=s |st,at;π].

With this notation in place, the objective is to maximize the discounted sum of returns over a length-H99

episode:100

max
π∈Π

EPπ0:H((st,at)Ht=0),S0

[
H∑
t=0

γtr(st,at)

]
. (1)

We will study this problem in the offline setting: rather than learning by trial and error (by interacting101

with the environment), the algorithm instead must learn from an offline dataset of logged trajectories102

{(st,at)Ht=0,···)}.103

Value-based RL algorithms maximize cumulative episodic rewards by estimating the state-action value104

function under a policy π, which can equivalently be expressed as an expectation under the discounted105

occupancy measure:106

Qπ(st,at)=EPπt

[
H∑
k=1

γkr(st+k,at+k) |st,at

]
=

1

1−γ
Es,a∼Pπt:H(st,at),π(s)[r(s,a)]. (2)

Note that the occupancy measure can equivalently be re-written in terms of the geometric distribution107

over the time interval [0,∞) for infinite-horizon rollouts:108

Pπ0:∞(s|s0,a0)=E∆t∼Geom(1−γ)[P[St+∆t |s0,a0;∆t;π]] (3)

This decomposition of the value function has already been used in previous works based on the successor109

representation [14, 13] and, more recently, γ-models [15]. We will use it to efficiently learn an implicit110

density ratio proportional to the state occupancy measure using contrastive learning.111

Noise-contrastive estimation Noise-contrastive estimation [NCE, 18] spans a broad class of learning112

algorithms, at the core of which is negative sampling [25]. NSE learns a metric space from positive and113

negative examples. Given reference samples, samples from a positive distribution (high similarity with114

reference points) and samples from a negative distribution (low similarity with reference points), contrastive115

learning methods learn an embedding where positive examples are located closer to the reference points than116

negative examples. One of the most well-known and commonly used NCE objectives is InfoNCE [19]:117

max
φ,ψ∈Φ

Ex,y,y
ï
log

eφ(x)>ψ(y)∑
y′∈y∪ye

φ(x)>ψ(y′)

ò
(4)

1∆(X ) denotes the entire set of distributions over the spaceX .
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over some hypothesis class Φ:{φ :X→Z} for input space X , latent space Z, x∼P(X ), y∼Ppositives(X )118

and y∼Pnegatives(X ). Contrastive learning has been widely studied in the static unsupervised/ supervised119

learning settings [26, 21, 20], as well as in reinforcement learning [27, 23] for learning state representations120

with desirable properties such as alignment and uniformity [28].121

Solving Equation (4) for (φ∗, ψ∗) yields a critic f : X × Y → R which decomposes as122

f∗(x,y)=φ∗(x)>ψ∗(y) and, at optimality2, captures the log-ratio of Ppositives(X ) and Pnegatives(X ):123

f∗(x,y)∝ log
P[y|x]

P[y]
. (5)

Implicit dynamics models via NCE. Various prior works [30, 23, 31] have studied the use of NCE124

to approximate a single-step dynamics model, where triplets (st,at,st+1) have higher similarity than125

(st,at,st′ 6=t+1), effectively defining positive and negative distributions over trajectory data. More recently,126

contrastive goal-conditioned RL [17] used InfoNCE to condition the critic on goal states sampled from127

the replay buffer. These methods use asymetric encoders, using φ(st,at) and ψ(st+∆t), where positive128

samples of st+∆t are sampled from the discounted state occupancy measure for t≥0.129

The conditional probability distribution of future states given the current state-action pair can be efficiently130

estimated using an implicit model trained via contrastive learning over positive and negative feature131

distributions, as shown in Equation (6).132

`InfoNCE(φ,ψ)=Est,at,∆t,∆t
ï
−log

eφ(st,at)
>ψ(st+∆t)∑

∆t′∈∆t∪∆te
φ(st,at)>ψ(st+∆t′)

ò
. (6)

Minimizing `InfoNCE over trajectory data yields a critic which, at optimality, approximates the future133

discounted state occupancy measure up to a multiplicative term as per Equation (5),134

f∗(st,at,st+∆t)∝ log
P[st+∆t |st,at;π]

P[st+∆t;π]
. (7)

Intuitively, f∗ approximates a H-step dynamics model which has an implicit dependence on policy135

π that collected the training data, but is time-independent since Equation (7) is optimized on average136

across multiple t,∆t. Ordinarily, training state-space models is hard when the dimensions are large, e.g.137

image-based domains. However, by using contrastive learning, we can learn this model without having138

to require it predict high-dimensional observations, as similarity is evaluated in a lower-dimensional latent139

space (observe that in Equation (6) the inner product is computed in Z, whose dimension we control,140

instead of X , which is specified externally). An apparent limitation of the approach is that the probability141

of future states st+∆t is recovered only up to a constant. However, it turns out that we can still use this142

model to get accurate estimates of the Q-values, as is described in the next section.143

4 Estimating and Maximizing Returns via Contrastive Learning144

In this section, we show how NCE can be used to learn a quantity proportional to a value function, and145

how the later can be used in a policy iteration scheme.146

4.1 Estimating Q-values using the Contrastive Model147

As shown in Equation (2), the Q-function at (st,at) can be thought of as evaluating the reward function148

at states sampled from the discounted occupancy measure Pπt:H(st,at). That is, to estimate a quantity149

akin to Qπ, we can first estimate the occupancy measure and take a weighted average of rewards150

over future states using the probabilities from the log-density ratio learned by the contrastive model.151

Precisely, Equation (2) corresponds to using an importance-weighted estimator, where an optimal critic that152

minimizes Equation (6) approximates the density ratio from Equation (7). The positive samples come from153

the discounted state occupancy measure: we first sample a time offset ∆t∼Geometric(1−γ) (column154

in the dataset), and then sample a state from the distribution of states at this given offset (row in the dataset).155

As per classical InfoNCE formulation, this forms the distribution over the tuple (st,at,st+∆t), which is156

contrasted against the negative distribution of product of marginals p(st,at)×p(st+∆t).157

2See [29] for exact derivation.
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The critic itself can be trained using the occupancy measure formulation specified in Equation (3) over158

all state-action pairs in a given episode. However, Equation (3) needs to be re-adjusted to account for159

finite-horizon truncation of the geometric mass function presented in Definition 1.160

Definition 1 (Truncated distribution) Let X be a random variable with distribution function FX . Y161

is a called the truncated distribution ofX with support [m,M ] s.t. 0<m<M if162

P[Y =y]=
FX(y−m)−FX(y−1−m)

FX(M)−FX(m)
,y=m,m+1,m+2,···,M. (8)

We denote the special case of the truncated geometric distribution as TruncGeom(p,m,M).163

The contrastive objective to train the critic to approximate the discounted occupancy measure over a dataset164

D is then the dot product of features of current state and action φwith future state ψ, normalized by the165

product of negative samples166

`InfoNCE(φ,ψ)=E st,at∼D,
∆t∼TruncGeom(1−γ,t,H),

∆t∼TruncGeom(1−γ,t′ 6=t,H)

ï
−log

eφ(st,at)
>ψ(st+∆t)∑

∆t′∈∆t∪∆te
φ(st,at)>ψ(st+∆t′)

ò
. (9)

It is possible that multiple optimal critics exist such that the multiplicative proportionality constant depends167

on the action. To avoid this, we adopt a similar approach as [17] and introduce a regularization term over168

the partition function, making the critic training objective be169

`Critic =`InfoNCE+λPartitionEst,at,∆t,∆t

(log
∑

∆t′∈∆t∪∆t

eφ(st,at)
>ψ(st+∆t′)

)2
. (10)

Now, suppose we found an optimal critic f . Combining Equation (3) with Definition 1, we obtain the170

following form of the Q-function for an optimal critic f which minimizes Equation (6):171

QNCE(st,at)=

∞∑
∆t=1

γ∆t−1

∫
st+∆t

r(st+∆t)P[st+∆t|st,at;π]dst+∆t

=
1−γH−t

1−γ
E∆t∼TruncGeom(1−γ,t,H)

ï∫
st+∆t

r(st+∆t)e
f(st,at,st+∆t)P[st+∆t;π]dst+∆t

ò
∝ 1−γH−t

1−γ
E∆t∼TruncGeom(1−γ,t,H)

î
EPπt+∆t

î
r(st+∆t)e

f(st,at,st+∆t)
óó
. (11)

Here, the offset ∆t is a random variable sampled from TruncGeom(1−γ,t,H) where H is the horizon172

of the MDP. We can also show that QNCE(s,a)∝Q(s,a) for all s∈S and a,a′ ∈A, which makes the173

contrastive Q-values suitable for policy evaluation.174

4.2 Efficient Estimation using Random Fourier Features175

A major issue with usingQNCE out-of-the-box is that it is computationally expensive, requiring evaluation176

of the inner product φ(st,at)
>ψ(st+∆t) with a large number of future states. The underlying cause of177

this computational overhead is the RBF kernel term eφ(st,at)
>ψ(st+∆t). If we instead used a linear kernel,178

the constant term φ(st,at) would be factored out, and we could separately keep track of reward-weighted179

future expected features. This would (1) reduce the computational complexity of N actor updates over180

D fromO(|D|N) toO(|D|+N) and (2) reduce the variance of the representation if averaging features181

of future states using exponential moving average. It turns out that the RBF kernel can be approximately182

linearized by using random Fourier features [32, 31].183

Lemma 1 (Adapted from [32]) Let x,y ∈ Rd be unit vectors, and let FW,b(x) =
»

2e
d cos(Wx+b)184

where W∼Normal(0,I) and b∼Uniform(0,2π) fixed at initialization. Then, E[FW,b(x)>FW,b(y)]=185

ex
>y.186
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Lemma 1 is a straightforward modification of the result from [32] and allows us to reduce the RBF kernel187

to an expectation over d-dimensional random feature vectors:188

QNCE(st,at)=
1

1−γ
E∆t∼TruncGeom(1−γ,t,H)[EP(st+∆t;π)[e

φ(st,at)
>ψ(st+∆t)r(st+∆t)]]

=
1

1−γ
FW,b(φ(st,at))

>E∆t∼TruncGeom(1−γ,t,H)[EP(st+∆t;π)[FW,b(ψ(st+∆t))r(st+∆t)]]

=
1

1−γ
FW,b(φ(st,at))ξ(π). (12)

The advantage of using the RFF approximation is that it allows us to split the exponential term inside189

the expectation and separately keep track of the policy-dependent, reward-weighted future state probability190

term, while the state-action dependence term is learned online. Specifically, we keep track of ξ(π) via191

an exponential-moving average during the entire duration of training3.192

4.3 Learning the Policy193

Once the policy evaluation phase completes and we have an estimate QNCE, we optimize a policy194

to maximize the returns predicted by this Q-value. We can decode the policy by minimizing its195

Kullback-Leibler divergence to the Boltzmann Q-value distribution (see [33]), which can be efficiently196

done by minimizing the following objective:197

`Policy(θ)=Est∼D
ï
DKL

Å
πθ(st)

∣∣∣∣∣∣∣∣ eQ(st,·)/τ∫
a∈Ae

Q(st,a)/τda

ãò
. (13)

Note that in discrete action spaces, minimizing Equation (13) leads to a soft version of the greedy198

policy decoding πgreedy(s)=argmaxa∈AQNCE(s,a) for s∈S. In practice, we approximate the KL term199

in Equation (13) usingNa Monte-Carlo action samples {∆t}Nai=1∼TruncGeom(1−γ,t,H).200

Decoding π in such a way can lead to sampling out-of-distribution actions in regions where the Q-function201

might be inaccurate due to poor dataset coverage. To mitigate this issue, we follow prior work [34, 35, 36]202

and add a behavior cloning term which prevents the new policy from straying too far away from the data:203

`BC(θ)=Ea,s∼D[logπθ(a |s)] . (14)

for entropy estimatorH(π(s))=−Ea∼π(s)[logπ(a |s)]. We add this extra loss to `Policy to learn a policy204

π which prioritizes high Q-values that are well-supported by the offline datasetD. Thus, the final policy205

optimization objective becomes206

`Policy(θ)=`Policy(θ)+λBC`BC(θ) . (15)

The policy found by minimizing `Policy has, on average, non-decreasing returns, as per Lemma 2.207

Lemma 2 (Contrastive policy improvement) Let µ be a policy and let QµNCE =208

minφ,ψ∈ΦEDµ[`Critic(φ,ψ)]. If209

π(s)=argmin
π∈Π

DKL

Å
π(s)

∣∣∣∣∣∣∣∣ eQ
µ
NCE(st,·)/τ∫

a∈Ae
QµNCE(st,a)/τda

ã
(16)

thenQπ(s,a)≥Qµ(s,a) for all (s,a)∈Dµ.210

The proof of Lemma 2 is located in Section 6.2. Specifically, Lemma 2 tells us that using CVL as a211

surrogate Q-function corresponds to one step of conservative policy improvement, where π satisfies soft212

constraints of Equation (13) and small EDµ[DKL(π(s)||µ(s))] via the BC term.213

4.4 Practical Implementation214

We now present our complete method, which can be viewed as an actor-critic method for offline RL. We215

learn the critic via contrastive learning (Equation (10)) and learn the policy via Equation (15). We will inter-216

leave these steps in most of our experiments, but experiments in Section 6.3 show that the critic can be pre-217

trained e.g. in the presence of unlabeled data from related tasks. We summarize the method in Algorithm 1.218

3This idea can be adapted to online learning settings as well by clipping policy improvement steps so that ξ doesn’t
change too fast under newly collected data.
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Algorithm 1: Contrastive Value Learning (CVL)
Input :DatasetD∼µ, ψ,φ networks, temperature parameter τ , exponential moving average

parameter β
1 for epoch j=1,2,..,J do
2 for minibatch B∼D do

/* Update density ratio estimator using Equation (10) */

3 Update φ(j+1),ψ(j+1) using∇φ,ψ`Critic(φ
(j),ψ(j)) ;

/* Estimate the contrastive Q-function */
4 Q(s,a)← Equation (12) if using RFF, otherwise Equation (11);

/* Decode policy from Q-function using Equation (15) */
5 Update πθ using∇θ{`Policy(θ)} ;

/* Update future state encoder using EMA */

6 ψ
(j+1)
EMA ←βψ(j+1)+(1−β)ψ

(j)
EMA ;

/* Update future state features weighted by rewards */

7 ξ
(j+1)
EMA ←ψ

(j+1)
EMA ·B[rt+∆t];

Figure 2: Metaworld benchmark. (Left) We evaluate CVL on 50 tasks from Metaworld, a subset of which are
shown here. (Right) Compared with three offline RL baselines, CVL achieves statistically-significant improvements in
offline performance. Results are reported over 5 random seeds.

4.5 Interpretations and Connections with Prior work219

The main distinction between Contrastive Value Learning and prior works consists specifically in220

representing the Q-values in a two-step decomposition: the Q-value is represented as an occupancy measure221

weighted by the reward signal; the occupancy measure itself is represented using a powerful likelihood-222

based model parameterized using an implicit function. Decoupling the learning of the occupancy measure223

from reward maximization allows, among others, for efficient pretraining strategies on unlabeled data, i.e.224

trajectory data without reward information, and can be used to learn provably optimal state representations225

for any reward function [37]. While CVL is similar in spirit to the successor representation [14, 13], the226

occupancy measure learned by CVL is much richer than that of SR, as it captures the entire distribution over227

future states instead of only the first moment. Another method, γ-models [15], is closely related to CVL,228

but uses a surrogate single-step TD objective to learn the occupancy measure, similarly to C-learning [16].229

5 Experiments230

Our experiments aim to answer three questions. First, we study how CVL compares with baseline231

approaches on a large benchmark of state-based tasks. Our second set of experiments look at image-based232

tasks, testing the hypothesis that CVL scales to these tasks more effectively than the baselines. We233

conclude with ablation experiments. Our main point of comparison will be a high-performing offline RL234

method, CQL [4]. While CVL learns an implicit model, that model is structurally much more similar to235

value-based RL methods than model-based methods, motivating our comparison to a value-based baseline236

(CQL). We will also include behavioral cloning as a baseline.237

Metaworld. We first test our approach on the MetaWorld benchmark [11], which consists of 50 robotic238

manipulation tasks such as open a door, pick up an object, reach a certain area of the table, executed by239

a robotic arm (see Figure 2 (left)). This domain is an ideal testbed for CVL, as it allows for both full-state240

and image-based experiments, has a dense and informative reward function thus decoupling the problem241

of representation learning from exploration, and is challenging for model-free methods which leaves room242

for improvement. While the original MetaWorld domain has been used to evaluate online RL agents, we243

create an ad hoc dataset suitable for offline learning. To do so, we train Soft Actor-Critic [33] from full244

states on each of the 50 tasks separately for 500k frames, and save the resulting replay buffer, which forms245
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Task BC CQL CVL

door-close 571± 9.9 4249± 269.9 4480± 305.1
door-open 178± 4.0 2099± 0.9 3389± 76.6
drawer-close 2414± 1736.5 3964± 1634.9 2177± 1679.5
drawer-open 1030± 104.2 820± 56.0 2543± 115.0

Table 1: Offline RL with Images. We compare CVL to
baselines on four offline, image-based tasks from Meta-
World offline image-based tasks on 5 random seeds.

Task medium-r. medium random

walker2d +56 -43 +415
ant +9 +21 +23
hopper +59 -15 +40

Table 2: Offline RL with full states. We compare CVL
to CQL on the robotics suite D4RL [38]. We provide the
average % improvement over 5 random seeds.

the training dataset. As shown in Figure 2 (right), CVL manages to considerably improve upon strong246

baselines such as behavior cloning, CQL and CQL with UDS [10]4. We report the results on all tasks247

of the MetaWorld suite over 5 random seeds, according to the aggregation methodology proposed by [12].248

Per-environment scores are available in Table 5.249

D4RL Table 2 shows the % improvement in normalized scores of CVL over CQL [4], a strong offline250

RL baseline, on the offline RL robotics suite D4RL [38]. Both methods were trained for an equal amount251

of gradient steps, with identical common hyperparameters such as batch size and behavior regularization252

coeffiecient. Notably, CVL is able to outperform CQL on data coming from a random policy.253

Image-based experiments Our working hypothesis is that contrastive formulation of the value function254

acts in itself as a pre-training mechanism via the prism of representation learning. For this reason, we255

conduct further experiments on 4 image-based tasks from the MetaWorld suite (similarly to full-states,256

the dataset was obtained from the SAC replay buffer trained on rendered images).257

Results presented in Section 5 show that CVL is also able to learn meaningful Q-values and achieve good258

empirical performance on hard image-based tasks.259

In Section 6.3, we qualitatively assess the similarity between contrastive and true Q-values on the260

continuous Mountain Car environment [39] by first pre-training SAC online on the task and then261

fitting CVL to the data from SAC’s replay buffer. Figure 8 (left) shows the contrastive Q-values on a262

log-scale, evaluated on trajectories from the SAC replay; for comparison, we also show the Q-values263

learned by online SAC in Figure 8 (right). Note that the value function learned by CVL conserves the264

same topology as the true value function, up to a multiplicative rescaling.265

6 Discussion266

This paper presented an RL algorithm that learns a contrastive model of the world, and uses that model267

to obtain Q values by estimating the likelihood of visiting future states. Our experiments demonstrate268

that this approach can effectively solve a large number of offline RL tasks, including from image-based269

observations. Our pretraining results hinted that CVL can be pretrained on datasets from other tasks, and270

we are excited to pretrain our model on datasets of increasing size.271

Limitations. One limitation of our approach is that it corresponds to a single step of policy improvement.272

This limitation might be lifted by training the contrastive model using a temporal difference update for273

the contrastive model [16, 40]. A second limitation is that the RFF approximation can be poor when the274

feature dimension is small. We tried to train the contrastive model using non-exponentiated features (akin275

to HaoChen et al. [41]), but failed to achieve satisfactory results. Figuring out how to effectively train276

these spectral models remains an important question.277
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Appendix380

6.1 Experimental details381

Model architecture All algorithms (baselines as well as CVL) were based on a common architecture,382

where an encoder (IMPALA [42] for image data and two layer DenseNet MLP [43] for full-states)383

generated state features which, combined with actions gave rise to the Q-value and the policy (we used384

a diagonal Gaussian policy with a Tanh bijector, as is common for continuous control tasks). The main385

difference of CVL with the baselines is that the critic is defined implicitly via the dot-product of current386

state-action features passed through one encoder, and future state features passed into a separate DenseNet.387

The output of both encoders was optionally normalized using `2 norm. All methods had a LayerNorm388

layer [44] in between each linear layer to ensure proper feature scaling.389

Hyperparameter Value

Learning rate 3×10−4

Batch size (all but CVL) 512
Discount factor 0.99
Framestack No
Max gradient norm 100
MLP structure 256×256 DenseNet
Encoder (full-state) 256×256 DenseNet MLP
Encoder (pixels) IMPALA
Add LayerNorm in between all layers Yes

Table 3: Hyperparameters that are consistent between methods.

Hyperparameter Value

CVL

Batch size H
Number of future action samplesNa 10
InfoNCE temperature 1
Partition function coefficient λPartition 0.001
BC coefficient λBC 0 (Mountain Car), 0.1 (rest)
RFF Yes
`2-normalize MLP outputs Yes

CQL

Regularization coefficient 1

BC

Entropy regularization coefficient 0.1
Table 4: Hyperparameters that are different between methods.

All experiments were run on the equivalent of 8 V100 GPUs with 64 Gb of RAM and 8 CPUs. For all390

methods, the corresponding auxiliary loss weights have been selected through best aggregated performance391

on the drawer and door domains with hyperparameter values of {0,0.01,0.1,1.0}.392

Dataset composition The offline MetaWorld dataset was constructed by first pre-training SAC on all393

50 tasks from full-states for 500k environment interactions. The replay buffer at the end of the training394

was then used as training dataset for BC, CQL, CQL+UDS and CVL. An identical approach was used395

to construct the image-based MetaWorld datasets and the Mountain Car dataset.396

Pretraining setup When pretraining CVL, we first optimize the critic on unlabeled data from dataset for397

all the semantically related tasks, i.e. tasks which belong to the same domain, and then finetune both the398

critic and the policy on reward-labeled data from the target task. Semantically related tasks in MetaWorld399
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are easily identifiable by their domain name, e.g. drawer-open and drawer-close belong to the400

drawer domain. We use a similar approach when pretraining CQL+UDS, where we perform TD updates401

with all rewards equal to 0 during the pretraining phase.402

6.2 Proofs403

Proof 1 (Random Fourier features approximation, Lemma 1)404

For unit vectors x,y∈Rd, d>0,405

E[

Å…
2

d
cos(Wx+b)

ã>Å…
2

d
cos(Wy+b)

ã
]=exp

{
−||x−y||22/2

}
=exp

{
−(||x||22−2x>y+||y||22)/2

}
=exp

(
−(2−2x>y)/2

)
=ex

>y−1

=
ex
>y

e

(17)

by re-arranging the terms in the result from [32]. Therefore,406

ex
>y=E[

Å…
2e

d
cos(Wx+b)

ã>Å…
2e

d
cos(Wy+b)

ã
] (18)

407

Proof 2 (CVL induces a single-step of policy improvement, Lemma 2) Since, for the optimal critic408

f∗,409

ef
∗(st,at,st+∆t)∝ P[st+∆t|st,at;µ]

P[st+∆t;µ]
. (19)

point-wise for every (st,at,st+∆t)∈Dµ, then, for α>0,410

ef
∗(st,at,st+∆t) =α

P[st+∆t|st,at;µ]

P[st+∆t;µ]
. (20)

Now, the following relation holds using the previous result411

QµNCE(st,at)=
1

1−γ
E∆t∼TruncGeom(1−γ,t,H)[EPµt+∆t

[r(st+∆t)e
f(st,at,st+∆t)]]

=
α

1−γ
E∆t∼TruncGeom(1−γ,t,H)

ï∫
st+∆t

r(st+∆t)P[st+∆t|st,at;µ]dst+∆t

ò
=αQµ(st,at)

(21)

Using this relation yields412

eQ
µ
NCE(st,at)/τ∫

a∈Ae
QµNCE(st,a)/τda

=
eαQ

µ(st,at)/τ∫
a∈Ae

αQµ(st,a)/τda
=

eQ
µ(st,at)/τ∫

a∈Ae
Qµ(st,a)/τda

(22)

It follows that413

argmin
π∈Π

DKL

Å
π(st)

∣∣∣∣∣∣∣∣ eQ
µ
NCE(st,·)/τ∫

a∈Ae
QµNCE(st,a)/τda

ã
=argmin

π∈Π
DKL

Å
π(st)

∣∣∣∣∣∣∣∣ eQ
µ(st,·)/τ∫

a∈Ae
Qµ(st,a)/τda

ã
=π(st)

(23)

Now, we invoke Lemma 2 from [33] by using the equivalence of the policy decoded from contrastive414

Q-values to the policy found by soft policy iteration, which concludes the proof.415
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Figure 3: Offline Learning Curves for Metaworld. Episode return curves as a function of gradient steps
taken during training on 10 random MetaWorld tasks; curves show mean± standard deviation. Pretraining
the reward-free occupancy measure on related tasks allows CVL to outperform baseline approaches and
even CVL trained tabula rasa.

6.3 Additional results416

When is pretraining the model useful? In theory, the model can be pretrained on the data from other417

tasks, however, we do not always expect this to help (e.g., when the pretraining tasks are very different).418

We ran an experiment to test this capability. The results, shown in Fig. 3, show that pretraining sometimes419

speeds up learning. In particular, we observe that pretraining is effective when the pretraining tasks are420

similar to the target task and contain a diverse set of state-action pairs.421

How reliable is the QNCE approximation? Given that contrastive Q-values are proportional to the422

true Q-function, a natural question to ask is how good isQNCE at capturing the topology ofQ? First, we423

conduct an ablation demonstrating how linearizing the RBF kernel via random Fourier features provides424

a performance gain on the offline MetaWorld tasks Figure 6. Specifically, we hypothesize that this is due425

to the reduced variance of the RFF Q-value estimator which keeps track of future reward-weighted state426

features using a rolling average.427

6.3.1 MetaWorld428

Figure 4: Performance profile of BC (red), CQL (green), CQL+UDS (orange) and CVL (blue) generated
by the rliable library [12] for the offline MetaWorld experiments over 5 random seeds.

Ablation on the BC coefficient: We ablate the impact of the behavior cloning loss on CVL’s429

performance in Figure 5. We can see that, although adding a behavior cloning loss improves the430

performance by a small amount, it is not essential to the fundamental functioning of CVL.431

6.3.2 Mountain Car432
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Task BC CQL CQL+UDS CVL (Tabula rasa) CVL (Pretrained)

basketball 3188± 348.9 646± 2.2 678± 112.6 4503± 113.8 4171± 285.9
bin-picking 13± 1.5 28± 0.7 21± 1.9 18± 1.8 860± 69.2
box-close 891± 164.4 311± 12.4 296± 19.8 1496± 131.2 4189± 352.4
button-press 2667± 85.3 3445± 60.2 3420± 273.4 3659± 51.9 1906± 360.2
button-press-topdown 3089± 256.7 3406± 525.7 3505± 990.9 3889± 36.2 548± 49.5
button-press-topdown-wall 1692± 47.0 2095± 28.4 2135± 66.4 2008± 21.7 546± 90.8
coffee-button 3490± 1435.5 3655± 740.6 3431± 689.8 4259± 169.9 149± 10.8
coffee-pull 647± 11.7 250± 10.3 330± 3.2 833± 27.2 167± 0.6
dial-turn 1331± 48.7 4257± 389.4 4449± 276.1 4526± 42.8 4611± 176.9
disassemble 215± 4.3 215± 9.6 217± 36.0 214± 18.6 926± 5.6
door-close 3634± 141.5 4555± 200.9 4547± 215.2 4544± 7.6 4313± 194.0
door-lock 3073± 303.7 3775± 59.1 3777± 144.2 3537± 271.1 557± 20.6
door-open 828± 24.7 4526± 71.7 4531± 179.0 3985± 279.6 613± 113.0
door-unlock 1322± 181.1 4122± 50.2 4002± 80.1 3139± 413.7 4618± 49.7
drawer-close 4619± 53.4 4855± 0.0 4857± 2.0 4853± 6.8 2933± 671.8
drawer-open 1727± 204.0 2768± 45.6 2776± 25.2 2512± 149.3 4664± 14.4
faucet-close 4160± 49.8 4752± 1585.0 4713± 1724.2 4683± 47.8 4739± 57.0
faucet-open 2052± 80.9 4731± 401.8 4729± 561.1 3660± 221.9 1637± 64.9
hammer 2158± 272.0 898± 70.3 1030± 126.6 4632± 73.6 4630± 86.5
hand-insert 44± 17.8 443± 2.0 428± 1.5 180± 5.3 4612± 539.8
handle-press 4734± 36.3 2816± 4.4 2755± 0.8 4861± 28.6 2417± 169.2
handle-press-side 3820± 1556.5 4783± 170.5 4786± 478.1 4816± 352.6 654± 27.7
handle-pull 3642± 968.8 2422± 524.1 2436± 1286.8 4594± 38.6 4636± 35.8
handle-pull-side 3418± 1002.2 1898± 582.6 1757± 343.2 4660± 41.0 2904± 92.4
lever-pull 3659± 180.8 2233± 399.5 2157± 258.0 4459± 107.8 4207± 98.9
peg-insert-side 11± 1.1 17± 4.1 19± 1.8 15± 0.4 12± 0.8
peg-unplug-side 56± 1.9 29± 2.6 29± 2.4 87± 1.6 4593± 24.6
pick-out-of-hole 10± 0.2 207± 0.4 191± 3.4 1245± 186.4 5± 0.9
pick-place 1771± 416.2 1263± 407.6 1306± 128.5 2942± 454.1 4403± 508.3
pick-place-wall 0± 0.0 1± 0.0 71± 0.0 19± 0.0 3522± 775.3
plate-slide 3979± 57.3 2697± 475.3 3508± 747.0 4649± 142.6 802± 12.4
plate-slide-back 2402± 333.9 3163± 1290.3 3014± 303.9 4718± 306.8 196± 5.0
plate-slide-back-side 4017± 874.6 4736± 1519.0 4732± 137.6 4752± 196.9 4669± 95.1
plate-slide-side 2241± 536.9 3104± 308.1 3015± 329.5 2695± 413.8 1939± 27.5
push 1834± 317.9 494± 5.0 463± 3.3 1997± 196.8 4386± 192.7
push-back 9± 0.2 71± 1.4 135± 0.8 109± 1.4 204± 20.9
push-wall 3327± 508.6 689± 5.6 628± 4.2 4502± 176.7 4601± 205.6
reach 3069± 359.2 3301± 920.3 3275± 677.8 4819± 182.9 4658± 204.8
reach-wall 4515± 93.9 4828± 26.5 4829± 49.1 4811± 27.0 4825± 21.2
stick-pull 595± 19.8 297± 2.0 441± 3.7 4488± 52.0 3434± 162.9
stick-push 263± 6.1 896± 3.9 897± 3.4 1155± 147.5 2804± 551.3
sweep 817± 124.3 3086± 645.7 3162± 1507.1 4127± 567.2 4461± 49.5
sweep-into 532± 151.3 1974± 34.0 1834± 870.1 2657± 364.3 506± 14.8
window-close 3739± 80.4 4478± 452.5 4442± 13.1 4534± 56.2 4519± 63.2
window-open 3743± 147.3 2773± 1433.5 2841± 1163.5 4534± 109.4 524± 320.0

Table 5: Evaluation returns on MetaWorld offline tasks. Average ± standard deviation are shown for 5
random seeds.

Figure 5: Aggregated performance metrics for CVL with different behavior cloning weights.

Quantitative evaluation of the contrastive occupancy measure: From [45], we know that433

MMD(P,Q)≤2
√

1−e−KL(P,Q) (24)

We also know that434

I(P,Q)=KL((P,Q)||P⊗Q)

≥ logN−`InfoNCE(PN ,QN)
(25)

which simplifies the above expression to435

ˆMMDN(P,Q)≤2
√

1−e−logN+`InfoNCE(PN ,QN) (26)

Figure 9 shows the upper-bound on the MMD between occupancy measures learned with temporal436

difference and contrastive learning methods.437
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Figure 6: CVL with RFF (orange) performs slightly better than without RFF (blue).

Figure 7: Evaluation returns on Mountain car during training on data from the SAC replay buffer. The red
dotted line indicates highest possible return.

Figure 8: Visualizing the estimated Q-values. (Left) Normalized logQNCE learned by CVL offline on the Mountain
Car environment. (Right) NormalizedQ learned by online SAC on the same environment.

Figure 9: Upper-bound on the MMD between occupancy measures estimated via TD and contrastive
learning.
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