
Who Is the Strongest Enemy? Towards Optimal and
Efficient Evasion Attacks in Deep RL

Yanchao Sun1 Ruijie Zheng2 Yongyuan Liang3 Furong Huang4

1,2,4 Department of Computer Science, University of Maryland, College Park, MD 20742, USA
3 Sun Yat-sen University, China

1,2,4 {ycs,rzheng12,furongh}@umd.edu, 3liangyy58@mail2.sysu.edu.cn

Abstract

Evaluating the worst-case performance of a reinforcement learning (RL) agent
under the strongest/optimal adversarial perturbations on state observations (within
some constraints) is crucial for understanding the robustness of RL agents. How-
ever, finding the optimal adversary is challenging, in terms of both whether we
can find the optimal attack and how efficiently we can find it. Existing works on
adversarial RL either use heuristics-based methods that may not find the strongest
adversary, or directly train an RL-based adversary by treating the agent as a part of
the environment, which can find the optimal adversary but may become intractable
in a large state space. This paper introduces a novel attacking method to find the
optimal attacks through collaboration between a designed function named “actor”
and an RL-based learner named “director”. The actor crafts state perturbations for
a given policy perturbation direction, and the director learns to propose the best
policy perturbation directions. Our proposed algorithm, PA-AD, is theoretically
optimal and significantly more efficient than prior RL-based works in environ-
ments with large state spaces. Empirical results show that our proposed PA-AD
universally outperforms state-of-the-art attacking methods in various Atari and
MuJoCo environments. By applying PA-AD to adversarial training, we achieve
state-of-the-art empirical robustness in multiple tasks under strong adversaries.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved incredible success in many applications. However,
some recent works [8, 31] reveal that a well-trained RL agent may be vulnerable to test-time evasion
attacks, making it risky to deploy RL models in high-stakes applications. As in most related works,
we consider a state adversary which adds imperceptible noise to the observations of an agent such
that its cumulative reward is reduced during test time.

In order to understand the vulnerability of an RL agent and to improve its certified robustness, it is
important to evaluate the worst-case performance of the agent under any adversarial attacks with
certain constraints. In other words, it is crucial to find the strongest/optimal adversary that can
minimize the cumulative reward gained by the agent with fixed constraints. Therefore, this paper
focuses on the following question:

Given an arbitrary attack radius (budget) ε for each step of the deployment, what is the worst-
case performance of an agent under the strongest adversary?

Finding the strongest adversary in RL is challenging. Many existing attacks [8, 32] are based on
heuristics, crafting adversarial states at every step independently, although steps are interrelated in
contrast to image classification tasks. These heuristic methods can often effectively reduce the agent’s
reward, but are not guaranteed to achieve the strongest attack under a given budget. This type of

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

attack is “myopic” since it does not plan for the future. Figure 1 shows an intuitive example, where
myopic adversaries only prevent the agent from selecting the best action in the current step, but the
strongest adversary can strategically “lead” the agent to a trap, which is the worst event for the agent.

myopic

myopic

Victim

strongest

Figure 1: An example that a myopic
adversary is not the strongest.

Achieving computational efficiency arises as another challenge
in practice, even if the strongest adversary can be found in
theory. A recent work [32] points out that learning the optimal
state adversary is equivalent to learning an optimal policy in a
new Markov Decision Process (MDP). A follow-up work [31]
shows that the learned adversary significantly outperforms prior
adversaries in MuJoCo games. However, the state space and the
action space of the new MDP are both as large as the state space
in the original environment, which can be high-dimensional in
practice. For example, video games and autonomous driving
systems use images as observations. In these tasks, learning the
state adversary directly becomes computationally intractable.

To overcome the above two challenges, we propose a novel attack method called Policy Adver-
sarial Actor Director (PA-AD), where we design a “director” and an “actor” that collaboratively
finds the optimal state perturbations. In PA-AD, a director learns an MDP named Policy Adversary
MDP (PAMDP), and an actor is embedded in the dynamics of PAMDP. At each step, the director
proposes a perturbing direction in the policy space, and the actor crafts a perturbation in the state
space to lead the victim policy towards the proposed direction. Through a trail-and-error process, the
director can find the optimal way to cooperate with the actor and attack the victim policy. Theoretical
analysis shows that the optimal policy in PAMDP induces an optimal state adversary. Our PAMDP is
generally more compact than the adversarial MDP defined by Zhang et al.[31] and thus is easier to be
learned efficiently using off-the-shelf RL algorithms. With our proposed director-actor collaborative
mechanism, PA-AD outperforms state-of-the-art attacking methods on various types of environments,
and improves the robustness of many DRL agents by adversarial training.

Summary of Contributions (1) We propose a novel attack method PA-AD which learns the
optimal adversary efficiently. PA-AD is a general method that works on stochastic and deterministic
victim policies, vectorized and pixel state spaces, as well as discrete and continuous action spaces.
(2) Empirical study shows that PA-AD generates the strongest attack compared with prior attacking
methods in various environments, including MuJoCo and Atari games. (3) Combining our PA-AD
with adversarial training, we achieve the most robust RL models in both MuJoCo and Atari games
under evasion attacks.

2 Preliminaries and Notations

The Victim RL Agent In RL, an agent interacts with an environment modeled by a Markov
Decision Process (MDP) denoted as a tupleM = 〈S,A, P,R, γ〉, where S is a state space with
cardinality |S|, A is an action space with cardinality |A|, P : S × A → ∆(S) is the transition
function 1, R : S ×A → R is the reward function, and γ ∈ (0, 1) is the discount factor. In this paper,
we consider a setting where the state space is much larger than the action space, which arises in a
wide variety of environments. For notation simplicity, our theoretical analysis focuses on a finite
MDP, but our algorithm applies to continuous state spaces and continuous action spaces, as verified
in experiments. The agent takes actions according to its policy, π : S → ∆(A). We suppose the
victim uses a fixed policy π with a function approximator (e.g. a neural network) during test time.
We denote the space of all policies as Π, which is a Cartesian product of |S| simplices. The value of
a policy π ∈ Π for state s ∈ S is defined as V π(s) = Eπ,P [

∑∞
t=0 γ

tR(st, at)|s0 = s].

Evasion Attacker Evasion attacks are test-time attacks that aim to reduce the expected total reward
gained by the agent/victim. As in most literature [8, 20, 32], we assume the attacker knows the
victim policy π. However, the attacker does not know the environment dynamics, nor does it have
the ability to change the environment directly. The attacker can observe the interactions between the
victim agent and the environment, including states, actions and rewards. We focus on a typical state
adversary [8, 32], which perturbs the state observations returned by the environment before the agent
observes them. Note that the underlying states in the environment are not changed.

1∆(X) denotes the the space of probability distributions over X .

2

𝑠

𝑆

ℎ(𝑠)
𝜋
𝜋!

Π
𝑉

𝑉"

𝑉"!

End-to-end
SA-RL:

An RL problem in a large MDP

PA-AD
(ours):

An RL problem in a small MDPAn optimization problem

The DirectorThe Actor

(Policy network)

Environment

𝑩𝝐𝑯(𝝅)

𝑉!∗

𝑉!"∗
𝑩𝝐(𝒔)

Victim 𝝅

Figure 2: A state adversary h perturbs s into h(s) ∈ Bε(s) in the state space; hence, the victim’s policy
π is perturbed into πh within the Adv-policy-set BHε (π); as a result, the expected total reward the victim
can gain becomes V πh instead of V π . A prior work SA-RL [31] directly uses an RL agent to learn the best
state adversary h∗, which works for MDPs with small state spaces, but suffers from high complexity in larger
MDPs. In contrast, we find the optimal state adversary h∗ efficiently through identifying the optimal policy
adversary πh∗ . Our proposed attack method called PA-AD contains an RL-based “director” which learns to
propose policy perturbation πh in the policy space, and a non-RL “actor”, which targets at the proposed πh and
computes adversarial states in the state space. Through this collaboration, the director can learn the optimal
policy adversary πh∗ using RL methods, such that the actor executes h∗ as justified in Theorem 4.

Formally, we model a state adversary by a function h which perturbs state s ∈ S into s̃ := h(s), so
that the input to the agent’s policy is s̃ instead of s. The amount of perturbation ‖s̃− s‖ is usually
small so that the attacks are hard to be perceived. In this paper, we consider the common `p-norm
ball constraint: s̃ should be in Bε(s), where Bε(s) denotes an `p norm ball centered at s with radius
ε ≥ 0, a constant called the budget of the adversary for every step. With the budget constraint, we
define the admissible state adversary and the admissible adversary set as below.

Definition 1 (Set of Admissible State AdversariesHε). A state adversary h is said to be admissible
if ∀s ∈ S, we have h(s) ∈ Bε(s). The set of all admissible state adversaries is denoted by Hε.

Then the goal of the attacker is to find an adversary h∗ in Hε that maximally reduces the cumulative
reward of the agent. In this work, we propose a novel method to learn the optimal state adversary
through the identification of an optimal policy perturbation defined and motivated in the next section.

3 Understanding Optimal Adversary via Policy Perturbations

In this section, we first motivate our idea of interpreting evasion attacks as perturbations of policies,
then discuss how to efficiently find the optimal state adversary via the optimal policy perturbation.

Figure 3: Equivalence between eva-
sion attacks and policy perturbations.

Evasion Attacks Are Perturbations of Policies Although
existing literature usually considers state-attacks and action-
attacks separately, we point out that evasion attacks, either
applied to states or actions, are essentially equivalent to per-
turbing the agent’s policy π into another policy πh in the policy
space Π. For instance, as shown in Figure 3, if the adversary
h alters state s into state s̃, the victim selects an action ã based
on π(·|s̃). This is equivalent to directly perturbing π(·|s) to
πh(·|s) := π(·|s̃). (See Appendix B for more detailed analysis including action adversaries.)

Since every state adversary h corresponds to a specific policy perturbation, the admissible state
adversary set Hε leads to a set of perturbed policies in the policy space. Therefore, we define an
Admissible Adversarial Policy Set (Adv-policy-set) BHε (π) ⊂ Π as the set of policies perturbed from
π by all admissible state adversaries h ∈ Hε. In other words, when a state adversary perturbs states
within an `p norm ball Bε(·), the victim policy is perturbed within BHε (π). In this paper, we aim to
find the optimal state adversary h∗ through the identification of the “optimal policy perturbation” πh∗ ,
as depicted in Figure 2. See Appendix C for formal definition of BHε (π) and discussion about the
relation between h∗ and πh∗ .

Advantages of Considering Policy Perturbations (1) πh(·|s) usually lies in a lower dimensional
space than h(s) for an arbitrary state s ∈ S . For example, in Atari games, the action space is discrete
and small (e.g. |A| = 18), while a state is an image of dimension C×H×W , where C,H,W are the
number of channels, the height and the width of the image, respectively. Then the state perturbation
h(s) has dimension C ×H ×W , much higher than the corresponding policy perturbation πh(·|s)

3

which has dimension |A|. (2) It is easier to characterize the optimality of a policy perturbation than a
state perturbation. How a state perturbation changes the value of a victim policy depends on both the
victim policy network and the environment dynamics. In contrast, how a policy perturbation changes
the victim value only depends on the environment. Our Theorem 7 in Appendix C and Theorem 12
in Appendix D both provide insights about how V π changes as π changes continuously. (3) Policy
perturbation captures the essence of evasion attacks, and unifies state and action attacks. Although
this paper focuses on state-space adversaries, the learned “optimal policy perturbation” can also be
used to conduct action-space attacks against the same victim.

4 PA-AD: Optimal and Efficient Evasion Attack

In this section, we first formally define the optimality of an attack algorithm and discuss some existing
attack methods. Then, based on the theoretical insights in Section 3, we introduce our algorithm,
Policy Adversarial Actor Director (PA-AD) that has an optimal formulation and is efficient to use.

Although many attack methods for RL agents have been proposed [8, 20, 32], it is not yet well-
understood how to characterize the strength and the optimality of an attack method. Therefore, we
propose to formulate the optimality of an attack algorithm, which answers the question “whether the
attack objective finds the strongest adversary”.

Definition 2 (Optimal Formulation of Attacking Algorithm). An attacking algorithm Algo is said to
have an optimal formulation iff for any MDPM, policy π and admissible adversary set Hε under
attacking budget ε, the set of optimal solutions to its objective, HAlgo

ε , is a subset of the optimal
adversaries against π, i.e., HAlgo

ε ⊆ H∗ε := {h∗|h∗ ∈ argminh∈HεV
πh(s),∀s ∈ S}.

Intuitively, an attack method is optimally formulated if any optimal solution to its objective is an
optimal adversary for a victim π and for a given budget ε ≥ 0. Many heuristic-based attacks, although
are empirically effective and efficient, do not meet the requirements of optimal formulation. In
Appendix F.3, we categorize existing heuristic attack methods into four types, and theoretically prove
that there exist scenarios where these heuristic methods may not find the strongest adversary. A recent
paper [31] proposes to learn the optimal state adversary using RL methods, which we will refer to
as SA-RL in our paper for simplicity. SA-RL can be viewed as an “end-to-end” RL attacker, as it
directly learns the optimal state adversary such that the value of the victim policy is minimized. The
formulation of SA-RL satisfies Definition 2 and thus is optimal. However, SA-RL learns an MDP
whose state space and action space are both the same as the original state space. If the original state
space is high-dimensional (e.g. images), learning a good policy in the adversary’s MDP may become
computationally intractable, as empirically shown in Section 6.

Can we address the optimal attacking problem in an efficient manner? As shown in Figure 2, a
state perturbation leads to a policy perturbation, and then the policy perturbation results in a value
perturbation; only the latter process depends on the environment dynamics and requires learning,

Environment

Actor

Reward

Action State

Policy Perturbing

Direction

Victim Policy

The actor's task: similar to a (targeted) evasion attack in supervised learning.

Can be solved by optimization methods (FGSM, PGD, etc).

The director's task: minimize the total reward gained from the environment.

Can be solved by RL methods (PPO, DQN, etc).

Director

Our Method: Policy Adversarial Actor Director:

Optimal And Efficient

Environment
State

Reward Action

Victim Policy

State

Adversary

An End-to-end RL Attacker (SA-RL):

Optimal But Inefficient

EnvironmentState
Action

Victim Policy

A Heuristic Attacker:

Efficient But Non-optimal

State

Adversary

Figure 4: An overview of PA-AD compared with a heuristic attacker and an end-to-end RL attacker. Heuristic
attacks are efficient, but may not find the optimal adversary as they do not learn from the environment dynamics.
An end-to-end RL attacker directly learns a policy to generate state perturbations, but is inefficient in large-
state-space environments. In contrast, our PA-AD solves the attack problem with a combination of an RL-based
director and a non-RL actor, so that PA-AD achieves both optimality and efficiency.

4

while the former process is similar to evasion attacks in a supervised learning problem and does
not require learning. Therefore, we propose a novel algorithm, Policy Adversarial Actor Director
(PA-AD), that has optimal formulation and is generally more efficient than an end-to-end RL adversary.
PA-AD decouples the whole attacking process into two simpler components: policy perturbation and
state perturbation, solved by a “director” and an “actor”, respectively. The director learns the optimal
policy perturbing direction with RL methods, while the actor crafts adversarial states at every step
such that the victim policy is perturbed towards the given direction. In Appendix H.2, we provide a
comprehensive comparison between PA-AD and SA-RL from multiple aspects.

Formally, for a given victim policy π, our proposed PA-AD algorithm solves a Policy Adversary
MDP (PAMDP) defined in Definition 3. An actor denoted by g is embedded in the dynamics of the
PAMDP, and a director searches for an optimal policy ν∗ in the PAMDP.

Definition 3 (Policy Adversary MDP (PAMDP) M̂). Given an MDP M = 〈S,A, P,R, γ〉, a
fixed stochastic victim policy π, an attack budget ε ≥ 0, we define a Policy Adversarial MDP M̂ =

〈S, Â, P̂ , R̂, γ〉, where the action space is Â :={d ∈[0, 1]|A|,
∑|A|
i=1 di = 0}, and ∀s, s′ ∈ S,∀â ∈ Â,

P̂ (s′|s, â) =
∑

a∈A
π(a|g(â, s))P (s′|s, a), R̂(s, â) = −

∑
a∈A

π(a|g(â, s))R(s, a),

where g is the actor function defined as

g(â, s) = argmaxs′∈Bε(s)‖π(s′)−π(s)‖ subject to
(
π(s′)−π(s)

)T
â = ‖π(s′)−π(s)‖‖â‖. (G)

If the victim policy is deterministic, i.e., πD := argmaxaπ(a|s), (subscript D stands for determinis-
tic), the action space of PAMDP is ÂD :=A, and the actor function gD is

gD(â, s) = argmaxs′∈Bε(s)
(
π(â|s′)−maxa∈A,a 6=âπ(a|s′)

)
. (GD)

Detailed definition of the deterministic-victim version of PAMDP is in Appendix E.1.

A key to PA-AD is the director-actor collaboration mechanism. The input to director policy ν is the
current state s in the original environment, while its output â is a signal to the actor denoting “which
direction to perturb the victim policy into”. The actor g takes in the state s and director’s direction â
and then computes a state perturbation within the attack budget. Therefore, the director and the actor
together induce a state adversary: h(s) := g(ν(s), s),∀s ∈ S. The definition of PAMDP is slightly
different for a stochastic victim policy and a deterministic victim policy, as described below.
For a stochastic victim π, the director’s action â ∈ Â is designed to be a unit vector lying in the
policy simplex, denoting the perturbing direction in the policy space. The actor, once receiving the
perturbing direction â, will “push” the policy as far as possible by perturbing s to g(â, s) ∈ Bε(s), as
characterized by the optimization problem (G). In this way, the policy perturbation resulted by the
director and the actor is always in the outermost boundary of BHε (π) w.r.t. the victim π, where the
optimal policy perturbation can be found according to Theorem 7.
For a deterministic victim πD, the director’s action â ∈ ÂD can be viewed as a target action in the
original action space, and the actor conducts targeted attacks to let the victim execute â, by forcing
the logit corresponding to the target action to be larger than the logits of other actions.

In both the stochastic-victim and deterministic-victim case, PA-AD has an optimal formulation as
stated in Theorem 4 (proven in Appendix F.2).
Theorem 4 (Optimality of PA-AD). For any MDPM, any fixed victim policy π, and any attack
budget ε ≥ 0, an optimal policy ν∗ in M̂ induces an optimal state adversary against π inM. That
is, the formulation of PA-AD is optimal, i.e., HPA-AD ⊆ H∗ε .

Efficiency of PA-AD As commonly known, the sample complexity and computational cost of
learning an MDP usually grow with the cardinalities of its state space and action space. Both SA-RL
and PA-AD have state space S , the state space of the original MDP. But the action space of SA-RL is
also S , while our PA-AD has action space R|A|−1 for stochastic victim policies, orA for deterministic
victim policies. In most DRL applications, the state space (e.g., images) is much larger than the
action space, then PA-AD is generally more efficient than SA-RL as it learns a smaller MDP.

The attacking procedure is illustrated in Algorithm 1. At step t, the director observes a state st, and
proposes a policy perturbation ât, then the actor searches for a state perturbation to meet the policy
perturbation. Afterwards, the victim acts with the perturbed state s̃t and interacts with the environment,
then the director updates its policy based on the opposite value of the victim’s reward. Note that the

5

actor’s goal is to solve a constrained optimization problem, which can be implemented in various
ways. In Appendix E.2, we provide our implementation details for solving the actor’s optimization,
which empirically achieves state-of-the-art attack performance as verified in Section 6. Our PA-AD
can also be extended to environments with continuous action spaces, where the actor minimizes the
distance between the policy action and the target action, i.e., argmaxs′∈Bε(s)‖π(s′) − â‖. More
details of the variant of PA-AD in continuous action space are provided in Appendix E.3.

Algorithm 1: Policy Adversarial Actor Director (PA-AD)
1 Input: Initialization of director’s policy ν; victim policy π; budget ε; start state s0
2 for t = 0, 1, 2, ... do
3 Director samples a policy perturbing direction ât ∼ ν(·|st)
4 if Victim is deterministic then
5 Actor perturbs st to s̃t = gD(ât, st) according to Equation (GD)
6 else
7 Actor perturbs st to s̃t = g(ât, st) according to Equation (G)
8 Victim takes action at ∼ π(·|s̃t), proceeds to st+1, receives rt
9 Director saves (st, ât,−rt, st+1) to its buffer

10 Director updates its policy ν using any RL algorithm

5 Related Work

Heuristic-based Evasion Attacks on States There are many works considering evasion attacks on
the state observations in RL. Huang et al. [8] first propose to use FGSM [5] to craft adversarial states
such that the probability that the agent selects the “best” action is minimized. The same objective is
also used in a recent work by Korkmaz [10], which adopts a Nesterov momentum-based optimization
method to further improve the attack performance. Pattanaik et al. [20] propose to lead the agent
to select the “worst” action based on the victim’s Q function and use gradient descent to craft state
perturbations. Zhang et al. [32] define the concept of a state-adversarial MDP (SAMDP) and propose
two attack methods: Robust SARSA (RS) attack that forces the agent to choose actions with minimal
Q values, with a learned stable Q function, and Maximal Action Difference attack that maximizes the
difference between the perturbed policy and the victim policy. The above heuristic-based methods
are shown to be effective in many environments. However, in Appendix F.3, our theoretical analysis
shows the formulation of the above heuristic methods may not be optimal.

RL-based Evasion Attacks on States As discussed in Section 4, SA-RL [31] uses an end-to-end
RL formulation to learn the optimal state adversary. However, this end-to-end RL formulation is
difficult to solve when the state space of the original environment is large. Although Russo et al. [23]
propose that one can use feature extraction to convert the pixel state space to a small state space, such
feature extractions require expert knowledge and are hard to obtain in many real-world applications.
In contrast, our PA-AD simplifies the RL problem with a more compact PAMDP, and learns the
optimal state perturbations without any prior knowledge.

Other Works Related to Adversarial RL There are many other papers studying adversarial RL
from different perspectives, including limited-steps attacking [14, 11], multi-agent scenarios [4],
limited access to data [9], and etc. Adversarial action attacks [30, 26, 27, 13] are developed separately
from state attacks; although we mainly consider state adversaries, our PA-AD can be easily extended
to action-space attacks as formulated in Appendix B. Poisoning [1, 25] is another type of adversarial
attacks that manipulates the training process, different from evasion attacks that deprave a well-trained
policy. Training a robust agent is the focus of many recent works [21, 3, 15, 19, 32, 31]. Although
our main goal is to identify a strong attacker, we also show by experiments that our proposed attack
method can be incorporated into robust training methods to improve the robustness of RL agents.

6 Experiments
In this section, we show that PA-AD produces stronger evasion attacks than state-of-the-art attack
algorithms on various OpenAI Gym environments, including Atari and MuJoCo tasks. Also, our
experiment justifies that PA-AD can evaluate and improve the robustness of RL agents.

Baselines and Performance Metric We compare our proposed attack algorithm with existing
evasion attack methods, including MinBest [8] which minimizes the probability that the agent

6

Environment Natural
Reward ε Random MinBest [8] MinBest +

Momentum[10] MinQ [20] MaxDiff [32] SA-RL [31] PA-AD
(ours)

DQN

Boxing 96± 4 0.001 95± 4 53± 16 52± 18 88± 7 95± 5 94± 6 19± 11

Pong 21± 0 0.0002 21± 0 −10± 4 −14± 2 14± 3 15± 4 20± 1 −21± 0

RoadRunner 46278± 4447 0.0005 44725± 6614 17012± 6243 15823± 5252 5765± 12331 36074± 6544 43615± 7183 0± 0

Freeway 34± 1 0.0003 34± 1 12± 1 12± 1 15± 2 22± 3 34± 1 9± 1

Seaquest 10650± 2716 0.0005 8177± 2962 3820± 1947 2337± 862 6468± 2493 5718± 1884 8152± 3113 2304± 838

Alien 1623± 252 0.00075 1650± 381 819± 486 775± 648 938± 446 869± 279 1693± 439 256± 210

Tutankham 227± 29 0.00075 221± 65 30± 13 26± 16 88± 74 130± 48 202± 65 0± 0

A2C

Breakout 356± 79 0.0005 355± 79 86± 104 74± 95 N/A 304± 111 353± 79 44± 62

Seaquest 1752± 70 0.005 1752± 73 356± 153 179± 83 N/A 46± 52 1752± 71 4± 13

Pong 20± 1 0.0005 20± 1 −4± 8 −11± 7 N/A 18± 3 20± 1 −13± 6

Alien 1615± 601 0.001 1629± 592 1062± 610 940± 565 N/A 1482± 633 1661± 625 507± 278

Tutankham 258± 53 0.001 260± 54 139± 26 134± 28 N/A 196± 34 260± 54 71± 47

RoadRunner 34367± 6355 0.002 35851± 6675 9198± 3814 5410± 3058 N/A 31856± 7125 36550± 68482773± 3468

Table 1: Average episode rewards ± standard deviation of vanilla DQN and A2C agents under different evasion
attack methods in Atari environments. Results are averaged over 1000 episodes. Note that RS works for
continuous action spaces, thus is not included. MinQ is not applicable to A2C which does not have a Q network.
In each row, we bold the strongest (best) attack performance over all attacking methods.

chooses the “best” action, MinBest +Momentum [10] which uses Nesterov momentum to improve
the performance of MinBest, MinQ [20] which leads the agent to select actions with the lowest action
values based on the agent’s Q network, Robust SARSA (RS) [32] which performs the MinQ attack
with a learned stable Q network, MaxDiff [32] which maximizes the KL-divergence between the
original victim policy and the perturbed policy, as well as SA-RL [31] which directly learns the state
adversary with RL methods. We consider state attacks with `∞ norm as in most literature [32, 31].
Appendix G.1 provides hyperparameter settings and implementation details.

PA-AD Finds the Strongest Adversaries in Atari Games We first evaluate the performance of
PA-AD against well-trained DQN [18] and A2C [17] victim agents on Atari games with pixel state
spaces. The observed pixel values are normalized to the range of [0, 1]. The adversaries are learned
with the ACKTR algorithm [29]. As is common in prior works, our implementation of the RL
algorithms for both the victim and the attacker is mostly a proof of concept, thus many advanced
training techniques are not included (e.g. Rainbow DQN). Table 1 presents the experiment results,
where PA-AD significantly and universally outperforms all baselines against both DQN and A2C
victims. Surprisingly, using a relatively small attack budget ε, PA-AD leads the agent to the lowest
possible reward in many environments such as Pong, RoadRunner and Tutankham, whereas other
attackers may require larger attack budget to achieve the same attack strength. Therefore, we point
out that vanilla RL agents are extremely vulnerable to carefully learned adversarial attacks. Even if
an RL agent works well under naive attacks, a carefully learned adversary can let an agent totally fail
with the same attack budget, which stresses the importance of evaluating and improving the robustness
of RL agents using the strongest adversaries. Our further investigation in Appendix H.3 shows that
RL models can be generally more vulnerable than supervised classifiers, due to the different loss and
architecture designs. In Appendix G.2.1, we show more experiments with various selections of the
budget ε, where one can see PA-AD reduces the average reward more than all baselines over varying
ε’s in various environments.

PA-AD Finds the Strongest Adversaries MuJoCo Tasks We further evaluate PA-AD on MuJoCo
games, where both state spaces and action spaces are continuous. We use the same setting with [31],
where both the victim and the adversary are trained with PPO [24]. During test time, the victim
executes a deterministic policy, and we use the deterministic version of PA-AD with a continuous

Environment State
Dimension

Natural
Reward ε Random MaxDiff [32] RS[32] SA-RL [31] PA-AD

(ours)
Hopper 11 3167± 542 0.075 2101± 793 1410± 655 794± 238 636± 9 160± 136

Walker 17 4472± 635 0.05 3007± 1200 2869± 1271 1336± 654 1086± 516 804± 130

HalfCheetah 17 7117± 98 0.15 5486± 1378 1836± 866 489± 758 −660± 218 −356± 307

Ant 111 5687± 758 0.15 5261± 1005 1759± 828 268± 227 −872± 436 −2580± 872

Table 2: Average episode rewards ± standard deviation of vanilla PPO agent under different evasion attack
methods in MuJoCo environments. Results are averaged over 50 episodes. Note that MinBest and MinQ do not
fit this setting, since MinBest works for discrete action spaces, and MinQ requires the agent’s Q network.

7

action space, as discussed in Section 4 and Appendix E.3. We use the same attack budget ε as in [31]
for all MuJoCo environments. The results in Table 2 show that PA-AD reduces the reward much
more than heuristic methods, and also outperforms SA-RL in most cases. In the most challenging
Ant environment where the state space is relatively large, our PA-AD achieves much stronger attacks
than SA-RL and other baselines, since PA-AD is more efficient than SA-RL when the state space is
larger than the action space. Because PA-AD learns a smaller MDP than SA-RL, there are two extra
benefits of using PA-AD: (1) Figure 12 in Appendix G.2.3 shows the learning curve of PA-AD and
SA-RL in the Ant environment, where PA-AD converges much faster than SA-RL. (2) Figure 13 in
Appendix G.2.3 shows that PA-AD is less sensitive to hyperparameter settings than SA-RL.

Environment Model Natural
Reward Random MaxDiff [32] RS[32] SA-RL [31] PA-AD

(ours)
Average reward
across attacks

Hopper
(state-dim: 11)

ε: 0.075

SA-PPO [32] 3705± 2 2710± 801 2652± 835 1130± 42 1076± 791 856± 21 1684.8

ATLA-PPO [31] 3291± 600 3165± 576 2814± 725 2244± 618 1772± 802 1232± 350 2245.4

PA-ATLA-PPO (ours) 3449± 237 3325± 239 3145± 546 3002± 129 1529± 284 2521± 325 2704.4

Walker
(state-dim: 17)

ε: 0.05

SA-PPO [32] 4487± 61 4867± 39 3668± 1789 3808± 138 2908± 1136 1042± 153 3258.6

ATLA-PPO [31] 3842± 475 3927± 368 3836± 492 3239± 894 3663± 707 1224± 770 3177.8

PA-ATLA-PPO (ours) 4178± 529 4129± 78 4024± 572 3966± 307 3450± 478 2248± 131 3563.4

Halfcheetah
(state-dim: 17)

ε: 0.15

SA-PPO [32] 3632± 20 3619± 18 3624± 23 3283± 20 3028± 23 2512± 16 3213.2

ATLA-PPO [31] 6157± 852 6164± 603 5790± 174 4806± 603 5058± 718 2576± 1548 4878.8

PA-ATLA-PPO (ours) 6289± 342 6215± 346 5961± 53 5226± 114 4872± 79 3840± 673 5222.8

Ant
(state-dim: 111)

ε: 0.15

SA-PPO [32] 4292± 384 4986± 452 4662± 522 3412± 1755 2511± 1117 −1296± 923 2855.0

ATLA-PPO [31] 5359± 153 5366± 104 5240± 170 4136± 149 3765± 101 220± 338 3745.4

PA-ATLA-PPO (ours) 5469± 106 5496± 158 5328± 196 4124± 291 3694± 188 2986± 864 4325.6

Table 3: Average episode rewards ± standard deviation of robustly trained PPO agents under different evasion
attack methods. Results are averaged over 50 episodes. In each row corresponding to a robust agent, we bold the
strongest attack. The gray cells are the most robust agents with the highest average rewards across all attacks.

Training and Evaluating Robust Agents The ultimate goal of studying optimal attack is to
measure and improve the robustness of RL agents. Therefore, we introduce PA-ATLA, which
alternately trains an agent and a PA-AD attacker, different from ATLA [31] which alternately trains
an agent and an SA-RL attacker. In Table 3, we evaluate the performance of PA-ATLA for a PPO agent
(namely PA-ATLA-PPO) in MuJoCo tasks, compared with state-of-the-art robust training methods,
SA-PPO [32] and ATLA-PPO [31]. (We use ATLA-PPO(LSTM)+SA Reg, the most robust method
reported by [31]) The robust agents are evaluated under multiple different attacks including PA-AD.
From the table, we make the following observations: (1) Our PA-AD attacker can significantly reduce
the reward of the “robust” agents. Take the Ant environment as an example, although SA-PPO and
ATLA-PPO agents gain 2k+ and 3k+ rewards respectively under SA-RL, the previously strongest
attack, our PA-AD still reduces their rewards to about -1.3k and 200+ with the same attack budget.
Therefore, we emphasize the importance of understanding the worst-case performance of RL agents,
even robustly-trained agents. (2) Our PA-ATLA-PPO robust agents gain noticeably higher average
rewards across attacks than other robust agents, especially under the strongest PA-AD attack. Under
the SA-RL attack, PA-ATLA-PPO achieves comparable performance with ATLA-PPO, although
ATLA-PPO agents are trained to be robust against SA-RL. Due to the efficiency of PA-AD, PA-
ATLA-PPO requires fewer training steps than ATLA-PPO, as justified in Appendix G.2.4. The results
of attacking and training robust models in Atari games are in Appendix G.2.5 and G.2.6, where
PA-ATLA improves the robustness of Atari agents against strong attacks with ε as large as 3/255.

7 Conclusion
In this paper, we propose an attack algorithm called PA-AD for RL problems, which achieves optimal
attacks in theory and significantly outperforms prior attack methods in experiments. PA-AD can be
used to evaluate and improve the robustness of RL agents before deployment. A potential future
direction is to use our formulation for robustifying agents under both state and action attacks.

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation IIS-1850220 CRII Award 030742-00001 and
DOD-DARPA-Defense Advanced Research Projects Agency Guaranteeing AI Robustness against
Deception (GARD), and Adobe, Capital One and JP Morgan faculty fellowships.

8

References
[1] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy

induction attacks. In International Conference on Machine Learning and Data Mining in
Pattern Recognition, pages 262–275. Springer, 2017.

[2] Robert Dadashi, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans, and Marc G. Bellemare.
The value function polytope in reinforcement learning. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 1486–1495, Long Beach,
California, USA, 09–15 Jun 2019. PMLR.

[3] Marc Fischer, Matthew Mirman, Steven Stalder, and Martin Vechev. Online robustness training
for deep reinforcement learning. arXiv preprint arXiv:1911.00887, 2019.

[4] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell.
Adversarial policies: Attacking deep reinforcement learning. In International Conference on
Learning Representations, 2020.

[5] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

[6] David Silver Hado Van Hasselt, Arthur Guez. Deep reinforcement learning with double
q-learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[7] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[8] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[9] Matthew Inkawhich, Yiran Chen, and Hai Li. Snooping attacks on deep reinforcement learning.
In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’20, page 557–565, Richland, SC, 2020. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[10] Ezgi Korkmaz. Nesterov momentum adversarial perturbations in the deep reinforcement learning
domain. In ICML 2020 Inductive Biases, Invariances and Generalization in Reinforcement
Learning Workshop, 2020.

[11] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv preprint
arXiv:1705.06452, 2017.

[12] Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

[13] Xian Yeow Lee, Yasaman Esfandiari, Kai Liang Tan, and Soumik Sarkar. Query-based targeted
action-space adversarial policies on deep reinforcement learning agents. In Proceedings of the
ACM/IEEE 12th International Conference on Cyber-Physical Systems, ICCPS ’21, page 87–97,
New York, NY, USA, 2021. Association for Computing Machinery.

[14] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun.
Tactics of adversarial attack on deep reinforcement learning agents. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, IJCAI’17, page 3756–3762. AAAI
Press, 2017.

[15] Björn Lütjens, Michael Everett, and Jonathan P How. Certified adversarial robustness for deep
reinforcement learning. In Conference on Robot Learning, pages 1328–1337. PMLR, 2020.

[16] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

9

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

[17] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937,
2016.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[19] Tuomas Oikarinen, Tsui-Wei Weng, and Luca Daniel. Robust deep reinforcement learning
through adversarial loss. arXiv preprint arXiv:2008.01976, 2020.

[20] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary.
Robust deep reinforcement learning with adversarial attacks. In Proceedings of the 17th In-
ternational Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, page
2040–2042, Richland, SC, 2018. International Foundation for Autonomous Agents and Multia-
gent Systems.

[21] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2817–2826. JMLR. org, 2017.

[22] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., USA, 1st edition, 1994.

[23] Alessio Russo and Alexandre Proutiere. Optimal attacks on reinforcement learning policies. In
American Control Conference (ACC)., 2021.

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[25] Yanchao Sun, Da Huo, and Furong Huang. Vulnerability-aware poisoning mechanism for online
rl with unknown dynamics. In International Conference on Learning Representations, 2021.

[26] Kai Liang Tan, Yasaman Esfandiari, Xian Yeow Lee, Soumik Sarkar, et al. Robustifying
reinforcement learning agents via action space adversarial training. In 2020 American control
conference (ACC), pages 3959–3964. IEEE, 2020.

[27] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and
applications in continuous control. In International Conference on Machine Learning, pages
6215–6224. PMLR, 2019.

[28] Ioannis Antonoglou Tom Schaul, John Quan and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2016.

[29] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Advances
in neural information processing systems, pages 5279–5288, 2017.

[30] Chaowei Xiao, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jinfeng Yi, Mingyan Liu,
Bo Li, and Dawn Song. Characterizing attacks on deep reinforcement learning. arXiv preprint
arXiv:1907.09470, 2019.

[31] Huan Zhang, Hongge Chen, Duane S Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. In International Conference on Learning
Representations, 2021.

[32] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-
Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations on state
observations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 21024–21037. Curran
Associates, Inc., 2020.

10

Appendix: Who Is the Strongest Enemy? Towards Optimal and Effi-
cient Evasion Attacks in Deep RL

A Broader Impact

Despite the rapid advancement of interactive AI and ML systems using RL agents, the learning agent
could fail catastrophically in the presence of adversarial attacks, exposing a serious vulnerability
in current RL systems such as autonomous driving systems, market-making systems, and security
monitoring systems. Therefore, there is an urgent need to understand the vulnerability of an RL model,
otherwise it may be risky to deploy a trained agent in real-life applications, where the observations of
a sensor usually contain unavoidable noise.

Although the study of a strong attack method may be maliciously exploited to attack some RL
systems, it is more important for the owners and users of RL systems to get aware of the vulnerability
of their RL agents under the strongest possible adversary. As the old saying goes, “if you know
yourself and your enemy, you’ll never lose a battle”. In this work, we propose an optimal and efficient
algorithm for evasion attacks in Deep RL (DRL), which can significantly influence the performance
of a well-trained DRL agent, by adding small perturbations to the state observations of the agent. Our
proposed method can automatically measure the vulnerability of an RL agent, and discover the “flaw”
in a model that might be maliciously attacked. We also show in experiments that our attack method
can be applied to improve the robustness of an RL agent via robust training. Since our proposed attack
method achieves state-of-the-art performance, the RL agent trained under our proposed attacker could
be able to “defend” against any other adversarial attacks with the same constraints. Therefore, our
work has the potential to help combat the threat to high-stakes systems.

A limitation of PA-AD is that it requires the “attacker” to know the victim’s policy, i.e., PA-AD is
a white-box attack. If the attacker does not have full access to the victim, PA-AD can still be used
based on the transferability of adversarial attacks [8], although the optimality guarantee does not
hold in this case. However, this limitation only restricts the ability of the malicious attackers. In
contrast, PA-AD should be used when one wants to evaluate the worst-case performance of one’s
own RL agent, or to improve the robustness of an agent under any attacks, since PA-AD produces
strong attacks efficiently. In these cases, PA-AD has access to the agent. Therefore, PA-AD is more
beneficial to defenders than attackers.

B Relationship between Evasion Attacks and Policy Perturbations.

As mentioned in Section 2, all evasion attacks can be regarded as perturbations in the policy space.
To be more specific, we consider the following 3 cases, where we assume the victim uses policy π.

Case 1 (attack on states): define the state adversary as function h such that ∀s ∈ S
h(s) = s̃ ∈ Bε(s) := {s′ ∈ S : ‖s′ − s‖ ≤ ε}.

(For simplicity, we consider the attacks within a ε-radius norm ball.)
In this case, for all s ∈ S, the victim samples action from πh(·|s) = π(·|h(s)) = π(s̃), which is
equivalent to the victim executing a perturbed policy πh ∈ Π.

Case 2 (attack on actions for a deterministic π): define the action adversary as function h(A) :
S ×A → A, and ∀s ∈ S, a ∈ A

h(A)(a|s) = ã ∈ Bε(a) := {a′ ∈ A : ‖a′ − a‖ ≤ ε}.

In this case, there exists a policy πh(A) such that πh(A)(s) = h(A)(a|s) = ã, which is equivalent to
the victim executing policy πh(A) ∈ Π.

Case 3 (attack on actions for a stochastic π): define the action adversary as function h(A) : S ×A →
A, and ∀s ∈ S, a ∈ A

h(A)(a|s) = ã such that {‖π(·|s)− Pr(·|s)‖ ≤ ε},
where Pr(ã|s) denotes the probability that the action is perturbed into ã.
In this case, there exists a policy πh(A) such that πh(A)(s) = Pr(·|s), which is equivalent to the
victim executing policy πh(A) ∈ Π.

11

Most existing evasion RL works [8, 20, 32, 31] focus on state attacks, while there are also some
works [27, 26] studying action attacks. For example, Tessler et al. [27] consider Case 2 and Case 3
above and train an agent that is robust to action perturbations.

These prior works study either state attacks or action attacks, considering them in two different
scenarios. However, the ultimate goal of robust RL is to train an RL agent that is robust to any threat
models. Otherwise, an agent that is robust against state attacks may still be ruined by an action
attacker. We take a step further to this ultimate goal by proposing a framework, policy attack, that
unifies observation attacks and action attacks.

Although the focus of this paper is on state attacks, we would like to point out that our proposed
method can also deal with action attacks (the director proposes a policy perturbation direction, and
an actor perturbs the action accordingly). It is also an exciting direction to explore hybrid attacks
(multiple actors conducting states perturbations and action perturbations altogether, directed by a
single director.) Our policy perturbation framework can also be easily incorporated in robust training
procedures, as an agent that is robust to policy perturbations is simultaneously robust to both state
attacks and action attacks.

C Characterizing the Optimal Policy Adversary

As depicted in Figure 2, the policy perturbation serves as a bridge connecting the perturbations in
the state space and the value space. Our goal is to find the optimal state adversary by identifying the
optimal “policy adversary”. We first define an Admissible Adversarial Policy Set (Adv-policy-set)
BHε (π) ⊂ Π as the set of policies perturbed from π by all admissible state adversaries h ∈ Hε. In
other words, when a state adversary perturbs states within an `p norm ball Bε(·), the victim policy is
perturbed within BHε (π).
Definition 5 (Admissible Adversarial Policy Set (Adv-policy-set) BHε (π)). For an MDP M, a
fixed victim policy π, we define the admissible adversarial policy set (Adv-policy-set) w.r.t. π, denoted
by BHε (π), as the set of policies that are perturbed from π by all admissible adversaries, i.e.,

BHε (π) := {πh ∈ Π : ∃h ∈ Hε s.t ∀s, πh(·|s) = π(·|h(s))}. (1)

Remarks (1) BHε (π) is a subset of the policy space Π and it surrounds the victim π, as shown in
Figure 2(middle). In the same MDP, BHε (π) varies for different victim π or different attack budget
ε. (2) In Appendix D, we characterize the topological properties of BHε (π). We show that BHε (π)
is connected and compact, and the value functions generated by all policies in the Adv-policy-set
BHε (π) form a polytope (Figure 2(right)), following the polytope theorem by Dadashi et al. [2].

Given that the Adv-policy-set BHε (π) contains all the possible policies the victim may execute under
admissible state perturbations, we can characterize the optimality of a state adversary through the
lens of policy perturbations. Recall that the attacker’s goal is to find a state adversary h∗ ∈ Hε

that minimizes the victim’s expected total reward. From the perspective of policy perturbation, the
attacker’s goal is to perturb the victim’s policy to another policy πh∗ ∈ BHε (π) with the lowest value.
Therefore, we can define the optimal state adversary and the optimal policy adversary as below.
Definition 6 (Optimal State Adversary h∗ and Optimal Policy Adversary πh∗). For an MDPM,
a fixed policy π, and an admissible adversary set Hε with attacking budget ε,
(1) an optimal state adversary h∗ satisfies h∗ ∈ argminh∈HεV

πh(s),∀s ∈ S, which leads to
(2) an optimal policy adversary πh∗ satisfies πh∗ ∈ argminπh∈BHε (π)V

πh(s),∀s ∈ S.
Recall that πh is the perturbed policy caused by adversary h, i.e., πh(·|s) = π(·|h(s)),∀s ∈ S.

Definition 6 implies an equivalent relationship between the optimal state adversary and the optimal
policy adversary: an optimal state adversary leads to an optimal policy adversary, and any state
adversary that leads to an optimal policy adversary is optimal. Theorem 19 in Appendix F.1 shows
that there always exists an optimal policy adversary for a fixed victim π, and learning the optimal
policy adversary is an RL problem. (A similar result have been shown by Zhang et al.[32] for the
optimal state adversary, while we focus on the policy perturbation.)

Due to the equivalence, if one finds an optimal policy adversary πh∗ , then the optimal state adversary
can be found by executing targeted attacks with target policy πh∗ . However, directly finding the
optimal policy adversary in the Adv-policy-set BHε (π) is challenging since BHε (π) is generated by
all admissible state adversaries in Hε and is hard to compute. To address this challenge, we first get

12

insights from theoretical characterizations of the Adv-policy-set BHε (π). Theorem 7 below shows
that the “outermost boundary” of BHε (π) always contains an optimal policy adversary. Intuitively, a
policy π′ is in the outermost boundary of BHε (π) if and only if no policy in BHε (π) is farer away from
π than π′ in the direction π′ − π. Therefore, if an adversary can perturb a policy along a direction, it
should push the policy as far away as possible in this direction under the budget constraints. Then, the
adversary is guaranteed to find an optimal policy adversary after trying all the perturbing directions.
In contrast, such a guarantee does not exist for state adversaries, justifying the benefits of considering
policy adversaries. Our proposed algorithm in Section 4 applies this idea to find the optimal attack:
an RL-based director searches for the optimal perturbing direction, and an actor is responsible for
pushing the policy to the outermost boundary of BHε (π) with a given direction.

Theorem 7. For an MDP M, a fixed policy π, and an admissible adversary set Hε, define the
outermost boundary of the admissible adversarial policy set BHε (π) w.r.t π as
∂πBHε (π) := {π′ ∈ BHε (π) : ∀s ∈ S, θ > 0,@π̂ ∈ BHε (π) s.t. π̂(·|s) = π′(·|s) + θ(π′(·|s)− π(·|s))}. (2)

Then there exists a policy π̃ ∈ ∂πBHε (π), such that π̃ is the optimal policy adversary w.r.t. π.

Theorem 7 is proven in Appendix D.3, and we visualize the outermost boundary in Appendix D.5.

D Topological Properties of the Admissible Adversarial Policy Set

As discussed in Section 3, finding the optimal state adversary in the admissible adversary set Hε can
be converted to a problem of finding the optimal policy adversary in the Adv-policy-set BHε (π). In
this section, we characterize the topological properties of BHε (π), and identify how the value function
changes as the policy changes within BHε (π).

In Section D.1, we show that under the settings we consider, BHε (π) is a connected and compact
subset of Π. Then, Section D.2, we define some additional concepts and re-formulate the notations.
In Section D.3, we prove Theorem 7 in Section 3 that the outermost boundary of BHε (π) always
contains an optimal policy perturbation. In Section D.4, we prove that the value functions of policies
in BHε (π) (or more generally, any connected and compact subset of Π) form a polytope. Section D.6
shows an example of the polytope result with a 2-state MDP, and Section D.5 shows examples of the
outermost boundary defined in Theorem 7.

D.1 The Shape of Adv-policy-set BHε (π)

It is important to note that BHε (π) is generally connected and compact as stated in the following
lemma.

Lemma 8 (BHε (π) is connected and compact). Given an MDPM, a policy π that is a continuous
mapping, and admissible adversary set Hε := {h : h(s) ∈ Bε(s),∀s ∈ S} (where ε > 0 is a
constant), the admissible adversarial policy set BHε (π) is a connected and compact subset of Π.

Proof of Lemma 8. For an arbitrary state s ∈ S, an admissible adversary h ∈ Hε perturbs it within
an `p norm ball Bε(s), which is connected and compact. Since π is a continuous mapping, we know
π(s) is compact and connected.

Therefore, BHε (π) as a Cartesian product of a finite number of compact and connected sets, is compact
and connected.

D.2 Additional Notations and Definitions for Proofs

We first formally define some concepts and notations.

For a stationary and stochastic policy π : S → ∆(A), we can define the state-to-state transition
function as

Pπ(s′|s) :=
∑
a∈A

π(a|s)P (s′|s, a),∀s, s′ ∈ S,

and the state reward function as

Rπ(s) :=
∑
a∈A

π(a|s)R(s, a),∀s ∈ S.

13

Then the value of π, denoted as V π , can be computed via the Bellman equation

V π = Rπ + γPπV π = (I − γPπ)−1Rπ.

We further use Πsi to denote the projection of Π into the simplex of the i-th state, i.e., the space of
action distributions at state si.

Let fv : Π → R|S| be a mapping that maps policies to their corresponding value functions. Let
V = fv(Π) be the space of all value functions.

Dadashi et al. [2] show that the image of fv applied to the space of policies, i.e., fv(Π), form a
(possibly non-convex) polytope as defined below.

Definition 9 ((Possibly non-convex) polytope). A is called a convex polytope iff there are k ∈ N
points x1, x2, · · · , xk ∈ Rn such that A = Conv(x1, · · · , xk). Furthermore, a (possibly non-
convex) polytope is defined as a finite union of convex polytopes.

And a more general concept is (possibly non-convex) polyhedron, which might not be bounded.

Definition 10 ((Possibly non-convex) polyhedron). A is called a convex polyhedron iff it is the
intersection of k ∈ N half-spaces B̂1, B̂2, · · · , B̂k, i.e., A = ∩ki=1B̂i. Furthermore, a (possibly
non-convex) polyhedron is defined as a finite union of convex polyhedra.

In addition, let Y πs1,··· ,sk be the set of policies that agree with π on states s1, · · · , sk. Dadashi et al.
[2] also prove that the values of policies that agree on all but one state s, i.e., fv(Y πS\{s}), form a line
segment, which can be bracketed by two policies that are deterministic on s. Our Lemma 14 extends
this line segment result to our setting where policies are restricted in a subset of policies.

D.3 Proof of Theorem 7: Boundary Contains Optimal Policy Perturbations

Lemma 4 in [2] shows that policies agreeing on all but one state have certain monotone relations. We
restate this result in Lemma 11 below.

Lemma 11 (Monotone Policy Interpolation). For any π0, π1 ∈ Y πS\{s} that agree with π on all states
except for s ∈ S, define a function l : [0, 1]→ V as

l(α) = fv(απ1 + (1− α)π0).

Then we have
(1) l(0) < l(1) or l(1) < l(0) (< stands for element-wise greater than or equal to);
(2) If l(0) = l(1), then l(α) = l(0),∀α ∈ [0, 1];
(3) If l(0) 6= l(1), then there is a strictly monotonic rational function ρ : [0, 1] → R, such that
l(α) = ρ(α)l(1) + (1− ρ(α))l(0).

More intuitively, Lemma 11 suggests that the value of πα := απ1 + (1 − α)π0 changes (strictly)
monotonically with α, unless the values of π0, π1 and πα are all equal. With this result, we can
proceed to prove Theorem 7.

Proof of Theorem 7. We will prove the theorem by contradiction.

Suppose there is a policy π̂ ∈ BHε (π) such that π̂ /∈ ∂πBHε (π) and fv(π̂) = V π̂ < V π̃,∀π̃ ∈ BHε (π),
i.e., there is no optimal policy adversary on the outermost boundary of BHε (π).

Then according to the definition of ∂πBHε (π), there exists at least one state s ∈ S such that we can
find another policy π′ ∈ BHε (π) agreeing with π̂ on all states except for s, where π′(s) satisfies

π̂(·|s) = απ(·|s) + (1− α)π′(·|s)

for some scalar α ∈ (0, 1).

Then by Lemma 11, either of the following happens:

(1) fv(π) � fv(π̂) � fv(π′).
(2) fv(π) = fv(π̂) = fv(π

′);

14

Note that fv(π̂) � fv(π) is impossible because we have assumed π̂ has the lowest value over all
policies in BHε (π) including π.

If (1) is true, then π′ is a better policy adversary than π̂ in BHε (π), which contradicts with the
assumption.

If (2) is true, then π′ is another optimal policy adversary. By recursively applying the above process
to π′, we can finally find an optimal policy adversary on the outermost boundary of BHε (π), which
also contradicts with our assumption.

In summary, there is always an optimal policy adversary lying on the outermost boundary of BHε (π).

D.4 Proof of Theorem 12: Values of Policies in Admissible Adversarial Policy Set Form a
Polytope

We first present a theorem that describes the “shape” of the value functions generated by all admissible
adversaries (admissible adversarial policies).

Theorem 12 (Policy Perturbation Polytope). For a finite MDPM, consider a policy π and an
Adv-policy-set BHε (π). The space of values (a subspace of R|S|) of all policies in BHε (π), denoted by
VBHε (π), is a (possibly non-convex) polytope.

In the remaining of this section, we prove a more general version of Theorem 12 as below.

Theorem 13 (Policy Subset Polytope). For a finite MDPM, consider a connected and compact
subset of Π, denoted as T . The space of values (a subspace of R|S|) of all policies in T , denoted by
VT , is a (possibly non-convex) polytope.

According to Lemma 8, BHε (π) is a connected and compact subset of Π, thus Theorem 12 is a special
case of Theorem 13.

Additional Notations To prove Theorem 13, we further define a variant of Y πs1,··· ,sk as T πs1,··· ,sk ,
which is the set of policies that are in T and agree with π on states s1, · · · , sk, i.e.,

T πs1,··· ,sk := {π′ ∈ T : π′(si) = π(si),∀i = 1, · · · , k}.

Note that different from BHε (π), T is no longer restricted under an admissible adversary set and can
be any connected and compact subset of Π.

The following lemma shows that the values of policies in T that agree on all but one state form a line
segment.

Lemma 14. For a policy π ∈ T and an arbitrary state s ∈ S, there are two policies in ∂πT πS\{s},
namely π−s , π

+
s , such that ∀π′ ∈ T πS\{s},

fv(π
−
s) 4 fv(π

′) 4 fv(π
+
s), (3)

where 4 denotes element-wise less than or equal to (if a 4 b, then ai ≤ bi for all index i). Moreover,
the image of fv restricted to T πS\{s} is a line segment.

Proof of Lemma 14. Lemma 5 in [2] has shown that fv is infinitely differentiable on Π, hence we
know fv(T πS\{s}) is compact and connected. According to Lemma 4 in [2], for any two policies
π1, π2 ∈ Y πS\{s}, either fv(π1) 4 fv(π2), or fv(π2) 4 fv(π1) (there exists a total order). The same
property applies to T πS\{s} since T πS\{s} is a subset of Y πS\{s}.

Therefore, there exists π−s and π+
s that achieve the minimum and maximum over all policies in

T πS\{s}. Next we show π−s and π+
s can be found on the outermost boundary of T πS\{s}.

Assume π+
s /∈ ∂πT πS\{s}, and for all π̃ ∈ T πS\{s}, fv(π̃) ≺ fv(π+

s). Then we can find another policy
π′ ∈ ∂πT πS\{s} such that π+

s = απ + (1 − α)π′ for some scalar α ∈ (0, 1). Then according to
Lemma 11, fv(π′) < fv(π

+
s), contradicting with the assumption. Therefore, one should be able to

15

find a policy on the outermost boundary of T πS\{s} whose value dominates all other policies. And
similarly, we can also find π−s on ∂πT πS\{s}.

Furthermore, fv(T πS\{s}) is a subset of fv(Y πS\{s}) since T πS\{s} is a subset of Y πS\{s}. Given that
fv(Y

π
S\{s}) is a line segment, and fv(T πS\{s}) is connected, we can conclude that fv(T πS\{s}) is also

a line segment.

Next, the following lemma shows that π+
s and π−s and their linear combinations can generate values

that cover the set fv(T πS\{s}).

Lemma 15. For a policy π ∈ T , an arbitrary state s ∈ S, and π+
s , π

−
s defined in Lemma 14, the

following three sets are equivalent:
(1) fv(T πS\{s});
(2) fv

(
closure(T πS\{s})

)
, where closure(·) is the convex closure of a set;

(3) {fv(απ+
s + (1− α)π−s)|α ∈ [0, 1]};

(4) {αfv(π+
s) + (1− α)fv(π

−
s)|α ∈ [0, 1]};

Proof of Lemma 15. We show the equivalence by showing (1) ⊆ (4) ⊆ (3) ⊆ (2) ⊆ (1) as below.

(2) ⊆ (1): For any π1, π2 ∈ T πS\{s}, without loss of generality, suppose fv(π1) 4 fv(π2). According
to Lemma 11, for any α ∈ [0, 1], fv(π1) 4 απ1 + (1 − α)π2 4 fv(π2). Therefore, any convex
combinations of policies in T πS\{s} has value that is in the range of fv(T πS\{s}). So the values of
policies in the convex closure of T πS\{s} do not exceed fv(T πS\{s}), i.e., (2) ⊆ (1).

(3) ⊆ (2): Based on the definition, απ+
s + (1− α)π−s ∈ closure(T πS\{s}), so (3) ⊆ (2).

(4) ⊆ (3): According to Lemma 11, there exists a strictly monotonic rational function ρ : [0, 1]→ R,
such that

l(α) = fv(απ
+
s + (1− α)π−s) = ρ(α)fv(π

+
s) + (1− ρ(α))fv(π

−
s).

Therefore, due to intermediate value theorem, for α ∈ [0, 1], ρ(α) takes all values from 0 to 1. So (4)
= (3).

(1) ⊆ (4): Lemma 14 shows that fv(T πS\{s}) is a line segment bracketed by fv(π+
s) and fv(π−s).

Therefore, for any π′ ∈ T πS\{s}, its value is a convex combination of fv(π+
s) and fv(π−s).

Next, we show that the relative boundary of the value space constrained to T πs1,··· ,sk is covered by
policies that dominate or are dominated in at least one state. The relative interior of set A in B is
defined as the set of points in A that have a relative neighborhood in A ∩ B, denoted as relintBA.
The relative boundary of set A in B, denoted as ∂BA, is defined as the set of points in A that are
not in the relative interior of A, i.e., ∂BA = A\relintBA. When there is no ambiguity, we omit the
subscript of ∂ to simplify notations.

In addition, we introduce another notation Fπs1,··· ,sk := V π + span(Cπk+1, · · · , Cπ|S|), where Cπi
stands for the i-th column of the matrix (I − γPπ)−1. Note that Fπs1,··· ,sk is the same with Hπ

s1,··· ,sk
in Dadashi et al. [2], and we change H to F in order to distinguish from the admissible adversary set
Hε defined in our paper.
Lemma 16. For a policy π ∈ T , k ≤ |S|, and a set of policies T πs1,··· ,sk that agree with π on
s1, · · · , sk (perturb π only at sk+1, · · · , s|S|), define Vt := fv(T πs1,··· ,sk). Define two sets of policies
X+
s := {π′ ∈ T πs1,··· ,sk : π′(·|s) = π+

s (·|s)}, and X−s := {π′ ∈ T πs1,··· ,sk : π′(·|s) = π−s (·|s)}.
We have that the relative boundary of Vt in Fπs1,··· ,sk is included in the value functions spanned by
policies in T πs1,··· ,sk ∩ (X+

sj ∪X
−
sj) for at least one s /∈ {s1, · · · , sk}, i.e.,

∂Vt ⊂
|S|⋃

j=k+1

fv(T πs1,··· ,sk ∩ (X+
sj ∪X

−
sj))

16

Proof of Lemma 16. We first prove the following claim:

Claim 1: For a policy π0 ∈ T πs1,··· ,sk , if ∀j ∈ {k + 1, · · · , |S|}, @π′ ∈ closure(T πs1,··· ,sk) ∩ (X+
sj ∪

X−sj) such that fv(π′) = fv(π0), then fv(π0) has a relative neighborhood in Vt ∩ Fπs1,··· ,sk .

First, based on Lemma 14 and Lemma 15, we can construct a policy π̂ ∈ closure(T πs1,··· ,sk) such
that fv(π̂) = fv(π0) through the following steps:

Algorithm 2: Constructing π̂

1 Set πk = π0
2 for j = k + 1, · · · , |S| do
3 Find π+

sj , π
−
sj ∈ T

πj−1

S\{sj}
4 Find πj = α̂jπ

+
sj + (1− α̂j)π−sj such that fv(πj) = fv(πj−1)

5 Return π̂ = π|S|

Denote the concatenation of αj’s as a vector α̂ := [α̂k+1, · · · , α̂|S|].

According to the assumption that ∀j ∈ {k + 1, · · · , |S|}, @π′ ∈ closure(T πs1,··· ,sk) ∩ (X+
sj ∪X

−
sj)

such that fv(π′) = fv(π0), we have α̂j /∈ {0, 1},∀j = k + 1, · · · , |S|. Then, define a function
φ : (0, 1)|S|−k → Vt such that

φ(α) = fv(πα), where

{
πα(·|sj) = απ+

sj + (1− α)π−sj if j ∈ {k + 1, · · · , |S|}
πα(·|sj) = π̂(·|sj) otherwise

Then we have that

1. φ is continuously differentiable.

2. φ(α̂) = fv(π̂).

3. ∂φ
∂αj

is non-zero at α̂ (because of Lemma 11 (3)).

4. ∂φ
∂αj

is along the i-the column of (I − γP π̂)−1 (see Lemma 3 in Dadashi et al. [2]).

Therefore, by the inverse theorem function, there is a neighborhood of φ(α) = fv(π̂) in the image
space.

Now we have proved Claim 1. As a result, for any policy π0 ∈ T πs1,··· ,sk , if fv(π0) is in the relative
boundary of Vt in Fπs1,··· ,sk , then ∃j ∈ {k + 1, · · · , |S|}, π′ ∈ closure(T πs1,··· ,sk) ∩ (X+

sj ∪ X
−
sj)

such that fv(π′) = fv(π0). Based on Lemma 15, we can also find π′′ ∈ T πs1,··· ,sk ∩ (X+
sj ∪X

−
sj)

such that fv(π′′) = fv(π0). So Lemma 16 holds.

Now, we are finally ready to prove Theorem 13.

Proof of Theorem 13. We will show that ∀{s1, · · · , sk} ⊆ S, the value Vt = fv(T πs1,··· ,sk) is a
polytope.

We prove the above claim by induction on the cardinality of the number of states k. In the base case
where k = |S|, Vt = {fv(π)} is a polytope.

Suppose the claim holds for k+ 1, then we show it also holds for k, i.e., for a policy π ∈ Π, the value
of T πs1,··· ,sk ⊆ Y

π
s1,··· ,sk ⊆ Π for a polytope.

According to Lemma 16, we have

∂Vt ⊂
|S|⋃

j=k+1

fv(T πs1,··· ,sk ∩ (X+
sj ∪X

−
sj)) =

|S|⋃
j=k+1

Vt ∩ (F+
sj ∪ F

−
sj))

17

where ∂Vt denotes the relative boundary of Vt in Fπs1,··· ,sk ; F+
sj and F−sj are two affine hyperplanes of

Fπs1,··· ,sk , standing for the value space of policies that agree with π+
sj and π−sj in state sj respectively.

Then we can get

1. Vt = fv(T πs1,··· ,sk) is closed as T πs1,··· ,sk is compact and fv is continuous.

2. ∂Vt ⊂
⋃|S|
j=k+1(F+

sj ∪ F
−
sj)), a finite number of affine hyperplanes in Fπs1,··· ,sk .

3. Vt ∩ F+
sj (or Vt ∩ F−sj) is a polyhedron by induction assumption.

Hence, based on Proposition 1 by Dadashi et al. [2], we get Vt is a polyhedron. Since Vt ⊆ V is
bounded, we can further conclude that Vt is a polytope.

Therefore, for an arbitrary connected and compact set of policies T ⊆ Π, let π ∈ T be an arbitrary
policy in T , then fv(T) = fv(T π∅) is a polytope.

D.5 Examples of the Outermost Boundary

See Figure 5 for examples of the outermost boundary for different BHε (π)’s.

Figure 5: Two examples of the outermost boundary with |A| = 3 actions at one single state s. The large
triangle denotes the distributions over the action space at state s, i.e., Πs; π1, π2 and π3 are three policies
that deterministically choose a1, a2 and a3 respectively. π is the victim policy, the dark green area is the
BHε (π)s : BHε (π)∩Πs. The red solid curve depicts the outermost boundary of BHε (π)s. Note that a policy is in
the outermost boundary of BHε (π) iff it is in the outermost boundary of BHε (π)s for all s ∈ S.

D.6 An Example of The Policy Perturbation Polytope

An example is given by Figure 6, where we define an MDP with 2 states and 3 actions. We train an
DQN agent with one-hot encodings of the states, and then randomly perturb the states within an `∞
ball with ε = 0.8. By sampling 5M random policies, and 100K random perturbations, we visualize
the value space of approximately the whole policy space Π and the admissible adversarial policy set
BHε (π), both of which are polytopes (boundaries are flat). A learning agent searches for the optimal
policy π∗ whose value is the upper right vertex of the larger blue polytope, while the attacker attempts
to find an optimal adversary h∗, which perturbs a given clean policy π to the worst perturbed policy
πh∗ whose value is the lower left vertex of the smaller green polytope. This also justifies the fact that
learning an optimal adversary is as difficult as learning an optimal policy in an RL problem.

The example MDPMex:
|A| = 3, γ = 0.8
r̂ = [−0.1,−1., 0.1, 0.4, 1.5, 0.1]

P̂ = [[0.9, 0.1], [0.2, 0.8], [0.7, 0.3], [0.05, 0.95], [0.25, 0.75], [0.3, 0.7]]

The base/clean policy π:
π(a1|s1) = 0.215, π(a2|s1) = 0.429, π(a3|s1) = 0.356
π(a1|s2) = 0.271, π(a2|s2) = 0.592, π(a3|s2) = 0.137

18

!"∗

!"$∗

Figure 6: Value space of an example MDP. The values of the whole policy space Π form a polytope (blue) as
suggested by [2]. The values of all perturbed policies with Hε also form a polytope (green) as suggested by
Theorem 12.

E Extentions and Additional Details of Our Algorithm

E.1 Attacking A Deterministic Victim Policy

For a deterministic victim πD = argmaxaπ(a|s), we define Deterministic Policy Adversary MDP
(D-PAMDP) as below, where a subscript D is added to all components to distinguish them from their
stochastic counterparts. In D-PAMDP, the director proposes a target action âD ∈ A(=: ÂD), and the
actor tries its best to let the victim output this target action.
Definition 17 (Deterministic Policy Adversary MDP (D-PAMDP)). Given an MDP M =
〈S,A, P,R, γ〉, a fixed and deterministic victim policy πD, we define a Deterministic Policy
Adversarial MDP M̂D = 〈S, ÂD, P̂D, R̂D, γ〉, where the action space is ÂD = ÂD, and
∀s, s′ ∈ S,∀â ∈ A,

P̂D(s′|s, â) = P (s′|s, πD(g(â, s))), R̂D(s, â) = −R(s, πD(g(â, s))).

The actor function g is defined as
gD(â, s) = argmaxs′∈Bε(s)

(
π(â|s′)−maxa∈A,a 6=âπ(a|s′)

)
(GD)

The optimal policy of D-PAMDP is an optimal adversary against πD as proved in Appendix F.2.2

E.2 Implementation Details of PA-AD

To address the actor function g (or gD) defined in (G) and (GD), we let the actor maximize objectives
JD and J within the Bε(·) ball around the original state, for a deterministic victim and a stochastic
victim, respectively. Below we explicitly define JD and J .

Actor Objective for Deterministic Victim For the deterministic variant of PA-AD, the actor
function (GD) is simple and can be directly solved to identify the optimal adversary. Concretely, we
define the following objective

JD(s′; â, s) := π(â|s′)−maxa∈A,a 6=âπ(a|s′), (JD)

which can be realized with the multi-class classification hinge loss. In practice, a relaxed cross-entropy
objective can also be used to maximize π(â|s′).

Actor Objective for Stochastic Victim Different from the deterministic-victim case, the actor
function for a stochastic victim defined in (G) requires solving a more complex optimization problem
with a non-convex constraint set, which in practice can be relaxed to (Ĵ) (a Lagrangian relaxation) to
efficiently get an approximation of the optimal adversary.

argmaxs′∈Bε(s)J(s′; â, s) := ‖π(·|s′)− π(·|s)‖+ λ× CosineSim
(
π(·|s′)− π(·|s), â

)
(Ĵ)

where CosineSim in the second refers to the cosine similarity function; the first term measures how far
away the policy is perturbed from the victim policy; λ is a hyper-parameter controlling the trade-off
between the two terms. Experimental results show that our PA-AD is not sensitive to the value of
λ. In our reported results in Section 6, we set λ as 1. Appendix G.2.2 shows the evaluation of our
algorithm using varying λ’s.

19

The procedure of learning the optimal adversary is depicted in Algorithm 3, where we simply use the
Fast Gradient Sign Method (FGSM) [5] to approximately solve the actor’s objective, although more
advanced solvers such as Projected Gradient Decent (PGD) can be applied to further improve the
performance. Experiment results in Section 6 verify that the above FGSM-based implementation
achieves state-of-the-art attack performance.

Algorithm 3: Policy Adversarial Actor Director (PA-AD) with FGSM
1 Input: Initialization of director’s policy ν; victim policy π; budget ε; start state s0
2 for t = 0, 1, 2, ... do
3 Director samples a policy perturbing direction ât ∼ ν(·|st)
4 if Victim is deterministic then
5 # for a deterministic victim, JD() is defined in Equation (JD)
6 Actor computes the gradient of its objective∇δJD(st + δ; ât, st)
7 else
8 # for a stochastic victim, J() is defined in Equation (Ĵ)
9 Actor computes the gradient of its objective∇δJ(st + δ; ât, st)

10 Actor sets s̃t = st + ε · sign(δ)
11 Victim takes action at ∼ π(·|s̃t), proceeds to st+1, receives rt
12 Director saves (st, ât,−rt, st+1) to its buffer
13 Director updates its policy ν using any RL algorithm

What is the Influence of the Relaxation in (Ĵ)? First, it is important that the relaxation is only
needed for a stochastic victim. For a deterministic victim, which is often the case in practice, the
actor solves the original unrelaxed objective.
Second, as we will discuss in the next paragraph, the optimality of both SA-RL and PA-AD is
regarding the formulation. That is, SA-RL and PA-AD formulate the optimal attack problem as
an MDP whose optimal policy is the optimal adversary. However, in a large-scale task, deep RL
algorithms themselves usually do not converge to the globally optimal policy and exploration becomes
the main challenge. Thus, when the adversary’s MDP is large, the suboptimality caused by the RL
solver due to exploration difficulties could be much more severe than the suboptimality caused by the
relaxation of the formulation. The comparison between SA-RL and PA-AD in our experiments can
justify that the size of the adversary MDP has a larger impact than the relaxation of the problem on
the final solution found by the attackers.
Third, in Appendix H.1, we empirically show that with the relaxed objective, PA-AD can still find the
optimal attacker in 3 example environments.

Optimality in Formulation v.s. Approximated Optimality in Practice PA-AD has an optimal
formulation, as the optimal solution to its objective (the optimal policy in PAMDP) is always an
optimal adversary (Theorem 4). Similarly, the previous attack method SA-RL has an optimal
solution since the optimal policy in the adversary’s MDP is also an optimal adversary. However,
in practice where the environments are in a large scale and the number of samples is finite, the
optimal policy is not guaranteed to be found by either PA-AD and SA-RL with deep RL algorithms.
Therefore, for practical consideration, our goal is to search for a good solution or approximate
the optimal solution using optimization techniques (e.g. actor-critic learning, one-step FGSM
attack, Lagrangian relaxation for the stochastic-victim attack). In experiments (Section 6), we show
that our implementation universally finds stronger attackers than prior methods, which verifies the
effectiveness of both our theoretical framework and our practical implementation.

E.3 Variants For Environments with Continuous Action Spaces

Although the analysis in the main paper focuses on an MDP whose action space is discrete, our
algorithm also extends to a continuous action space as justified in our experiments.

E.3.1 For A Deterministic Victim

In this case, we can still use the formulation D-PAMDP, but a slightly different actor function
gD(â, s) = argmins′∈Bε(s)‖πD(s′)− â‖. (GCD)

20

E.3.2 For A Stochastic Victim

Different from a stochastic victim in a discrete action space whose actions are sampled from a
categorical distribution, a stochastic victim in a continuous action space usually follows a parametrized
probability distribution with a certain family of distributions, usually Gaussian distributions. In this
case, the formulation of PAMDP in Definition 3 is impractical. However, since the mean of a Gaussian
distribution has the largest probability to be selected, one can still use the formulation in (GCD),
while replacing πD(s′) with the mean of the output distribution. Then, the director and the actor can
collaboratively let the victim output a Gaussian distribution whose mean is the target action. If higher
accuracy is needed, we can use another variant of PAMDP, named Continuous Policy Adversary
MDP (C-PAMDP) that can also control the variance of the Gaussian distribution.
Definition 18 (Continuous Policy Adversary MDP (C-PAMDP)). Given an MDP M =
〈S,A, P,R, γ〉 where A is continuous, a fixed and stochastic victim policy π, we define a Con-
tinuous Policy Adversarial MDP M̂C = 〈S, ÂC , P̂C , R̂C , γ〉, where the action space is ÂD = A,
and ∀s, s′ ∈ S,∀â ∈ A,

P̂ (s′|s, â) =

∫
A
π(a|g(â, s))P (s′|s, a) da, R̂(s, â) = −

∫
A
π(a|g(â, s))R(s, a)da.

The actor function g is defined as
g(â, s) = argmins′∈Bε(s)KL(π(·|s′)||N (â, σ2I|A|)). (GC)

where σ is a hyper-parameter, and N denotes a multivariate Gaussian distribution.

In short, Equation (GC) encourages the victim to output a distribution that is similar to the target
distribution. The hyperparameter σ controls the standard deviation of the target distribution. One can
set σ to be small in order to let the victim execute the target action â with higher probabilities.

F Characterize Optimality of Evasion Attacks

In this section, we provide a detailed characterization for the optimality of evasion attacks from the
perspective of policy perturbation, following Definition 2 in Section 4. Section F.1 establishes the
existence of the optimal policy adversary which is defined in Section C. Section F.2 then provides a
proof for Theorem 4 that the formulation of PA-AD is optimal. We also analyze the optimality of
heuristic attacks in Section F.3.

F.1 Existence of An Optimal Policy Adversary

Theorem 19 (Existence of An Optimal Policy Adversary). Given an MDPM = 〈S,A, P,R, γ〉,
and a fixed stationary policy π onM, let Hε be a non-empty set of admissible state adversaries
and BHε (π) be the corresponding Adv-policy-set, then there exists an optimal policy adversary
πh∗ ∈ BHε (π) such that πh∗ ∈ argminπh∈BHε (π)V

πh
M (s),∀s ∈ S.

Proof. We prove Theorem 19 by constructing a new MDP corresponding to the original MDPM
and the victim π.

Definition 20 (Policy Perturbation MDP). For a given MDP M, a fixed stochastic victim pol-
icy π, and an admissible state adversary set Hε, define a policy perturbation MDP as MP =
〈S,AP , PP , RP , γ〉, where AP = ∆(A), and ∀s ∈ S, aP ∈ AP ,

RP (s, aP) := { −
∑
a∈A aP (a|s)R(s, a) if ∃h ∈ Hε s.t. aP (·|s) = π(·|h(s))

−∞ otherwise (4)

PP (s′|s, aP) :=
∑
a∈A

aP (a|s)P (s′|s, a) (5)

Then we can prove Theorem 19 by proving the following lemma.

Lemma 21. The optimal policy inMP is an optimal policy adversary for π inM.

Let NP denote the set of deterministic policies inMP . According to the traditional MDP theory [22],
there exists a deterministic policy that is optimal inMP . Note that Hε is non-empty, so there exists

21

at least one policy inMP with value ≥ −∞, and then the optimal policy should have value ≥ −∞.
Denote this optimal and deterministic policy as ν∗P ∈ NP . Then we write the Bellman equation of
ν∗P , i.e.,

V
ν∗P
P (s) = max

νP∈NP
RP (s, νP (s)) + γ

∑
s′∈S

PP (s′|s, νP (s))V νPP (s′)

= max
νP∈NP

[
−
∑
a∈A

νP (a|s)R(s, a) + γ
∑
s′∈S

∑
a∈A

νP (a|s)P (s′|s, a)V νPP (s′)

]

= max
νP∈NP

∑
a∈A

νP (a|s)

[
−R(s, a) + γ

∑
s′∈S

P (s′|s, a)V νPP (s′)

] (6)

Note that ν∗P (s) is a distribution on action space, ν∗P (a|s) is the probability of a given by distribution
ν∗(s).

Multiply both sides of Equation (6) by −1, and we obtain

−V ν
∗
P

P (s) = min
ν∈NP

∑
a∈A

νP (s)(a|s)

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)
(
− V νPP (s′)

)]
(7)

In the original MDPM, an optimal policy adversary (if exists) πh∗ for π should satisfy

V πh∗ (s) = min
πh∈BHε (π)

∑
a∈A

πh(a|s)

[
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V πh(s′)

]
(8)

By comparing Equation (7) and Equation (8) we get the conclusion that ν∗P is an optimal policy
adversary for π inM.

F.2 Proof of Theorem 4: Optimality of Our PA-AD

In this section, we provide theoretical proof of the optimality of our proposed evasion RL algorithm
PA-AD.

F.2.1 Optimality of PA-AD for A Stochastic Victim

We first build a connection between the PAMDP M̂ defined in Definition 3 (Section 4) and the policy
perturbation MDP defined in Definition 20 (Appendix F.1).

A deterministic policy ν in the PAMDP M̂ can induce a policy ν̂P inMP in the following way:
ν̂P (s) = π(·|g(ν(s), s)),∀s ∈ S . More importantly, the values of ν and ν̂P in M̂ andMP are equal
because of the formulations of the two MDPs, i.e., V̂ ν = V ν̂PP , where V̂ and VP denote the value
functions in M̂ and VP respectively.

Proposition 22 below builds the connection of the optimality between the policies in these two MDPs.

Proposition 22. An optimal policy in M̂ induces an optimal policy inMP .

Proof of Proposition 22. Let ν∗ be an deterministic optimal policy in M̂, and it induces a policy in
MP , namely ν̂P .

Let us assume ν̂P is not an optimal policy in MP , hence there exists a policy ν∗P in MP s.t.
V
ν∗P
P (s) > V ν̂PP (s) for at least one s ∈ S. And based on Theorem 7, we are able to find such a ν∗P

whose corresponding policy perturbation is on the outermost boundary of B(π), i.e., ν∗ ∈ ∂πBHε (π).

Then we can construct a policy ν′ in M̂ such that ν′(s) = ν∗P (s) − π(s),∀s ∈ S. And based on
Equation (G), π(·|g(ν′(s), s)) is in ∂πB(π(s)) for all s ∈ S. According to the definition of ∂π, if

22

two policy perturbations perturb π in the same direction and are both on the outermost boundary,
then they are equal. Thus, we can conclude that π(g(ν′(s), s)) = ν∗P (s),∀s ∈ S. Then we obtain
V̂ ν
′
(s) = V

ν∗P
P (s),∀s ∈ S.

Now we have conditions:
(1) V̂ ν

∗
(s) = V ν̂PP (s),∀s ∈ S;

(2) V ν
∗
P

P (s) > V ν̂PP (s) for at least one s ∈ S;
(3) ∃ν′ such that V̂ ν

′
(s) = V

ν∗P
P (s),∀s ∈ S.

From (1), (2) and (3), we can conclude that V̂ ν
′
(s) > V̂ ν

∗
(s) for at least one s ∈ S , which conflicts

with the assumption that ν∗ is optimal in M̂. Therefore, Proposition 22 is proven.

Proposition 22 and Lemma 21 together justifies that the optimal policy of M̂, namely ν∗, induces
an optimal policy adversary for π in the original M. Then, if the director learns the optimal
policy in M̂, then it collaborates with the actor and generates the optimal state adversary h∗ by
h∗(s) = g(ν∗(s), s),∀s ∈ S.

F.2.2 Optimality of Our PA-AD for A Deterministic Victim

In this section, we show that the optimal policy in D-PAMDP (the deterministic variant of PAMDP
defined in Appendix E.1) also induces an optimal policy adversary in the original environment.

Let πD be a deterministic policy reduced from a stochastic policy π, i.e.,
πD(s) := argmaxa∈Aπ(a|s),∀s ∈ S.

Note that in this case, the Adv-policy-set BHε (π) is not connected as it contains only deterministic
policies. Therefore, we re-formulate the policy perturbation MDP introduced in Appendix F.1 with a
deterministic victim as below:

Definition 23 (Deterministic Policy Perturbation MDP). For a given MDPM, a fixed determin-
istic victim policy π, and an admissible adversary set Hε, define a deterministic policy perturbation
MDP asMDP = 〈S,ADP , PDP , RDP , γ〉, where ADP = A, and ∀s ∈ S, aDP ∈ ADP ,

RDP (s, aDP) := { −R(s, aDP) if ∃h ∈ Hε s.t. aDP (s) = πD(h(s))
−∞ otherwise (9)

PDP (s′|s, aDP) := P (s, aDP) (10)

MDP can be viewed as a special case ofMP where only deterministic policies have ≥ −∞ values.
Therefore Theorem 19 and Lemma 21 also hold for deterministic victims.

Next we will show that an optimal policy in M̂D induces an optimal policy inMDP .

Proposition 24. An optimal policy in M̂D induces an optimal policy inMDP .

Proof of Proposition 24. We will prove Proposition 24 by contradiction. Let ν∗ be an optimal policy
in M̂D, and it induces a policy inMDP , namely ν̂DP .

Let us assume ν̂DP is not an optimal policy inMDP , hence there exists a deterministic policy ν∗DP
in MDP s.t. V ν

∗
DP

DP (s) > V ν̂DPDP (s) for at least one s ∈ S. Without loss of generality, suppose
V
ν∗DP
DP (s0) > V ν̂DPDP (s0).

Next we construct another policy ν′ in M̂D by setting ν′(s) = ν∗DP (s),∀s ∈ S. Given that ν∗DP
is deterministic, ν′ is also a deterministic policy. So we use ν∗DP (s) and ν′(s) to denote the action
selected by ν∗DP and ν′ respectively at state s.

For an arbitrary state si, let ai := ν∗DP (si). Since ν∗DP is the optimal policy in MDP , we get
that there exists a state adversary h ∈ Hε such that πD(h(si)) = ai, or equivalently, there exists a
state s̃i ∈ Bε(si) such that argmaxa∈Aπ(s̃i) = ai. Then, the solution to the actor’s optimization
problem (GD) given direction ai and state si, denoted as s̃∗, satisfies

s̃∗ = argmaxs′∈Bε(s)
(
π(â|s′)− argmaxa∈A,a6=âπ(a|s′)

)
(11)

23

and we can get
π(â|s̃∗)− argmaxa∈A,a6=âπ(a|s̃∗) ≥ π(â|s̃i)− argmaxa∈A,a 6=âπ(a|s̃i) > 0 (12)

Given that argmaxa∈Aπ(ai|s̃i) = ai, we obtain argmaxa∈Aπ(ai|s̃∗) = ai, and hence
πD(gD(ai, si)) = ai. Since this relation holds for an arbitrary state s, we can get

πD(gD(ν′(s), s)) = πD(gD(ν′(s), s)) = ν′(s),∀s ∈ S (13)

Also, we have ∀s ∈ S
V̂ ν
′

D (s) = R̂D(s, ν′(s)) +
∑
s′∈S

P̂D(s′|s, ν′(s))V̂ ν
′

D (s′) (14)

V
ν∗DP
DP (s) = RDP (s, ν∗DP (s)) +

∑
s′∈S

PDP (s′|s, ν∗DP (s))V
ν∗DP
DP ((s′) (15)

Therefore, V̂ ν
′

D (s) = V
ν∗DP
DP (s),∀s ∈ S.

Then we have
V̂ ν
′

D (s0) ≤ V̂ ν
∗
(s0) = V ν̂DPDP (s0) < V

ν∗DP
DP (s0) = V̂ ν

′

D (s0) (16)

which gives V̂ ν
′

D (s0) < V̂ ν
′

D (s0), so there is a contradiction.

Combining the results of Proposition 24 and Lemma 21 , for a deterministic victim, the optimal
policy in D-PAMDP gives an optimal adversary for the victim.

F.3 Optimality of Heuristic-based Attacks

There are many existing methods of finding adversarial state perturbations for a fixed RL policy, most
of which are solving some optimization problems defined by heuristics. Although these methods are
empirically shown to be effective in many environments, it is not clear how strong these adversaries
are in general. In this section, we carefully summarize and categorize existing heuristic attack
methods into 4 types, and then characterize their optimality in theory.

F.3.1 TYPE I - Minimize The Best (MinBest)

A common idea of evasion attacks in supervised learning is to reduce the probability that the learner
selects the “correct answer” [5]. Prior works [8, 11, 10] apply a similar idea to craft adversarial
attacks in RL, where the objective is to minimize the probability of selecting the “best” action, i.e.,

hMinBest ∈ argminh∈Hεπh(a+|s),∀s ∈ S (I)
where a+ is the “best” action to select at state s. Huang et al.[8] define a+ as argmaxa∈AQ

π(s, a)
for DQN, or argmaxa∈Aπ(a|s) for TRPO and A3C with a stochastic π. Since the agent’s policy π is
usually well-trained in the original MDP, a+ can be viewed as (approximately) the action taken by an
optimal deterministic policy π∗(s).

Lemma 25 (Optimality of MinBest). Denote the set of optimal solutions to objective (I) asHMinBest.
There exist an MDP M and an agent policy π, such that HMinBest does not contain an optimal
adversary h∗, i.e., HMinBest ∩H∗ε = ∅.

Proof of Lemma 25. We prove this lemma by constructing the following MDP such that for any
victim policy, there exists a reward configuration in which MinBest attacker is not optimal.

Here, let r1 = r(s4|s2, a1), r2 = r(s5|s2, a2), r3 = r(s3|s1, a2). Assuming all the other rewards are
zero, transition dynamics are deterministic, and states s3, s4, s5 are the terminal states. For the sake
of simplicity, we also assume that the discount factor here γ = 1.
Now given a policy π such that π(a1|s1) = β1 and π(a1|s2) = β2 (β1, β2 ∈ [0, 1]), we could find
r1, r2, r3 such that the following constraints hold:

r1 > r2 ⇐⇒ Qπ(s1, a1) > Qπ(s1, a2) (17)
β2r1 + (1− β2)r2 > r3 ⇐⇒ Qπ(s2, a1) > Qπ(s2, a2) (18)

r3 > (β2 − ε2)r2 + (1− β2 + ε2)r2 ⇐⇒ r3 > Qπ(s1, a1)− ε2(r1 − r2) (19)

24

Figure 7: A simple MDP where MinBest Attacker cannot find the optimal adversary for a given victim policy.

Now we consider the Adv-policy-set

BHε (π) =
{
π′ ∈ Π

∣∣∣ ‖π′(·|s1)− π(·|s1)‖ < ε1, ‖π′(·|s2)− π(·|s2)‖ < ε2

}
.

Under these three linear constraints, the policy given by MinBest attacker satisfies that
πhMinBest(a1|s1) = β1 − ε1, and πhMinBest(a1|s2) = β2 − ε2. On the other hand, we can find an-
other admissible policy adversary πh∗(a1|s1) = β1 + ε1, and πh∗(a1|s2) = β2 − ε2. Now we show
that V πh∗ (s1) < V πhMinBest (s1), and thus MinBest attacker is not optimal.

V πhMinBest (s1) = (β1 − ε1)
[
(β2 − ε2)r1 + (1− β2 + ε2)r2

]
+ (1− β1 + ε1)r3 (20)

= (β1 − ε1)(β2 − ε2)r1 + (β1 − ε1)(1− β2 + ε2)r2 + (1− β1 + ε1)r3 (21)

V πh∗ (s1) = (β1 + ε1)
[
(β2 − ε2)r1 + (1− β2 + ε2)r2

]
+ (1− β1 − ε1)r3 (22)

= (β1 + ε1)(β2 − ε2)r1 + (β1 + ε1)(1− β2 + ε2)r2 + (1− β1 − ε1)r3 (23)
Therefore,

V πh∗ (s1)− V πhMinBest (s1) = 2ε1(β2 − ε2)r2 + 2ε1(1− β2 + ε2)r2 − 2ε1r3 (24)

= 2ε1

[
(β2 − ε2)r2 + (1− β2 + ε2)r2 − r3

]
(25)

< 0 Because of the constraint (19) (26)

F.3.2 TYPE II - Maximize The Worst (MaxWorst)

Pattanaik et al. [20] point out that only preventing the agent from selecting the best action does
not necessarily result in a low total reward. Instead, Pattanaik et al. [20] propose another objective
function which maximizes the probability of selecting the worst action, i.e.,

hMaxWorst ∈ argmaxh∈Hεπh(a−|s),∀s ∈ S (II)
where a− refers to the “worst” action at state s. Pattanaik et al.[20] define the “worst” action as the
actions with the lowest Q value, which could be ambiguous, since the Q function is policy-dependent.
If a worst policy π− ∈ argminπV

π(s),∀s ∈ S is available, one can use a− = argminQπ
−

(s, a).
However, in practice, the attacker usually only has access to the agent’s current policy π, so it can
also choose a− = argminQπ(s, a). Note that these two selections are different, as the agent’s policy
π is usually far away from the worst policy.

Lemma 26 (Optimality of MaxWorst). Denote the set of optimal solutions to objective (II) as
HMaxWorst, which include both versions of MaxWorst attacker formulations as we discussed above.
Then there exist an MDP M and an agent policy π, such that HMaxWorst contains a non-optimal
adversary h∗, i.e., HMaxWorst 6⊂ H∗ε .

Proof of Lemma 26.
Case I: Using current policy to compute the target action
We prove this lemma by constructing the MDP in Figure 8 such that for any victim policy, there exists
a reward configuration in which MaxWorst attacker is not optimal.
Here, let r1 = r(s11|s1, a1), r2 = r(s12|s1, a2), r3 = r(s21|s2, a1), r4 = r(s22|s2, a2). Assuming

all the other rewards are zero, transition dynamics are deterministic, and states s11, s12, s21, s22 are
the terminal states. For the sake of simplicity, we also assume that the discount factor here γ = 1.
Now given a policy π such that π(a1|s0) = β0, π(a1|s1) = β1, and π(a2|s2) = β2 (β0, β1, β2 ∈

25

Figure 8: A simple MDP where the first version of MaxWorst Attacker cannot find the optimal adversary for a
given victim policy.

[0, 1]), consider the Adv-policy-set

BHε (π) =
{
π′ ∈ Π

∣∣∣ ‖π′(·|s1)−π(·|s1)‖ < ε0, ‖π′(·|s1)−π(·|s1)‖ < ε1, ‖π′(·|s2)−π(·|s2)‖ < ε2,
}
.

We could find r1, r2, r3, r4 such that the following linear constraints hold:
β1r1 + (1− β1)r2 >β2r3 + (1− β2)r4 ⇐⇒ Qπ(s0, a1) > Qπ(s0, a2) (27)

r1 >r2 ⇐⇒ Qπ(s1, a1) > Qπ(s1, a2) (28)
r3 >r4 ⇐⇒ Qπ(s2, a1) > Qπ(s2, a2) (29)

(β1 − ε1)r1 + (1− β1 + ε1)r2 <(β2 − ε2)r3 + (1− β2 + ε2)r4 (30)
Now, given these constraints, the perturbed policy given by MaxWorst attaker satisfies
πhMaxWorst(a1|s0) = β0 − ε0, πhMaxWorst(a1|s1) = β1 − ε1, and πhMaxWorst(a1|s2) = β2 − ε2. How-
ever, consider another perturbed policy πh∗ in Adv-policy-set such that πh∗(a1|s0) = β0 + ε0,
πh∗(a1|s1) = β1 − ε1, and πh∗(a1|s2) = β2 − ε2. We will prove that V πh∗ (s1) < V πhMaxWorst (s1),
and thus MaxWorst attacker is not optimal.
On the one hand,

V πhMaxWorst (s1) =(β0 − ε0)
[
(β1 − ε1)r1 + (1− β1 + ε1)r2

]
+ (1− β0 + ε0)

[
(β2 − ε2)r3 + (1− β2 + ε2)r4

]
(31)

=(β0 − ε0)(β1 − ε1)r1 + (β0 − ε0)(1− β1 + ε1)r2
+ (1− β0 + ε0)(β2 − ε2)r3 + (1− β0 + ε0)(1− β2 + ε2)r4 (32)

On the other hand,

V πh∗ (s1) =(β0 + ε0)
[
(β1 − ε1)r1 + (1− β1 + ε1)r2

]
+ (1− β0 − ε0)

[
(β2 − ε2)r3 + (1− β2 + ε2)r4

]
(33)

=(β0 + ε0)(β1 − ε1)r1 + (β0 + ε0)(1− β1 + ε1)r2
+ (1− β0 − ε0)(β2 − ε2)r3 + (1− β0 − ε0)(1− β2 + ε2)r4 (34)

Therefore,
V πh∗ (s1)− V πhMaxWorst (s1) =2ε0(β1 − ε1)r1 + 2ε0(1− β1 + ε1)r2

− 2ε0(β2 − ε2)r3 − 2ε0(1− β2 + ε2)r4 (35)
< 0 Because of the constraint (30) (36)

Case II: Using worst policy to compute the target action
Same as before, we construct a MDP where HMaxWorst contains a non-optimal adversary. Let
r1 = r(s1|s0, a1), r2 = r(s2|s0, a2), r3 = r(s3|s0, a3). Assuming all the other rewards are zero,
transition dynamics are deterministic, and states s1, s2, s3 are the terminal states. For the sake of
simplicity, we also assume that the discount factor here γ = 1.
Let pi be the given policy such that π(a1|s0) = β1 and π(a2|s0) = β2. Now without loss of
generality, we assume r1 > r2 > r3 (∗). Then the worst policy π′ satisfies that π′(a3|s0) = 1.
Consider the Adv-policy-set BHε (π) =

{
π′ ∈ Π

∣∣∣ ‖π′(·|s0) − π(·|s0)‖1 < ε
}

. Then HMaxWorst ={
π′ ∈ Π

∣∣∣ π′(a3|s0) = (1− β1 − β2) + ε
}

.

Now consider two policies πh1 , πh2 ∈ HMaxWorst, where πh1(a1|s0) = β1, πh1(a2|s0) = β2 − ε,

26

Figure 9: A simple MDP where the second version of MaxWorst Attacker cannot find the optimal adversary for
a given victim policy.

πh2(a1|s0) = β1 − ε, πh2(a2|s0) = β2. Then V πh1 (s0)− V πh2 (s0) = ε(r1 − r2) > 0. Therefore,
πh1 ∈ HMaxWorst but it’s not optimal.

F.3.3 TYPE III - Minimize Q Value (MinQ).

Another idea of attacking [20, 32] is to craft perturbations such that the agent selects actions with
minimized Q values at every step, i.e.,

hMinQ ∈ argminh∈Hε

∑
a∈A

πh(a|s)Q̂π(s, a),∀s ∈ S (III)

where Q̂ is the approximated Q function of the agent’s original policy. For example, Pattanaik
et al.[20] directly use the agent’s Q network (of policy π), while the Robust SARSA (RS) attack
proposed by Zhang et al.[32] learns a more stable Q network for the agent’s policy π. Note that in
practice, this type of attack is usually applied to deterministic agents (e.g., DQN, DDPG, etc), then
the objective becomes argminh∈HεQ̂

π(s, πh(s)),∀s ∈ S [20, 32, 19]. In this case, the MinQ attack
is equivalent to the MaxWorst attack with the current policy as the target.

Lemma 27 (Optimality of MinQ). Denote the set of optimal solutions to objective (III) as HMinQ,
which include both versions of MinQ attacker formulations as we discussed above. Then there exist
an MDP M and an agent policy π, such that HMinQ contains a non-optimal adversary h∗, i.e.,
HMinQ 6⊂ H∗ε .

Proof of Lemma 26.
Case I: For a deterministic victim
In the deterministic case

hMinQ ∈ argminh∈HεQ̂
π(s, πh(s)) = argmaxh∈Hεπh(argminaQ̂

π(s, a)|s),∀s ∈ S (IIID)
In this case, the objective is equivalent to objective (II), thus Lemma 27 holds.

Case II: For a stochastic victim
In this case, we consider the MDP in Figure 8 and condition (27) to (30). Then the MinQ objective
gives πhMinQ(a1|s0) = β0 − ε0, πhMinQ(a1|s1) = β1 − ε1, and πhMinQ(a1|s2) = β2 − ε2.

According to the proof of the first case of Lemma 26, πhMinQ = πhMaxWorst is not an optimal adversary.
Thus Lemma 27 holds.

F.3.4 TYPE IV - Maximize Difference (MaxDiff).

The MAD attack proposed by Zhang et al. [32] is to maximize the distance between the perturbed
policy πh and the clean policy π, i.e.,

hMaxDiff ∈ argmaxh∈HεDTV[πh(·|s)||π(·|s)],∀s ∈ S (IV)
where TV denotes the total variance distance between two distributions. In practical imple-
mentations, the TV distance can be replaced by the KL-divergence, as DTV[πh(·|s)||π(·|s)] ≤
(DKL[πh(·|s)||π(·|s)])2. This type of attack is inspired by the fact that if two policies select actions

27

with similar action distributions on all the states, then the value of the two policies is also small (see
Theorem 5 in [32]).

Lemma 28 (Optimality of MaxDiff). Denote the set of optimal solutions to objective (IV) as
HMaxDiff. There exist an MDPM and an agent policy π, such that HMaxDiff contains a non-optimal
adversary h∗, i.e., HMaxDiff 6⊂ H∗ε .

Proof of Lemma 28. The proof follows from the proof of lemma 25. In the MDP we constructed,
π′ = β1 − ε1, πhMinBest(a1|s2) = β2 − ε2 is one of the policies that has the maximum KL divergence
from the victim policy within Adv-policy-set. However, as we proved in 25, this is not the optimally
perturbed policy. Therefore, MaxDiff attacker may not be optimal.

G Additional Experiment Details and Results

In this section, we provide details of our experimental settings and present additional experimental
results. Section G.1 describes our implementation details and hyperparameter settings for Atari and
MuJoCo experiments. Section G.2 provide additional experimental results, including experiments
with varying budgets (ε) in Section G.2.1, more comparison between SA-RL and PA-AD in terms of
convergence rate and sensitivity to hyperparameter settings as in Section G.2.3, robust training in
MuJoCo games with fewer training steps in Section G.2.4, attacking performance on robust models
in Atari games in Section G.2.5, as well as robust training results in Atari games in Section G.2.6.

G.1 Implementation Details

G.1.1 Atari Experiments

In this section we report the configurations and hyperparameters we use for DQN, A2C and ACKTR
in Atari environments. We use GeForce RTX 2080 Ti GPUs for all the experiments.

DQN Victim We compare PA-AD algorithm with other attacking algorithms on 7 Atari games.
For DQN, we take the softmax of the Q values Q(s, ·) as the victim policy π(·|s) as in prior
works [8]. For these environments, we use the wrappers provided by stable-baselines [7], where
we clip the environment rewards to be −1 and 1 during training and stack the last 4 frames as the
input observation to the DQN agent. For the victim agent, we implement Double Q learning [6] and
prioritized experience replay [28]. The clean DQN agents are trained for 6 million frames, with a
learning rate 0.00001 and the same network architecture and hyperparameters as the ones used in
[18]. In addition, we use a replay buffer of size 5× 105. Prioritized replay buffer sampling is used
with α = 0.6 and β increases from 0.4 to 1 linearly during training. During evaluation, we execute
the agent’s policy without epsilon greedy exploration for 1000 episodes.

A2C Victim For the A2C victim agent, we also use the same preprocessing techniques and con-
volutional layers as the one used in [18]. Besides, values and policy network share the same CNN
layers and a fully-connected layer with 512 hidden units. The output layer is a categorical distribution
over the discrete action space. We use 0.0007 as the initial learning rate and apply linear learning rate
decay, and we train the victim A2C agent for 10 million frames. During evaluation, the A2C victim
executes a stochastic policy (for every state, the action is sampled from the categorical distribution
generated by the policy network). Our implementation of A2C is mostly based on an open-source
implementation by Kostrikov [12].

ACKTR Adversary To train the director of PA-AD and the adversary in SA-RL, we use
ACKTR [29] with the same network architecture as A2C. We train the adversaries of PA-AD
and SA-RL for the same number of steps for a fair comparison. For the DQN victim, we use a
learning rate 0.0001 and train the adversaries for 5 million frames. For the A2C victim, we use a
learning rate 0.0007 and train the adversaries for 10 million frames. Our implementation of ACKTR
is mostly based on an open-source implementation by Kostrikov [12].

28

Heuristic Attackers For the MinBest attacker, we following the algorithm proposed by Huang et
al. [8] which uses FGSM to compute adversarial state perturbations. The MinBest + Momentum
attacker is implemented according to the algorithm proposed by Korkmaz [10], and we set the number
of iterations to be 10, the decaying factor to be 0.5. Our implementation of the MinQ attacker follows
the gradient-based attack by Pattanaik et al. [20], and we also set the number of iterations to be 10.
For the MaxDiff attacker, we refer to Algorithm 3 in Zhang et al. [32] with the number of iterations
equal to 10. In addition, we implement a random attacker which perturbs state s to s̃ = s+ εsign(µ),
where µ is sampled from a standard multivariate Gaussian distribution with the same dimension as s.

G.1.2 MuJoCo Experiments

For four OpenAI Gym MuJoCo continuous control environments, we use PPO with the original
fully connected (MLP) structure as the policy network to train the victim policy. For robustness
evaluations, the victim and adversary are both trained using PPO with independent value and policy
optimizers. We complete all the experiments on MuJoCo using 32GB Tesla V100.

PPO Victim We directly use the well-trained victim model provided by Zhang et al. [32].

PPO Adversary Our PA-AD adversary is trained by PPO and we use a grid search of a part of
adversary hyperparameters (including learning rates of the adversary policy network and policy
network, the entropy regularization parameter and the ratio clip ε for PPO) to train the adversary as
powerful as possible. The reported optimal attack result is from the strongest adversary among all 50
trained adversaries.

Other Attackers For Robust Sarsa (RS) attack, we use the implementation and the optimal RS
hyperparameters from [32] to train the robust value function to attack the victim. The reported RS
attack performance is the best one over the 30 trained robust value functions.

For MaxDiff attack, the maximal action difference attacker is implemented referring to [32].

For SA-RL attacker, following [31], the hyperparameters is the same as the optimal hyperparameters
of vanilla PPO from a grid search. And the training steps are set for different environments. For the
strength of SA-PPO regularization κ, we choose from 1× 10−6 to 1 and report the worst-case reward.

Robust Training For ATLA [31], the hyperparameters for both victim policy and adversary remain
the same as those in vanilla PPO training. To ensure sufficient exploration, we run a small-scale
grid search for the entropy bonus coefficient for agent and adversary. The experiment results show
that a larger entropy bonus coefficient allows the agent to learn a better policy for the continual-
improving adversary. In robust training experiments, we use larger training steps in all the MuJoCo
environments to guarantee policy convergence. We train 5 million steps in Hopper, Walker, and
HalfCheetah environments and 10 million steps for Ant. For reproducibility, the final results we
reported are the experimental performance of the agent with medium robustness from 21 agents
training with the same hyperparameter set.

G.2 Additional Experiment Results

G.2.1 Attacking Performance with Various Budgets

In Table 1, we report the performance of our PA-AD attacker under a chosen epsilon across different
environments. To see how PA-AD algorithm performs across different values of ε’s, here we select
three Atari environments each for DQN and A2C victim agents and plot the performance of PA-AD
under various ε’s compared with the baseline attackers in Figure 10. We can see from the figures that
our PA-AD universally outperforms baseline attackers concerning various ε’s.

In Table 2, we provide the evaluation results of PA-AD under a commonly unused epsilon in four
MuJoCo experiments ([32, 31]) to show that PA-AD attacker also has the best attacking performance
compared with other attackers under different ε’s in Figure 11.

G.2.2 Hyperparameter Test

In our Actor-Director Framework, solving an optimal actor is a constraint optimization problem.
Thus, in our algorithm, we instead use Lagrangian relaxation for the actor’s constraint optimization.

29

0 0.2 0.4 0.6 0.8 1 1.2

·10−3

20

40

60

80

100

ε

A
ve

ra
ge

R
et

ur
n

MinBest
MinBest Momentum
MinQ
MaxDiff
PA-AD

(a) DQN Boxing

0 0.2 0.4 0.6 0.8 1

·10−3

−20

−10

0

10

20

ε

A
ve

ra
ge

R
et

ur
n

MinBest
MinBest Momentum
MinQ
MaxDiff
PA-AD

(b) DQN Pong

0 0.2 0.4 0.6 0.8 1

·10−3

0

1

2

3

4

5
·104

ε

A
ve

ra
ge

R
et

ur
n

MinBest
MinBest Momentum
MinQ
MaxDiff
PA-AD

(c) DQN RoadRunner

0 0.2 0.4 0.6 0.8 1

·10−3

−20

−10

0

10

20

ε

A
ve

ra
ge

R
et

ur
n

MinBest
MinBest Momentum
MaxDiff
PA-AD

(d) A2C Pong

0 0.2 0.4 0.6 0.8 1

·10−3

0

100

200

300

400

ε

A
ve

ra
ge

R
et

ur
n

MinBest
MinBest Momentum
MaxDiff
PA-AD

(e) A2C Breakout

0 0.2 0.4 0.6 0.8 1

·10−2

0

500

1,000

1,500

ε

A
ve

ra
ge

R
et

ur
n

MinBest
MinBest Momentum
MaxDiff
PA-AD

(f) A2C Seaquest

Figure 10: Comparison of different attack methods against DQN and A2C victims in Atari w.r.t. different
budget ε’s.

0.02 0.04 0.06 0.08 0.10 0.12 0.14

0

1,000

2,000

3,000

ε

A
ve

ra
ge

R
et

ur
n

MaxDiff
Robust Sarsa
SA-RL
PA-AD

(a) PPO Hopper

0.02 0.04 0.06 0.08 0.10 0.12 0.14

1,000

2,000

3,000

4,000

5,000

ε

A
ve

ra
ge

R
et

ur
n

MaxDiff
Robust Sarsa
SA-RL
PA-AD

(b) PPO Walker2d

0.0500.0750.1000.1250.1500.1750.2000.2250.250
−4,000

−2,000

0

2,000

4,000

6,000

ε

A
ve

ra
ge

R
et

ur
n

MaxDiff
Robust Sarsa
SA-RL
PA-AD

(c) PPO Ant

Figure 11: Comparison of different attack methods against PPO victims in MuJoCo w.r.t. different budget ε’s.

In this section, we report the effects of different choices of the relaxation hyperparameter λ on the
final performance of our algorithm. Although we set λ by default to be 1 and keep it fixed throughout
all of the other experiments, here we find that in fact, difference choice of λ has only minor impact
on the performance of the attacker. This result demonstrates that our PA-AD algorithm is robust to
different choices of relaxation hyperparameters.

Table 4: Performance of PA-AD across difference choices of the relaxation hyperparameter λ

Pong Boxing
Nature Reward 21± 0 96± 4

λ = 0.2 −19± 2 16± 12
λ = 0.4 −18± 2 17± 12
λ = 0.6 −20± 2 19± 15
λ = 0.8 −19± 2 14± 12
λ = 1.0 −19± 2 15± 12
λ = 2.0 −20± 1 21± 15
λ = 5.0 −20± 1 19± 14

(a) Atari

Ant Walker
Nature Reward 5687± 758 4472± 635

λ = 0.2 −2274± 632 897± 157
λ = 0.4 −2239± 716 923± 132
λ = 0.6 −2456± 853 954± 105
λ = 0.8 −2597± 662 872± 162
λ = 1.0 −2580± 872 804± 130
λ = 2.0 −2378± 794 795± 124
λ = 5.0 −2425± 765 814± 140

(b) Mujoco

30

G.2.3 Comparison between PA-AD and SA-RL

PA-AD has better convergence property than SA-RL. In Figure 12, we plot the learning curves
of SA-RL and PA-AD in the CartPole environment and the Ant environment. Compared with SA-RL
attacker, PA-AD has a higher attacking strength in the beginning and converges much faster. In
Figure 12b, we can see that PA-AD has a “warm-start” (the initial reward of the victim is already
significantly reduced) compared with SA-RL attacker which starts from scratch. This is because
PA-AD always tries to maximize the distance between the perturbed policy and the original victim
policy in every step according to the actor function (G). So in the beginning of learning, PA-AD
works similarly to the MaxDiff attacker, while SA-RL works similarly to a random attacker. We also
note that although PA-AD algorithm is proposed particularly for environments that have state spaces
much larger than action spaces, in CartPole where the state dimension is less than the number of
actions, PA-AD still works better than SA-RL because of the distance maximization.

(a) Learning curve of SA-RL and PA-AD attacker
against an A2C victim in CartPole.

(b) Learning curve of SA-RL and PA-AD attacker
against a PPO victim in Ant.

Figure 12: Comparison of convergence rate between SA-RL and PA-AD in Ant and Cartpole. Results are
averaged over 10 random seeds.

PA-AD is less sensitive to hyperparameters settings than SA-RL. In addition to better final
attacking results and convergence property, we also observe that PA-AD is much less sensitive to
hyerparameter settings compared to SA-RL. On the Walker environment, we run a grid search
over 216 different configurations of hyperparameters, including actor learning rate, critic learning
rate, entropy regularization coefficient, and clipping threshold in PPO. Here for comparison we
plot two histograms of the agent’s final attacked results across different hyperparameter configurations.

(a) SA-RL Attacker (b) PA-AD Attacker
Figure 13: Histograms of victim rewards under different hyperparameter settings of SA-RL and PA-AD on
Walker.

The perturbation radius is set to be 0.05, for which the mean reward reported by Zhang et al. [32] is
1086. However, as we can see from this histogram, only one out of the 216 configurations of SA-RL
achieves an attacking reward within the range 1000-2000, while in most hyperparameter settings, the
mean attacked return lies in the range 4000-4500. In contrast, about 10% hyperparameter settings of
PA-AD algorithm are able to reduce the reward to 500-1000, and another 10% settings could reduce
the reward to 1000-2000. Therefore, the performance of PA-AD attacker is generally better and more
robust across different hyperparameter configurations than SA-RL.

31

G.2.4 Robust Training Efficiency on MuJoCo by PA-ATLA

In the ATLA process proposed by Zhang et al. [31], one alternately trains an agent and an adversary.
As a result, the agent policy may learn to adapt to the specific type of attacker it encounters during
training. In Table 3, we present the performance of our robust training method PA-ATLA-PPO
compared with ATLA-PPO under different types of attacks during testing. ATLA-PPO uses SA-RL
to train the adversary, while PA-ATLA-PPO uses PA-AD to train the adversary during alternating
training. As a result, we can see that ATLA-PPO models perform better under the SA-RL attack, and
PA-ATLA-PPO performs better under the PA-AD attack. However, the advantage of ATLA-PPO over
PA-ATLA-PPO against SA-RL attack is much smaller than the advantage of PA-ATLA-PPO over
ATLA-PPO against PA-AD attack. In addition, our PA-ATLA-PPO models significantly outperform
ATLA-PPO models against other heuristic attack methods, and achieve higher average rewards across
all attack methods. Therefore, PA-ATLA-PPO is generally more robust than ATLA-PPO.

Furthermore, the efficiency of training an adversary could be the bottleneck in the ATLA [31] process
for practical usage. Appendix G.2.3 suggests that our PA-AD generally converges faster than SA-RL.
Therefore, when the computation resources are limited, PA-ATLA-PPO can train robust agents
faster than ATLA-PPO. We conduct experiments on continuous control environments to empirically
show the efficiency comparison between PA-ATLA-PPO and ATLA-PPO. In Table 5, we show the
robustness performance of two ATLA methods with 2 million training steps for Hopper, Walker
and Halfcheetah and 5 million steps for Ant (Compared with results in Table 3, we have reduced
training steps by half or more). It can be seen that our PA-ATLA-PPO models still significantly
outperform the original ATLA-PPO models under different types of attacks. More importantly, our
PA-ATLA-PPO achieves higher robustness under SA-RL attacks in Walker and Ant, suggesting the
efficiency and effectiveness of our method.

Environment ε step(million) Model Natural
Reward RS[32] SA-RL [31] PA-AD

(ours)
Average reward
across attacks

Hopper 0.075 2 ATLA-PPO 1763± 818 1349± 174 1172± 344 477± 30 999.3

PA-ATLA-PPO 2164± 121 1720± 490 1119± 123 1024± 188 1287.7

Walker 0.05 2 ATLA-PPO 3183± 842 2405± 529 2170± 1032 516± 47 1697.0

PA-ATLA-PPO 3206± 445 2749± 106 2332± 198 1072± 247 2051.0

Halfcheetah 0.15 2 ATLA-PPO 4871± 112 3781± 645 3493± 372 856± 118 2710.0

PA-ATLA-PPO 5257± 94 4012± 290 3329± 183 1670± 149 3003.7

Ant 0.15 5 ATLA-PPO 3267± 51 3062± 149 2208± 56 −18± 100 1750.7

PA-ATLA-PPO 3991± 71 3364± 254 2685± 41 2403± 82 2817.3

Table 5: Average episode rewards ± standard deviation of robust models with less training steps under different
evasion attack methods. Results are averaged over 50 episodes. We bold the strongest attack in each row. The
gray cells are the most robust agents with the highest average rewards across all attacks.

G.2.5 Attacking Robustly Trained Agents on Atari

In this section, we show the attack performance of our proposed algorithm PA-AD against DRL
agents that are trained to be robust by prior works [32, 19] in Atari games.

Zhang et al. [32] propose SA-DQN, which minimizes the action change under possible state pertur-
bations within `p norm ball, i.e., to minimize the extra loss

RDQN(θ) :=
∑
s

max

{
max
ŝ∈B(s)

max
a6=a∗

Qθ(ŝ, a)−Qθ (ŝ, a∗(s)) ,−c
}

(37)

where θ refers to the Q network parameters, a∗(s) = argmaxaQθ(a|s), and c is a small constant.
Zhang et al. [32] solve the above optimization problem by a convex relaxation of the Q network,
which achieves 100% action certification (i.e. the rate that action changes with a constrained state
perturbation) in Pong and Freeway, over 98% certification in BankHeist and over 47% certification in
RoadRunner under attack budget ε = 1/255.

Oikarinen et al. [19] propose another robust training method named RADIAL-RL. By adding a
adversarial loss to the classical loss of the RL agents, and solving the adversarial loss with interval
bound propagation, the proposed RADIAL-DQN and RADIAL-A3C achieve high rewards in Pong,
Freeway, BankHeist and RoadRunner under attack budget ε = 1/255 and ε = 3/255.

32

Environment Natural
Reward ε Random MinBest [8] MinBest +

Momentum[10] MinQ [20] MaxDiff [32] PA-AD
(ours)

SA-DQN
RoadRunner 46440± 5797 1

255 45032± 7125 40422± 8301 43856± 5445 42790± 8456 45946± 8499 38652± 6550

BankHeist 1237± 11 1
255 1236± 12 1235± 15 1233± 17 1237± 14 1236± 13 1237± 14

RADIAL
-DQN

RoadRunner 39102± 13727
1

255 41584± 8351 41824± 7858 42330± 8925 40572± 9988 42014± 8337 38214± 9119

3
255 23766± 6129 9808± 4345 35598± 8191 39866± 6001 18994± 6451 1366± 3354

BankHeist 1060± 95
1

255 1037± 103 991± 105 988± 102 1021± 96 1042± 112 999± 100

3
255 1011± 130 801± 114 460± 310 842± 33 1023± 110 397± 172

RADIAL
-A3C

RoadRunner 30854± 7281
1

255 30828± 7297 31296± 7095 31132± 6861 30838± 5743 32038± 6898 30550± 7182

3
255 30690± 7006 30198± 6075 29936± 5388 29988± 6340 31170± 7453 29768± 5892

BankHeist 847± 31
1

255 847± 31 847± 33 848± 31 848± 31 848± 31 848± 31

3
255 848± 31 644± 158 822± 11 842± 33 834± 30 620± 168

Table 6: Average episode rewards ± standard deviation of SA-DQN, RADIAL-DQN, RADIAL-A3C robust
agents under different evasion attack methods in Atari environments RoadRunner and BankHeist. All attack
methods use 30-step PGD to compute adversarial state perturbations. Results are averaged over 50 episodes.
In each row, we bold the strongest attack, except for the rows where none of the attacker reduces the reward
significantly (which suggests that the corresponding agent is relatively robust).)

Implementation of the Robust Agents and Environments. We directly use the trained SA-DQN
agents provided by Zhang et al. [32], as well as RADIAL-DQN and RADIAL-A3C agents provided
by Oikarinen et al [19]. During test time, the agents take actions deterministically. In order to
reproduce the results in these papers, we use the same environment configurations as in Zhang et
al. [32] and Oikarinen et al [19], respectively. But note that the environment configurations of SA-
DQN and RADIAL-RL are simpler versions of the traditional Atari configurations we use (described
in Appendix G.1.1). Both SA-DQN and RADIAL-RL use a single frame instead of the stacking as 4
frames. Moreover, SA-DQN restricts the number of actions as 6 (4 for Pong) in each environment,
although the original environments have 18 actions (6 for Pong). The above simplifications in
environments can make robust training easier since the dimensionality of the input space is much
smaller, and the number of possible outputs is restricted.

Attack Methods In experiments, we find that the robust agents are much harder to attack than
vanilla agents in Atari games, as claimed by the robust training papers [32, 19]. A reason is that Atari
games have discrete action spaces, and leading an agent to make a different decision at a state with a
limited perturbation could be difficult. Therefore, we use a 30-step Projected Gradient Descent for
all attack methods (with step size ε/10), including MinBest [8] and our PA-AD which use FGSM
for attacking vanilla models. Note that the PGD attacks used by Zhang et al. [32] and Oikarinen et
al. [19] in their experiments are the same as the MinBest-PGD attack we use. For our PA-AD, we
use PPO to train the adversary since PPO is relatively stable. The learning rate is set to be 5e− 4,
and the clip threshold is 0.1. Note that SA-DQN, RADIAL-DQN and RADIAL-A3C agents all take
deterministic actions, so we use the deterministic formulation of PA-AD as described in Appendix E.1.
In our implementation, we simply use a CrossEntropy loss for the actor as in Equation (38).

gD(â, s) = argmins′∈Bε(s)CrossEntropy(π(s′), â). (38)

Experiment Results In Table 6, we reproduce the results reported by Zhang et al. [32] and Oikari-
nen et al. [19], and demonstrate the average rewards gained by these robust agents under different
attacks in RoadRunner and BankHeist. Note that SA-DQN is claimed to be robust to attacks with
budget ε = 1/255, and RADIAL-DQN and RADIAL-A3C are claimed to be relatively robust against
up to ε = 3/255 attacks. (`∞ is used in both papers.) So we use the same ε’s for these agents in our
experiments.

It can be seen that compared with vanilla agents in Table 1, SA-DQN, RADIAL-DQN and RADIAL-
A3C are more robust due to the robust training processes. However, in some environments, PA-AD
can still decrease the rewards of the agent significantly. For example, in RoadRunner with ε = 3/255,
RADIAL-DQN gets 1k+ reward against our PA-AD attack, although RADIAL-DQN under other
attacks can get 10k+ reward as reported by Oikarinen et al. [19]. In contrast, we find that RADIAL-
A3C is relatively robust, although the natural rewards gained by RADIAL-A3C are not as high as
RADIAL-DQN and SA-DQN. Also, as SA-DQN achieves over 98% action certification in BankHeist,
none of the attackers is able to noticeably reduce its reward with ε = 1/255.

33

Therefore, our PA-AD can approximately evaluate the worst-case performance of an RL agent under
attacks with fixed constraints, i.e., PA-AD can serve as a “detector” for the robustness of RL agents.
For agents that perform well under other attacks, PA-AD may still find flaws in the models and
decrease their rewards; for agents that achieve high performance under PA-AD attack, they are very
likely to be robust against other attack methods.

G.2.6 Improving Robustness on Atari by PA-ATLA

Note that different from SA-DQN [32] and RADIAL-RL [19] discussed in Appendix G.2.5, we use
the traditional Atari configurations [18] without any simplification (e.g. disabling frame stacking,
or restricting action numbers). We aim to improve the robustness of the agents in original Atari
environments, as in real-world applications, the environments could be complex and unchangeable.

Baselines We propose PA-ATLA-A2C by combining our PA-AD and the ATLA framework pro-
posed by Zhang et al. [31]. We implement baselines including vanilla A2C, adversarially trained A2C
(with MinBest [8] and MaxDiff [32] adversaries attacking 50 frames). SA-A2C (Zhang et al. [32]) is
implemented using SGLD and convex relaxations in Atari environments.

In Table 6, naive adversarial training methods have unreliable performance under most strong attacks
and SA-A2C is ineffective under PA-AD strongest attack. To provide evaluation using different ε, we
provide the attack rewards of all robust models with different attack budgets ε. Under all attacks with
different ε value, PA-ATLA-A2C models outperform all other robust models and achieve consistently
better average rewards across attacks. We can observe that our PA-ATLA-A2C training method can
considerably enhance the robustness in Atari environments.

Model Natural
Reward ε Random MinBest [8] MaxDiff [32] SA-RL [31] PA-AD

(ours)
Average reward
across attacks

A2C
vanilla 1228± 93

1/255 1223± 77 972± 99 1095± 107 1132± 30 436± 74 971.6

3/255 1064± 129 697± 153 913± 164 928± 124 284± 116 777.2

A2C
(adv: MinBest [8]) 948± 94

1/255 932± 69 927± 30 936± 11 940± 103 704± 19 887.8

3/255 874± 51 813± 32 829± 27 843± 126 521± 72 774.2

A2C
(adv: MaxDiff [32]) 743± 29

1/255 756± 42 702± 89 752± 79 749± 85 529± 45 697.6

3/255 712± 109 638± 133 694± 115 686± 110 403± 101 626.6

SA-A2C[31] 1029± 152
1/255 1054± 31 902± 89 1070± 42 1067± 18 836± 70 985.8

3/255 985± 47 786± 52 923± 52 972± 126 644± 153 862.0

PA-ATLA-A2C
(ours) 1076± 56

1/255 1055± 204 957± 78 1069± 94 1045± 143 862± 106 997.6

3/255 1026± 78 842± 154 967± 82 976± 159 757± 132 913.6

Table 7: Average episode rewards ± standard deviation over 50 episodes of A2C, A2C with adv. training,
SA-A2C and our PA-ATLA-A2C robust models under different evasion attack methods in Atari environment
BankHeist. In each row, we bold the strongest attack. The gray cells are the most robust agents with the highest
average rewards across all attacks.

H Additional Discussion of Our Algorithm

H.1 Optimality of Our Relaxed Objective for Stochastic Victims

Proof of Concept: Optimality Evaluation in A Small MDP

We implemented and tested heuristic attacks and our PA-AD in the example 2-state MDP used in
Figure 6, and visualize the results in Figure 14. For simplicity, assume the adversaries can perturb
only perturb π at s1 within a `2 norm ball of radius 0.2. And we let all adversaries perturb the policy
directly based on their objective functions. As shown in Figure 14a, all possible π̃(s1)’s form a
disk in the policy simplex, and executing above methods, as well as our PA-AD, leads to 4 different
policies on this disk. All these computed policy perturbations are on the boundary of the policy
perturbation ball, justifying our Theorem 7.

As our theoretical results suggest, the resulted value vectors lie on a line segment shown in Figure 14b
and a zoomed in version Figure 14c, where one can see that MinBest, MaxWorst and MAD all fail
to find the optimal adversary (the policy with lowest value). On the contrary, our PA-AD finds the
optimal adversary that achieves the lowest reward over all policy perturbations.

34

(a) (b) (c)

Figure 14: Comparison of the optimality of different adversaries. (a) The policy perturbation generated for s1
by all attack methods. (b) The values of corresponding policy perturbations. (c) A zoomed in version of (b),
where the values of all possible policy perturbations are rendered. Our method finds the policy perturbation that
achieves the lowest reward among all perturbations.

For Continuous MDP: Optimality Evaluation in CartPole and MountainCar

We provided a comparison between SA-RL and PA-AD in the CartPole environment in Figure 15,
where we can see the SA-RL and PA-AD converge to the same result (the learned SA-RL adversary
and PA-AD adversary have the same attacking performance).

Figure 15: Learning curve of SA-RL and PA-AD attacker against an A2C victim in CartPole.

CartPole has a 4-dimensional state space, and contains 2 discrete actions. Therefore since SA-RL has
an optimal formulation, we expect SA-RL to converge to the optimal adversary in a small MDP like
CartPole. Then the result in Figure 15 suggests that our PA-AD algorithm, although with a relaxation
in the actor optimization, also converges to the optimal adversary with even a faster rate than SA-RL
(the reason is explained in Appendix G.2.3).

In addition to CartPole, we also run experiments in MountainCar with a 2-dimensional state space
against a DQN victim. The SA-RL attacker reduces the victim reward to -128, and our PA-AD
attacker reduces the victim reward to -199.45 within the same number of training steps. Note that the
lowest reward in MountainCar is -200, so our PA-AD indeed converges to a near-optimal adversary,
while SA-RL fails to converge to a near-optimal adversary. This is because MountainCar is an
environment with relatively spare rewards. The actor in PA-AD utilizes our Theorem 7 and only
focuses on perturbations in the outermost boundary, which greatly reduces the exploration
burden in solving an RL problem. In contrast, SA-RL directly uses RL algorithms to learn the
perturbation, and thus it has difficulties in converging to the optimal solution.

H.2 More Comparison between SA-RL and PA-AD

We provide a more detailed comparison between SA-RL and PA-AD from the following multiple
aspects to claim our contribution.

1. Size of the Adversary MDP
Suppose the original MDP has size |S|, |A| for its state space and action space, respectively. Both
PA-AD and SA-RL construct an adversary’s MDP and search for the optimal policy in it. But the
adversary’s MDPs for PA-AD and SA-RL have different sizes.

35

PA-AD: state space is of size |S|, action space is of size R|A|−1 for a stochastic victim, or |A| for a
deterministic victim.
SA-RL: state space is of size |S|, action space is of size |S|.
2. Learning Complexity and Efficiency
When the state space is larger than the action space, which is very common in RL environments,
PA-AD solves a smaller MDP than SA-RL and thus more efficient. In environments with pixel-based
states, SA-RL becomes computationally intractable, while PA-AD still works. It is also important to
note that the actor’s argmax problem in PA-AD further accelerates the convergence, as it rules out
the perturbations that do not push the victim policy to its outermost boundary. Our experiment and
analysis in Appendix G.2.3 verify the efficiency advantage of our PA-AD compared with SA-RL,
even in environments with small state spaces.

3. Optimality
PA-AD: (1) the formulation is optimal for a deterministic victim policy; (2) for a stochastic victim
policy, the original formulation is optimal, but in practical implementations, a relaxation is used
which may not have optimality guarantees.
SA-RL: the formulation is optimal.
Note that both SA-RL and PA-AD require training an RL attacker, but the RL optimization process
may not converge to the optimal solution, especially in deep RL domains. Therefore, SA-RL and
PA-AD are both approximating the optimal adversary in practical implementations.

4. Knowledge of the Victim
PA-AD: needs to know the victim policy (white-box).
SA-RL: does not need to know the victim policy (black-box).
It should be noted that the white-box setting is realistic and helps in robust training:
(1) The white-box assumption is common in existing heuristic methods.
(2) It is always a white-box process to evaluate and improve the robustness of a given agent, for
which PA-AD is the SOTA method. As discussed in our Ethics Statement, the ultimate goal of finding
the strongest attacker is to better understand and improve the robustness of RL agents. During the
robust training process, the victim is the main actor one wants to train, so it is a white-box setting.
The prior robust training art ATLA [31] uses the black-box attacker SA-RL, despite the fact that it
has white-box access to the victim actor. Since SA-RL does not utilize the knowledge of the victim
policy, it usually has to deal with a more complex MDP and face converging difficulties. In contrast,
if one replaces SA-RL with our PA-AD, PA-AD can make good use of the victim policy and find a
stronger attacker with the same training steps as SA-RL, as verified in our Section 6 and Appendix
G.2.6.

We also discuss scenarios where SA-RL could be better than PA-AD:
(1) when the action space is much larger than the state space in the original MDP, or when the state
space is small and discrete; (2) if the attacker wants to conduct black-box attacks, using SA-RL is a
good choice.

In summary, as we discussed in Section 4, there is a trade-off between efficiency and optimality
in evasion attacks in RL. SA-RL has an optimal RL formulation, but empirical results show that
SA-RL usually do not converge to the optimal adversary in a continuous state space, even in a
low-dimensional state space (e.g. see Appendix H.1 for an experiment in MountainCar). Therefore,
the difficulty of solving an adversary’s MDP is the bottleneck for finding the optimal adversary. Our
PA-AD, although may sacrifice the theoretical optimality in some cases, greatly reduces the size and
the exploration burden of the attacker’s RL problem (can also be regarded as trading some estimation
bias off for lower variance). Empirical evaluation shows our PA-AD significantly outperforms SA-RL
in a wide range of environments.
Though PA-AD requires to have access to the victim policy, PA-AD solves a more compact RL
problem than SA-RL by utilizing the victim’s policy and can be applied on evaluating/improving
the robustness of RL policy. It is possible to let PA-AD work in a black-box setting based on the
transferability of adversarial attacks. For example, in a black-box setting, the attacker can train a
proxy agent in the same environment, and use PA-AD to compute a state perturbation for the proxy
agent, then apply the state perturbation to attack the real victim agent. This will be a part of our future
work.

36

H.3 Vulnerability of RL Agents

It is commonly known that neural networks are vulnerable to adversarial attacks [5]. Therefore,
it is natural that deep RL policies, which are modeled by neural networks, are also vulnerable
to adversarial attacks [8]. However, there are few works discussing the difference between deep
supervised classifiers and DRL policies in terms of their vulnerabilities. In this section, we take a
step further and investigate the vulnerability of DRL agents, through a comparison with standard
adversarial attacks on supervised classifiers. Our main conclusion is that commonly used deep RL
policies can be instrinsically much more vulnerable to small-radius adversarial attacks. The reasons
are explained below.

1. Optimization process
Due to the different loss functions that RL and supervised learning agents are trained on, the size of
robustness radius of an RL policy is much smaller than that of a vision-based classifier.
On the one hand, computer vision-based image classifiers are trained with cross-entropy loss. There-
fore, the classifier is encouraged to make the output logit of the correct label to be larger than the
logits of other labels to maximize the log probability of choosing the correct label. On the other hand,
RL agents, in particular DQN agents, are trained to minimize the Bellman Error instead. Thus the
agent is not encouraged to maximize the absolute difference between the values of different actions.
Therefore, if we assume the two networks are lipschitz continuous and their lipschitz constants do
not differ too much, it is clear that a supervised learning agent has a much larger perturbation radius
than an RL agent.

To prove our claim empirically, we carried out a simple experiment, we compare the success rate
of target attacks of a well-trained DQN agent on Pong with an image classifier trained on the
CIFAR-10 dataset with similar network architecture. For a fair comparison, we use the same image
preprocessing technique, which is to divide the pixel values by 255 and no further normalization is
applied. On both the image-classifier and DQN model, we randomly sample a target label other
than the model predicted label and run the same 100-step projected gradient descent (PGD) attack
to minimize the cross-entropy loss between the model output and the predicted label. We observe
that for a perturbation radius of 0.005 (l∞ norm), the success rate of a targeted attack for the image
classifier is only 15%, whereas the success rate of a targeted attack for the DQN model is 100%.
This verifies our claim that a common RL policy is much more vulnerable to small-radius adversarial
attacks than image classifiers.

2. Network Complexity
In addition, we also want to point out that the restricted network complexity of those commonly used
deep RL policies could play an important role here. Based on the claim by Madry et al. [16], a neural
network with greater capacity could have much better robustness, even when trained with only clean
examples. But for the neural network architectures commonly used in RL applications, the capacity
of the networks is very limited compared to SOTA computer vision applications. For example, the
commonly used DQN architecture proposed in Mnih et al. [18] only has 3 convolutional layers and 2
fully connected layers. But in vision tasks, a more advanced and deeper structure (e.g. ResNet has
100 layers) is used. Therefore, it is natural that the perturbation radius need for attacking an RL agent
is much smaller than the common radius studied in the supervised evasion attack and adversarial
learning literature.

37

	Introduction
	Preliminaries and Notations
	Understanding Optimal Adversary via Policy Perturbations
	PA-AD: Optimal and Efficient Evasion Attack
	Related Work
	Experiments
	Conclusion
	Broader Impact
	Relationship between Evasion Attacks and Policy Perturbations.
	Characterizing the Optimal Policy Adversary
	Topological Properties of the Admissible Adversarial Policy Set
	The Shape of Adv-policy-setBH()
	Additional Notations and Definitions for Proofs
	Proof of Theorem 7: Boundary Contains Optimal Policy Perturbations
	Proof of Theorem 12: Values of Policies in Admissible Adversarial Policy Set Form a Polytope
	Examples of the Outermost Boundary
	An Example of The Policy Perturbation Polytope

	Extentions and Additional Details of Our Algorithm
	Attacking A Deterministic Victim Policy
	Implementation Details of PA-AD
	Variants For Environments with Continuous Action Spaces
	For A Deterministic Victim
	For A Stochastic Victim

	Characterize Optimality of Evasion Attacks
	Existence of An Optimal Policy Adversary
	Proof of Theorem 4: Optimality of Our PA-AD
	Optimality of PA-AD for A Stochastic Victim
	Optimality of Our PA-AD for A Deterministic Victim

	Optimality of Heuristic-based Attacks
	TYPE i - Minimize The Best (MinBest)
	TYPE ii - Maximize The Worst (MaxWorst)
	TYPE iii - Minimize Q Value (MinQ).
	TYPE iv - Maximize Difference (MaxDiff).

	Additional Experiment Details and Results
	Implementation Details
	Atari Experiments
	MuJoCo Experiments

	Additional Experiment Results
	Attacking Performance with Various Budgets
	Hyperparameter Test
	Comparison between PA-AD and SA-RL
	Robust Training Efficiency on MuJoCo by PA-ATLA
	Attacking Robustly Trained Agents on Atari
	Improving Robustness on Atari by PA-ATLA

	Additional Discussion of Our Algorithm
	Optimality of Our Relaxed Objective for Stochastic Victims
	More Comparison between SA-RL and PA-AD
	Vulnerability of RL Agents

