
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

Here, we will demonstrate the additional results from our work.

A.1 SOBEL OPERATOR

The Sobel operator calculates the gradient of an image by convolving the image with two 3x3 kernels:
one for detecting horizontal edges (Gx) and one for detecting vertical edges (Gy). The convolution
of the image I at each pixel (i, j) with these kernels is expressed as:

Gx(i, j) =

1∑
m=−1

1∑
n=−1

Gx(m,n) · I(i+m, j + n) (6)

Gy(i, j) =

1∑
m=−1

1∑
n=−1

Gy(m,n) · I(i+m, j + n) (7)

where the Sobel kernels are defined as:

Gx =

[−1 0 1
−2 0 2
−1 0 1

]
, Gy =

[−1 −2 −1
0 0 0
1 2 1

]
(8)

The gradient magnitude is then calculated as:

Magnitude(i, j) =
√

Gx(i, j)2 +Gy(i, j)2 (9)

The gradient magnitude is a measure of the sharpness of the image - a measure of how much curvature
or information is there in the image.

A.2 VISUAL REPRESENTATION OF SIMPLE AND COMPLEX IMAGES

Figure 7 is a visual representation of a simple and a complex image from the ImageNet dataset. We
identify few curves on the simple image and more detailed silhouettes on complex images, based on
our thesholding mechanism in Section 3.1.

(a) Simple Image Thresholding (b) Complex Image Thresholding

Figure 7: Examples from the ImageNet dataset (12) illustrating the application of a Sobel operator
[A.1] for edge detection. (a) A “simple” image (left) with minimal details, processed with the Sobel
operator (right), showing fewer prominent edges. (b) A “complex” image (right) with intricate details,
processed with a Sobel operator (right), revealing a dense edge pattern.

A.3 SPEED-UP DUE TO ATTENTION PARALLELIZATION

As discussed in Section 3.3.3, parallelizing attention computations significantly accelerates inference
in the Efficient Early-Exit Transformer, with a more pronounced effect on 2D tasks than 3D. In
3D tasks, the extra pre-processing for point cloud data and 2D projection introduces additional
computational overhead, limiting the speedup.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Parallel attention computation speed-up: Comparison of data instances processed per
second for Early-Exit Efficient Transformer, evaluated under both parallel and sequential attention
schemes. The speedup in 2D images is more than 3D shapes.

Dataset Data instances processed per second
Attention parallel Attention sequential

CIFAR 100 (24) 60.15 58.37
ImageNet (12) 28.23 26.40

ModelNet40 (64) 13.74 13.57

A.4 COMPARISON WITH EXTREMELY SMALL MODELS

Despite the existence of models with considerably lower MACs in Table 7, our evaluation reveals a
clear advantage for our approach. Our model exhibits faster inference times, notably on edge devices,
and maintains a higher accuracy than any of the identified low-MAC models. These experiments
have been performed on ImageNet. We also add entries from recent models whose implementation is
not publicly available at the time of submission. We use the symbol: − to indicate observations that
are not accessible due to the aforementioned reason.

Table 7: Comparison with other models: Comparison of small MAC Methods with UWYN on
ImageNet. We demonstrate higher accuracy than all and faster inference for some.

Method MACs Params Accuracy Time (Xavier) Time (P100) Time (Orin)
Efficient ViT-M0 (36) 0.1 G 5.4 M 71.9% 1415 s 346.87 s 1279.38 s
LeViT-128S (14; 59) 0.2 G 7.77 M 76.5% 1582.14 s 401.16 s 1632.71 s
EfficientFormerV2-s0 (29; 59) 0.3 G 3.5 M 76.1% 1994.42 s 494.13 s 2068.05 s
LF-ViT (17) 1.85 G - 82.2% - - -
CF-ViT (7) 2.4 G - 81.9% - - -
SAC-ViT (18) 1.6 G - 82.3% - - -

UWYN 1.2 G 22.86 M 84.39% 1796 s 492.63 s 1695.23 s

A.5 USING A LARGER BATCH SIZE TO COMPARE RESULTS

Here we compare the inference time when we use a batch size of 32 during inference time. There is a
larger speedup in the 3D pre-processing due to efficient handling of data as compared to the other
methods. We identify the simple and complex data instances from beforehand, batch them together
and then perform inference.

Figure 8: Batch inference: This table shows the time
required for inference using a batch size of 32 on the
ModelNet40 dataset.

Method Inference Time

PointNet++ (45) 695.45 sec
Point Transformer (72) 701.88 sec
UWYN 166.39 sec

Figure 9: Batch inference: This table shows the time
required for inference using a batch size of 32 on the
CIFAR 10 dataset.

Method Inference Time

LGViT (66) 59.83 sec
AdaptFormer (8) 62.18 sec
UWYN 40.45 sec

A.6 MACS FOR OTHER NETWORKS

In this section we will compare the MACs of our networks with other popular transformer architec-
tures. We are using the maximum MAC for our methods for comparison. From the table below, we
demonstrate that our MACs are minimal with respect to other architectures as well.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: MACs of other methods: From the table, it is evident that our method is much more
computationally efficient than the existing popular architecture choices. We use the thop (5) python
library to calculate the MACs. Our MACs are very low compared to the other state of the art.

Architecture MACs

DeIT Small (55; 62; 12) 4249 M
Swin V2 Tiny (37) 5760 M
Mobile ViT small (40) 347.5 M
EfficientNet-B0 (50) 380.55 M
ConvNeXt-T (13) 4.5 G
MNv4-Hybrid-L (46) 7.2 G

Our Complex Net
(CIFAR 100) 337 M

UWYN (CIFAR 100) 1186 M

A.7 FEASIBILITY OF OUR EARLY EXIT

To explore if our concept of early exit is feasible or not, we have implemented the early exit from
on a ViT (23). This indicates that after execution of each Transformer block, the output was sent to
the classifier, and based on the classifier features and labels of the images, a cross-entropy loss was
implemented. Table 9 demonstrates the results when we train these pipelines over a limited number
of epochs, thereby testifying the feasibility of our work. We start the early exit after and confidence
score calculation after at least 4 transformer blocks during inference.

Table 9: Possibility of Early Exit: Performance comparison of full capacity vs. early exit ViTs
across various datasets, trained from scratch for 100 epochs. This table illustrates the generalizability
of our method, showing that performance acceleration is consistent across different datasets and not
solely reliant on the patch and attention head selector networks. From the full capacity accuracy
(Acc.), there is a limited dip by 1%, while the other metrics, such as MACs, Parameters (Params),
and Inference time (Time), have reduced significantly.

Metric CIFAR-10 BloodMNIST CIFAR-10 BloodMNIST
(Full Capacity) (Full Capacity) (Early Capacity) (Early Exit)

Accuracy (%) 80.21 97.02 80.08 96.89
MACs (M) 1384 1401.8 836.6 596.4
Params (M) 21.31 21.31 12.34 12.34
Time (sec) 273.07 12.52 247.09 5.59

A.8 OTHER MOTIVATIONAL EXAMPLES

As mentioned in the Introduction, Section 1, the redundancy in transformers is also apparent in
Natural Language Processing tasks as well. We examine BART (26), a widely used transformer
model comprising 12 encoder and 12 decoder blocks, in the context of text classification task on the
MNLI dataset (60). In this task, Lewis et al. (26) categorizes if a pair of sentences as contradictory
or not. We systematically drop later blocks in both the encoder and decoder to evaluate the impact
on performance and computational efficiency. As Table 10 illustrates, reducing the number of
blocks yields significant computational savings with only minor accuracy decreases. For instance,
using 10 encoder blocks and 8 decoder blocks results in a mere 0.07% accuracy reduction while
saving approximately 30 ms per CPU and GPU computation time, reducing FLOPs by almost 25%.
These findings suggest a trade-off between accuracy and efficiency, which could be leveraged for
applications where rapid inference is critical or resources are constrained.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 10: Motivation from NLP: Experimental results of BART (26) on the MNLI dataset, demon-
strating the impact of reducing model components (encoder/decoder blocks) on computational
demand and accuracy.

Encoders Decoders Params CPU (ms) GPU (ms) KFLOPs Accuracy (%)

12 12 4.07× 108 81.51 87.73 12.03× 103 83
10 10 3.49× 108 51.77 61.08 10.02× 103 82.35
8 8 2.90× 108 46.52 50.19 8.02× 103 52.66

10 8 3.15× 108 53.86 57.76 8.88× 103 82.93
10 6 2.81× 108 37.58 34.55 7.73× 103 70.08

Table 10 highlights trade-offs between efficiency (CPU/GPU time for inference on the entire test set,
parameters, KFLOPs) and classification performance, supporting the hypothesis that not all model
components are essential for model efficiency. This indicates that intermediate features are also well
learnt in most cases.

18

	Appendix
	Sobel Operator
	Visual representation of simple and complex images
	Speed-up due to attention parallelization
	Comparison with extremely small models
	Using a larger batch size to compare results
	MACs for other networks
	Feasibility of our early exit
	Other motivational examples

