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Abstract1

We generalize the concept of skew spectrum of a graph, a group-theoretical2

permutation-invariant feature mapping. The skew-spectrum considers adjacency3

matrices as functions over Sn and leverages Fourier transform and group-theoretical4

tools to extract features that are invariant under the group action. The main short-5

coming of the previous result is that the skew spectrum only works for unlabeled6

graphs. The reason is that these graphs can be represented using matrices whose7

main diagonal contains zeros, meaning that there is only one set of elements that8

can permute among themselves (i.e., one orbit). However, the representations of9

more complex graphs (e.g., labeled graphs, multigraphs, or hypergraphs) have10

different sets of elements that can consistently permute on different orbits. In this11

work, we generalize the skew-spectrum to the multiple orbits case. Our multi-12

orbits skew spectrum produces features invariant to such permutations and possibly13

informative of non-consistent ones. We believe this method can improve the per-14

formances of models that learn on graphs. Moreover, the theory is general enough15

to handle invariance under the action of any finite group on multiple orbits and has16

applications beyond the graph domain.17

1 Introduction18

In the past decade, machine learning on datasets representing data as tensors became an active area19

of research. This trend is fueled by important applications in anomaly detection, medical imaging,20

genomics, and many others [1–3]. We generalize the skew spectrum, a graph invariant proposed21

in [4], to a new tensor invariant. In the context of graphs, for which we frame this manuscript,22

our generalization extends the applicability of this feature extraction method to more complex data23

structures, such as labelled graphs, multigraphs, and hypergraphs.24

The skew spectrum of a graph is a permutation invariant mapping from the adjacency matrix A ∈25

Rn×n of a weighted, directed, unlabeled graph G to a new feature space. A graph is unweighted when26

the entries of A are just elements of {0, 1}, undirected when AT = A, and unlabeled when Aii = 027

for i ∈ [n]. This mapping interprets the graph as a function on the symmetric group f : Sn 7→ R,28

where n is the number of nodes in the graph. The function f is defined as f(σ) = Aσ(n),σ(n−1), for29

σ ∈ Sn, here σ ∈ Sn is permutation of the set [n] and σ(n) is the image of n under the permutation30

σ. For more precise definitions on graph theory we refer the reader to Appendix A. Leveraging31

techniques from non-commutative harmonic analysis it is possible to see that the skew spectrum32

of a function f is related to the Fourier transform of the triple correlation of f [5]. An entry of the33

skew spectrum is a matrix, which we denote as S(f ;σ, ρ), which is a function of a permutation34

σ ∈ Sn, and an irreducible representation ρ. We recall that a representation of Sn is a map ρ from35

the group Sn to a subgroup of the orthogonal group on a real, finite-dimensional vector space. The36

representation ρ is irreducible if it cannot be decomposed into direct sum of other representations.37

The intuition here is that S(f ;σ, ρ) is a polynomial of third order in the adjacency matrix such that38

this polynomial is invariant with respect to joint permutations of rows and columns of the adjacency39

matrix. While the skew spectrum might be a complete invariant in some cases [6], this is not true40

for many many applications of the skew spectrum to permutation-invariant representations (i.e., two41

non-isomorphic graphs could be mapped to the same feature vector).42
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The reduced skew spectrum [4, Definition 2] is a lightweight version of the skew spectrum, which43

is defined by reducing the size of the matrices of S(f ;σ, ρ). The motivation for using the reduced44

skew spectrum is threefold: While the computation of the skew spectrum has a complexity of O(n6),45

the reduced skew spectrum has a computational complexity of O(n3) only (here n is the number of46

the nodes of the graph); the output size of the reduced skew spectrum is independent of n and skew47

spectrum contains many entries which are trivially zero, the reduced skew spectrum eliminates almost48

all such entries. The (reduced) skew spectrum can only be applied to datasets with a single orbit; this49

limitation is particularly important when dealing with tensor datasets. In this work, we extend the50

skew spectrum to the multi-orbits setting. We show how we can inherit good computational properties51

of the reduced skew spectrum also for the multiple orbit setting. While the main contribution of52

this work is theoretical, we corroborate our analysis with some prototypical experiments on real and53

synthetic datasets. We conclude that the multiple-orbits skew spectrum can enhance the representation54

of datasets where keeping a consistency between permutation on different orbits is important.55

2 The multi-orbits skew spectrum56

The main idea in generalizing the skew spectrum to multiple orbits is two-fold: we replace the57

function f : Sn 7→ R by a vector-valued function f : Sn 7→ Rk, where k is the number of orbits, and58

we replace products of functions by tensor products. For simplicity, we will describe the computation59

for the case of two orbits for a function generated by the adjacency matrix A ∈ Rn×n of a graph G.60

Note, however, that all of our formulas are valid for any finite number of orbits. The interested reader61

can refer to Appendix A for the representing more complex graphs as functions.62

A labeled graph is one for which the adjacency matrix has some non-zero entries on the diagonal.63

For a given labeled graph G, the adjacency matrix A is unique only up to arbitrary permutations of64

the same indexes of both rows and columns. If we can obtain the adjacency matrix of a graph G by65

applying a permutation σ ∈ Sn to the indexes of the adjacency matrix of another graph G̃, then we66

say the graphs are isomorphic. It is fairly easy to see that the adjacency matrix of a labeled graph has67

two orbits: the main diagonal, and the off-diagonal. For σ ∈ Sn, let f : Sn 7→ R2 be defined as68

f(σ) =

(
Aσ(n),σ(n)
Aσ(n),σ(n−1)

)
. (1)

We define an entry of the multi-orbits skew spectrum as69

S(f ;σ, ρ) = 1

(n!)2

∑
σ̃1∈Sn

∑
σ̃2∈Sn

f(σ̃1)⊗ f(σ̃1σ)⊗ f(σ̃2)⊗
(
ρ(σ̃1)

†ρ(σ̃2)
)
, (2)

where † denotes the usual complex conjugate transpose. From this formula, one can notice that70

the skew spectrum entries are invariant to permutations of the indices of the adjacency matrix, see71

Appendix B for a formal proof and some intuition on the invariance.72

Naively computing one skew spectrum entry from Eq. 2 would require O((n!)2) steps, which soon73

becomes computationally infeasible even for small graphs. However, we can significantly speed74

up the calculation using insights from group theory. Up to improvements of constant factors, our75

computational speedups coincide with the ones presented in Kondor and Borgwardt [4] and so the76

computational cost is O(n6) (we are considering k = 2 as a constant). The key insight on the77

computational optimization that we adapt from the single-orbit case is the following. Denoting f̂ the78

Fourier transform of f and writing79

f̂(ρ) =
1

n!

∑
σ̃∈Sn

f(σ̃)⊗ ρ(σ̃) and r̂f (σ, ρ) =
1

n!

∑
σ̃∈Sn

f(σ̃)⊗ f(σ̃σ)⊗ ρ(σ̃) (3)

we get that Equation 2 can be rewritten as S(f ;σ, ρ) = r̂†f (σ, ρ) � f̂(ρ), where � denotes tensor80

product of functions and matrix product of representations. This significantly speeds up the calculation81

since the calculation of f̂ can be reduced to sum only over n(n− 1) elements (as a property of f )82

and the calculation of r̂f can be reduced in a similar way, via Clausen-FFT type of arguments [5, 7].83

At the same time, Kondor and Borgwardt [4] show that the skew spectrum needs to be computed for84

only 7 group entries and 4 irreducible representations, fixing the overall computation of the skew85
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spectrum to O(n6). It is possible to prove that we actually need only 6 group elements. Indeed, 2 of86

the 7 are one the inverse of each other and having both of them does not introduce extra information.87

Moreover, we have empirical evidence that one of the 4 irreducible representation only produces 088

matrices for undirected graphs and can therefore be discarded in such case, though we do not have a89

formal proof of this yet.90

While the computational complexity is polynomial in the size of the graph, there are still two problems:91

O(n6) starts to be infeasible for medium-sized graphs and the number of computed features scales92

with the number of nodes. Both of these problems are solved by using the reduced skew spectrum [4].93

The main idea is that the Fourier transform f̂ consists of matrices that have variable number of rows94

but fixed number of columns, so the variable size of skew spectrum comes only from r̂f . We thus95

compute the reduced skew spectrum by limiting the number of rows of r̂f , producing matrices of96

fixed size for all n, with a computational complexity of O(n3). In the general case with k orbits the97

computational complexity of the reduces skew spectrum becomes O(k2n3 + k3n2). For a symmetric98

adjacency matrix of a graph with n nodes, the single-orbit reduced skew spectrum consists of 3699

numbers, while the two-orbits reduced skew spectrum consists of 288 numbers. In general, for k100

orbits, the reduced multi-orbits skew spectrum consists of 36k3 numbers.101

Generalization to multigraphs and hypergraphs. We present the generalization of our method to102

multigraphs. Different types of edges can be seen as several adjacency matrices and we can treat those103

as additional orbits. Consider a multigraph with two types of edges. Let A be the adjacency matrix104

corresponding to the first type of edges and let B be adjacency matrix corresponding to the second105

type of edges (note that the diagonals of bothA andB coincide since the labels of the nodes are always106

the same). We can then construct the function fAB(σ) = (Aσ(n),σ(n), Aσ(n),σ(n−1), Bσ(n),σ(n−1))
ᵀ107

and use the skew spectrum (or reduced skew spectrum) of fAB .108

We can always represent a hypergraph as a multigraph where each edge type is an edge, but we also109

propose an alternative encoding. Consider first hyperedges that connect exactly 3 nodes. We can110

then represent these hyperedges via n× n× n adjacency tensor A such that Aabc, a 6= b 6= c 6= a, is111

the weight of the hyperedge connecting the nodes labeled by a, b, and c. We can then use similar112

methods to construct the corresponding function f and compute its skew spectrum. We can use similar113

approach for hypergraphs with hyperedges connecting at most k nodes by considering adjacency114

tensors Aa1...ak . With this alternative representation, and still considering the amount of orbits as a115

constant, the computational complexity of the skew spectrum and the reduced skew spectrum will116

increase. This is because for a standard graph the computational speedup heavily relies on the fact117

that the function f is Sn−2 symmetric, but, for example, for hypergraph with hyperedges connecting118

at most 3 nodes the resulting function will be only Sn−3 symmetric. Thus, for example, one would119

need to sum at least n(n− 1)(n− 2) elements in order to compute f̂(ρ).120

3 Numerical Experiments121

We implemented the code for both the single-orbit skew spectrum and the multi-orbits skew spectrum.122

In this section, we report some prototypical experiments using their reduced versions on labeled123

graphs. The experiments aim to show the enhanced representation power of the multi-orbits skew124

spectrum against its predecessor. Comparison with other state-of-the-art graph invariants is out125

of the scope of this manuscript and is left for future work. We discuss some extra experiments in126

Appendix C.127

3.1 Graph classification on a synthetic dataset128

The dataset contains undirected, unweighted, and labeled graphs. The node labels assume all the129

values between 0 and n − 1, with n the number of nodes. The labels are encoded along the main130

diagonal of the graphs’ adjacency matrices. The dataset consists of four families of graphs, namely131

15A, 15B, 6A, and 6B (Fig. 1 illustrates one graph representative per family). Each family contains132

1000 isomorphic graphs, meaning that, inside a family, all the graphs are equal up to permutations that133

are simultaneously edge-preserving and label-preserving. The graphs in 15A and 15B are equivalent134

up to edge-preserving permutations but are not isomorphic if we also consider the labels permutations,135

and so are the graphs in 6A and 6B. The task is to classify the four families of graphs correctly.136

3



The multi-orbits skew spectrum: boosting permutation-invariant data representations

0 1

2
3

45
6

7

8

9

10

11

12

13

14

(a) 15A.

0

5

9

11
8

3

17

10

12 2
13

4

6

14

(b) 15B.

0

1
2

3

4
5

(c) 6A.

2

5

3

1

40

(d) 6B.

Figure 1: Synthetic dataset’s graph families representatives.

We have processed this dataset twice, producing two different representations. The first one consists137

of a concatenation of the outputs of the single-orbit skew spectrum computed separately on the138

off-diagonal and on the main diagonal elements of the adjacency matrix (i.e., each skew spectrum139

uses one row of Eq. 1 as a function). The second one consists of the output of the two-orbits skew140

spectrum (computed using Eq. 1). We trained a random forest (60 estimators, no max depth) on the141

two representations, holding out a balanced 20% of the dataset for testing purposes. The classifier142

achieves an accuracy of 0.5 on the single-orbit representation and of 1 on the 2-orbits one, meeting143

our expectations. This is because the concatenation of single-orbit skew spectra cannot distinguish144

the couples 15A-15B and 6A-6B, whose labels and edges are linked by different permutations.145

3.2 Atomization energy regression on QM7146

The dataset is composed of a list of 23 × 23 matrices representing the Coulomb matrices of 7165147

molecules composed of up to 23 atoms, from which up to 7 are considered heavy atoms [8, 9]. The148

Coulomb matrix C ∈ R23×23 is defined as Cii = 1
2Z

2.4
i and Cij =

ZiZj

|Ri−Rj | , where Zi is the nuclear149

charge of the i-th atom of the molecule, and Ri is its position. The learning task associated with this150

dataset is to predict the atomization energies of the molecules (kcal/mol), which are reals in the range151

[−2000,−800] renormalized in [−1, 1]. We compute the reduced single-orbit skew spectrum on the152

off-diagonal elements and the multiple-orbits skew spectrum and use them for regression, holding153

out 20% of the dataset for the test set. Table 1 summarizes the results.154

Table 1: Regression on qm7 with different features. We tested the following machine learning
models: Extreme Gradient Boosting (Xgboost), Gradient Boosting Regressor (GBR), Elastic Net
(EN), Linear Regression (Linear) using the default parameters of sk-learn[10]. Linear regression
cannot fit the dataset for the eigenvectors of the Coulomb matrix. The error is measured as Mean
Absolute Error.

Representation Xgboost GBR EN Linear

Single-orbit 29.15 36.55 114.68 61.15
2-orbits 18.28 27.12 58.60 49.45

CM’s eigs 38.047 37.92 47.83 -
Laplacian’s eigs 23.52 26.93 47.62 47.80

Using the multi-orbits skew spectrum we improve the models using the single-orbit skew-spectrum.155

4 Conclusions156

This work presents a generalization of the skew spectrum to multiple orbits. Thanks to our implemen-157

tation, we can test the performances of the multi-orbits skew spectrum on classification and regression158

tasks. The performances obtained in these prototypical experiments highlight the limitations of159

the single-orbit skew spectrum and the advantages of the proposed solution. For the classification160

experiment, we have a clear separation between the performances of a simple learner on 1-orbit and161

2-orbits skew spectra of labeled graphs. For regression, the 2-orbits skew spectrum can improve the162

mean absolute error compared to the single orbit case of all the machine learning models studied. We163

leave for future work the study of problems on tensor datasets where the multi-orbits skew spectrum164

can outperform state-of-the-art machine learning models.165
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A Representing graph data using functions190

In this section we describe some cathegories of graphs and how we can represent them using functions191

of the form f : Sn 7→ Rk. Rather than being an exhaustive list, this section should give the reader an192

idea of how to construct functions for more complex data structures.193

The simplest class of graphs that we can represent are directed, weighted graphs with n nodes. Such194

graphs can be represented using an adjacency matrix A ∈ Rn×n with entries equal to 0 on the main195

diagonal. In this case, we can build a function f : Sn 7→ R, as196

f(σ) = Aσ(n),σ(n−1), (4)
where σ(i) denotes the image of n under the permutation σ. The function takes a permutation as197

input and outputs a matrix element, using the image of n and n− 1 under this permutation (it only198

iterates over the non-diagonal elements of A). This is the function of the original skew spectrum.199

Plugging this function in our multi-orbit skew spectrum formulation will give the same result as the200

single-orbit skew spectrum.201

Generalizing to some more complex graph structures, we consider graphs whose nodes can be202

associated with one attribute.203

Definition 1 (Labeled graph). Labeled graphs are graphs whose nodes have one attribute that can204

be encoded as a real number.205

We can represent such graphs using the same adjacency matrix A ∈ Rn×n, and we could encode the206

attribute of the node i in the diagonal entry Aii. In this case, we want to be sure that a permutation207

will consistently move both the edges and the node labels. Those live in two different orbits, that208

need to permute accordingly. In this case, we can construct the graph function f : SnR2 as209

f(σ) =

[
Aσ(n),σ(n−1)
Aσ(n),σ(n)

]
. (5)

Here the order of the elements in the output vector in Rn does not matter, as long as the choice is210

consistent during the computation. Given a permutation σ, this function returns a vector containing211

an element on the off-diagonal and an element on the diagonal of A.212

A more general class of graphs are graphs with node attributes.213

Definition 2 (Graph with node attributes). A graph with node attributes is a graph whose nodes are214

associated to a vector of attributes, represented by real numbers.215

Say that each node can contain at most k′ distinct attributes. Then, we can represent the graph using216

an adjacency matrix A ∈ Rn×n with zeroes on the main diagonal and a set of k′ vectors xi ∈ Rn217

for i ∈ {0, . . . , n− 1}. Each vector xi represents an attribute and contains n entries, one per node.218

In this case, off-diagonal elements of A can permute among themselves, entries in the same xi can219

permute among themselves, but they have to do so consistently, forming k = k′ + 1 orbits. We220

represent the jth entry of xi as xi,j and it represents the value of the attribute i for the node j. We221

can construct the relative graph function f : Sn 7→ Rk′+1 as222

f(σ) =


Aσ(n),σ(n−1)
x1,σ(n)
x2,σ(n)
· · ·

xk′,σ(n)

 . (6)

Even in this case, the matrix outputs one element per orbit.223

Going on with more complex data structures, we can show how to represent multigraphs.224

Definition 3 (Multigraph). Multigraphs are are graphs where an edge can connect the multiple225

nodes.226

Say that we have k different layers of edges, each layer having its own meaning. Then, we can227

represent the graph using a tensor adjacency matrix A ∈ Rk×n×n, where Ak,i,j represents the value228

of the edge in layer k between nodes i and j. The k layers form k distinct orbits where permutations229

need to occur consistently. We can construct the graph function f : Sn 7→ Rk as230

f(σ) =

 A0,σ(n),σ(n−1)
A1,σ(n),σ(n−1)

· · ·
Ak−1,σ(n),σ(n−1)

 . (7)
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Whenever we wanted to consider multigraphs with node attributes, we could increment the number231

of orbits and build bigger functions.232

About hypegraphs, we refer the reader to the intuition in the main text. We recall that the computation233

easily starts to become unpractical for hypergraphs having edges connecting more than a handful of234

nodes (say 6). This is because the formulation for hypergraphs introduces a dependency on m in the235

runtime (rather than k), which is provably at least factorial m!.236

B Invariance of the multi-orbit skew spectrum237

Definition 4 (Multi-orbit skew spectrum).238

Theorem 5. Let f1(σ) : Sn 7→ Rk be a function that maps an element of the permutation group to239

a vector of real numbers. Let f2(σ) : Sn 7→ Rk be a function that is equivalent to f1 up to input240

permutation, such that f2(σ) = f1(σ
′σ) for a fixed σ′ ∈ Sn. Then, the multi-orbit skew spectra of f2241

and f1 are equal.242

Proof. Consider a function f1(σ) : Sn 7→ Rk. Now consider a second function f2(σ) = f1(σ
′σ),243

which is equivalent to f1 up to a permutation σ′ ∈ Sn of its input. We can show that each single244

entry of the skew spectrum for f2 is equal to the entry for f1, using the fact that ρ†(g)ρ(g) = I and245

that
∑
g∈G f(g

′g) =
∑
ĝ∈G f(ĝ) for any group G, any fixed element g′ ∈ G, and any function f246

defined over the group.247

S(f2;σ, ρ) =
1

(n!)2

∑
σ̃1∈Sn

∑
σ̃2∈Sn

f2(σ̃1)⊗ f2(σ̃1σ)⊗ f2(σ̃2)⊗
(
ρ(σ̃1)

†ρ(σ̃2)
)

=
1

(n!)2

∑
σ̃1∈Sn

∑
σ̃2∈Sn

f1(σ
′σ̃1)⊗ f1(σ′σ̃1σ)⊗ f1(σ′σ̃2)⊗

(
ρ(σ̃1)

†ρ(σ̃2)
)

=
1

(n!)2

∑
σ̂1∈Sn

∑
σ̂2∈Sn

f1(σ̂1)⊗ f1(σ̂1σ)⊗ f1(σ̂2)⊗
(
ρ(σ′−1σ̂1)

†ρ(σ′−1σ̂2)
)

=
1

(n!)2

∑
σ̂1∈Sn

∑
σ̂2∈Sn

f1(σ̂1)⊗ f1(σ̂1σ)⊗ f1(σ̂2)⊗
(
ρ(σ̂1)

†ρ(σ′−1)†ρ(σ′−1)ρ(σ̂2)
)

=
1

(n!)2

∑
σ̂1∈Sn

∑
σ̂2∈Sn

f1(σ̂1)⊗ f1(σ̂1σ)⊗ f1(σ̂2)⊗
(
ρ(σ̂1)

†ρ(σ̂2)
)

= S(f1;σ, ρ)
where we relabeled σ̂1 = σ′σ̃1 and σ̂2 = σ′σ̃2.248

The key intuition here is that the functions of two isomorphic graphs are equal up to a translation by249

the permutation σ that links their respective adjacency matrices: let fG be the function corresponding250

to the original graph and let fG be the function given by the permuted adjacency matrix, then251

fG(σ) = fG(σσ). Summing over all the elements of Sn neutralizes this translation.252

C Extra experiments253

C.1 Synthetic dataset - weighted and directed254

We repeated the same experiment of Section 3.1, with directed, weighted, and labeled graphs. Figure 2255

reports the representatives of the four new families. Each edge has a weight in the interval (0, 2].256

Even in this case, the concatenation of the single orbit skew spectra allow the random forest to achieve257

an accuracy of 0.5, while the 2-orbit skew spectra allow for an accuracy of 1.258

C.2 Eigenvalue collisions259

If we consider labeled graphs, then the eigenvalues or singular values, will be a valid invariant260

for them. Indeed a permutation matrix would only rotate the adjacency matrix, without changing261
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Figure 2: Synthetic dataset’s graph families representatives. Graphs are directed and each edge has a
weight in (0, 2].

the eigenvalues. However, it is easy to find examples of non-isomorphic labeled graphs where the262

eigenvalue invariant will collide. A valid example is the given by the graphs in Fig. 3.263

21

2

1

(a) Graph 1.

12

2

1

(b) Graph 2.

Figure 3: Example of two graphs with the same eigenvalues/singular values, but with distinct
(reduced) skew spectra.

In the graph of Fig. 3a, we have that the node with label 1 goes to the one labeled 2 with a weight264

of 1. However, in the graph of Fig. 3b, the cost of moving from 1 to 2 is 2 and the two graphs are265

non-isomorphic. The two adjacency matrices of the graphs in Fig. 3 are266

A1 =

[
1 1
2 2

]
A2 =

[
2 1
2 1

]
. (8)

It is easy to verify that Eigs(A1) = {3, 0} and Eigs(A2) = {3, 0}. Similarly, SingVals(A1) =267

SingVals(A2) = {3.16227766, 0}. However, the reduced skew spectra of the two graphs are268

different, meaning that the skew spectrum manages to distinguish the two cases.269
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