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APPENDIX A PROOF OF THE INJECTIVITY OF THE SPATIAL RADON TRANSFORM

We prove that the spatial Radon transform defined with a mapping g(·) :Rd→Rdθ is injective if and
only if g(·) is injective. In the following contents, we use Pk(Rd) to denote a set of Borel probability
measures with finite k-th moment on Rd, and f1 ≡ f2 is used to denote functions f1(·) :X→R and
f2(·):X→R that satisfy f1(x)=f2(x) for ∀x∈X, and f1 6≡f2 is used to denote functions f1(·):X→R
and f2(·) :X → R that satisfy f1(x) 6= f2(x) for certain x ∈X. With a slight abuse of notation, we
interchangeably use f1(x)≡f2(x) for ∀x∈X and f1≡f2.

Proof. By using proof by contradiction, we first prove that if g(·) is injective, the corresponding
spatial Radon transform is injective. If the spatial Radon transform defined with an injective mapping
g(·) :Rd→Rdθ is not injective, there exist µ, ν∈Pk(Rd), µ 6≡ν, such thatHpµ(t,θ;g)≡Hpν(t,θ;g) for
∀t∈R and ∀θ∈Sdθ−1, where pµ and pν are probability density functions defined on Rd and pµ 6≡pν.

From Equation (12), for ∀t∈R and ∀θ∈Sdθ−1, the spatial Radon transform can be written as:

Hpµ(t,θ;g)=Rpµ̂g(t,θ), (20)

Hpν(t,θ;g)=Rpν̂g(t,θ), (21)

where pµ̂g and pν̂g refer to the probability density functions of x̂ = g(x) and ŷ = g(y) respectively,
where x∼µ and y∼ν. From Equations (20) and (21), we knowRpµ̂g(t,θ)≡Rpν̂g(t,θ) for ∀t∈R and
∀θ∈Sdθ−1, which implies pµ̂g≡pν̂g as the Radon transform is injective.

Since g(·) is injective, for ∀X ⊆ Rd, x ∈ X if and only if x̂ = g(x) ∈ g(X ), which implies
P(x∈X )=P(x̂∈g(X )), P(y∈X )=P(ŷ∈g(X )). Therefore,∫

g(X)

pµ̂g(x̂)dx̂=

∫
X
pµ(x)dx, (22)∫

g(X)

pν̂g(ŷ)dŷ=

∫
X
pν(y)dy. (23)

Since pµ̂g ≡ pν̂g , from Equations (22) and (23):
∫
X pµ(x)dx=

∫
X pν(y)dy for ∀X ⊆Rd. Hence, for

∀X ⊆Rd: ∫
X

(
pµ(x)−pν(x)

)
dx=0, (24)

which implies pµ≡ pν, contradicting with the assumption pµ 6≡ pν. Therefore, if Hpµ ≡Hpν , pµ≡ pν.
In addition, from the definition of the spatial Radon transform in Equation (11), it is trivial to show that
if pµ≡pν,Hpµ(t,θ;g)≡Hpν(t,θ;g). Therefore,Hpµ≡Hpν if and only if pµ≡pν, i.e. the spatial Radon
transformH defined with an injective mapping g(·):Rd→Rdθ is injective.

We now prove that if the spatial Radon transform defined with a mapping g(·):Rd→Rdθ is injective, g(·)
must be injective. Again, we use proof by contradiction. If g(·) is not injective, there exist x0,y0∈Rd such
that x0 6=y0 and g(x0)=g(y0). For two Dirac measures µ1 and ν1 which probability density functions
are pµ1

(x)=δ(x−x0) and pν1(y)=δ(y−y0), respectively, we know µ1 6≡ν1 as x0 6=y0.

We define variables x ∼ µ1 and y ∼ ν1. Then for variables x̂ = g(x) and ŷ = g(y), we denote their
probability density functions by pµ2

and pν2 , respectively. It is trivial to derive

pµ2
(x̂)=δ(x̂−g(x0)), (25)

pν2(ŷ)=δ(ŷ−g(y0)), (26)

which implies pµ2
≡pν2 as g(x0)=g(y0).

From Equations (20), (21), (25) and (26), for ∀t∈R and ∀θ∈Sdθ−1:

Hpµ1
(t,θ;g)=Rpµ2

(t,θ),

=Rpν2(t,θ),

=Hpν1(t,θ;g), (27)

which impliesHpµ1 ≡Hpν1 , contradicting with the assumption that the spatial Radon transform is injective.
Therefore, if the spatial Radon transform is injective, g(·) must be injective. We conclude that the spatial
Radon transform is injective if and only if the mapping g(·) is an injection.
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APPENDIX B PROOF OF REMARK 2

We provide a proof for the claim in Remark 2 that the spatial Radon transform includes the vanilla Radon
transform and the polynomial GRT as special cases.

Proof. Given a probability measure µ∈P(Rd) which probability density function is pµ, the spatial Radon
transform of pµ is defined as:

Hpµ(t,θ;g)=

∫
Rd
pµ(x)δ(t−〈g(x),θ〉)dx, (28)

where t∈R and θ∈Sdθ−1 are the parameters of hypersurfaces in Rd. When the mapping g(·) is an identity
mapping, i.e. g(x)=x for ∀x∈Rd, the spatial Radon transform degenerates to the vanilla Radon transform:

Hpµ(t,θ;g)=

∫
Rd
pµ(x)δ(t−〈x,θ〉)dx

=Rpµ(t,θ). (29)

Ehrenpreis (2003) provides a class of injective GRTs named polynomial GRTs by adopting homogeneous
polynomial functions with an odd degreem as the defining function:

Gpµ(t,θ)=

∫
Rd
pµ(x)δ(t−

dα∑
i=1

θix
αi)dx,

s.t.|αi|=m, (30)

where αi = (ηi,1,...,ηi,d)∈Nd, |αi|=
∑d
j=1ηi,j, x

αi =
∏d
j=1x

ηi,j
j for x= (x1,...,xd)∈Rd, dα is the

number of all possible multi-indices αi that satisfies |αi|=m, and θ=(θ1,...,θdα)∈Sdα−1.

In spatial Radon transform, for ∀x∈Rd, when the mapping g(·) is defined as:

g(x)=(xα1,...,xαdα ), (31)

the spatial Radon transform is equivalent to the polynomial GRT defined in Equation (30):

Hpµ(t,θ;g)=

∫
Rd
pµ(x)δ(t−〈g(x),θ〉)dx

=

∫
Rd
pµ(x)δ(t−

dα∑
i=1

θix
αi)dx. (32)

APPENDIX C PROOF OF THEOREM 1

We provide a proof that the ASWD defined with a mapping g(·) :Rd→Rdθ is a metric on Pk(Rd), if
and only if g(·) is injective. In what follows, we denote a set of Borel probability measures with finite k-th
moment on Rd by Pk(Rd), and use µ,ν∈Pk(Rd) to refer to two probability measures whose probability
density functions are pµ and pν.

Proof. Symmetry: Since the k-Wasserstein distance is a metric thus symmetric (Villani, 2008):

Wk

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
=Wk

(
Hpν(·,θ;g),Hpµ(·,θ;g)

)
. (33)

Therefore,

ASWDk(µ,ν;g)=

(∫
Sdθ−1

Wk
k

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
dθ

) 1
k

=

(∫
Sdθ−1

Wk
k

(
Hpν(·,θ;g),Hpµ(·,θ;g)

)
dθ

) 1
k

=ASWDk(ν,µ;g). (34)
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Triangle inequality: Given an injective mapping g(·) : Rd → Rdθ and probability measures
µ1, µ2, µ3∈Pk(Rd), since the k-Wasserstein distance satisfies the triangle inequality (Villani, 2008), the
following inequality holds:

ASWDk(µ1,µ3;g)=

(∫
Sdθ−1

Wk
k

(
Hpµ1(·,θ;g),Hpµ3(·,θ;g)

)
dθ

) 1
k

≤
(∫

Sdθ−1

(
Wk(Hpµ1(·,θ;g),Hpµ2(·,θ;g))+Wk(Hpµ2(·,θ;g),Hpµ3(·,θ;g))

)k
dθ

) 1
k

≤
(∫

Sdθ−1

Wk
k

(
Hpµ1(·,θ;g),Hpµ2(·,θ;g)

)
dθ

) 1
k

+

(∫
Sdθ−1

Wk
k

(
Hpµ2(·,θ;g),Hpµ3(·,θ;g)

)
dθ

) 1
k

=ASWDk(µ1,µ2;g)+ASWDk(µ2,µ3;g),

where the second inequality is due to the Minkowski inequality in Lk(Sdθ−1).

Identity of indiscernibles: SinceWk(µ,µ)=0 for ∀µ∈Pk(Rd),we have

ASWDk(µ,µ;g)=

(∫
Sdθ−1

Wk
k

(
Hpµ(·,θ;g),Hpµ(·,θ;g)

)
dθ

) 1
k

=0, (35)

for ∀µ∈Pk(Rd).
Conversely, for ∀µ,ν∈Pk(Rd), if ASWDk(µ,ν;g)=0, from the definition of the ASWD:

ASWDk(µ,ν;g)=

(∫
Sdθ−1

Wk
k

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
dθ

) 1
k

=0, (36)

which impliesWk

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
=0 for ∀θ∈Sdθ−1. Due to the non-negativity of k-th Wasser-

stein distance as it is a metric onPk(Rd),Wk

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
=0 holds for ∀θ∈Sdθ−1 if and only

ifHpµ(·,θ;g)≡Hpν(·,θ;g). Again, given the spatial Radon transform is injective when g(·) is injective
(see the proof in Appendix A),Hpµ(·,θ;g)≡Hpν(·,θ;g) implies pµ≡pν and µ≡ν if g(·) is injective.

In addition, if g(·) is not injective, the spatial Radon transform is not injective (see the proof in Appendix
A), then ∃µ, ν ∈Pk(Rd), µ 6≡ν such thatHpµ(·,θ;g)≡Hpν(·,θ;g), which implies ASWDk(µ,ν;g) = 0
for µ 6≡ν. Therefore, the ASWD satisfies the identity of indiscernibles if and only if g(·) is injective.

Non-negativity: The three axioms of a distance metric, i.e. symmetry, triangle inequality, and identity
of indiscernibles imply the non-negativity of the ASWD. Since the Wasserstein distance is non-negative,
for ∀µ ,ν∈Pk(Rd), it can also be straightforwardly proved the ASWD between µ and ν is non-negative:

ASWDk(µ,ν;g)=

(∫
Sdθ−1

Wk
k

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
dθ

) 1
k

≥
(∫

Sdθ−1

0kdθ

) 1
k

=0. (37)

Therefore, the ASWD is a metric on Pk(Rd) if and only if g(·) is injective.
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APPENDIX D PSEUDOCODE FOR THE EMPIRICAL VERSION OF THE ASWD

Algorithm 1 The augmented sliced Wasserstein distance. All of the for loops can be parallelized.

Require: Sets of samples {xn∈Rd}Nn=1, {yn∈Rd}Nn=1;
Require: Randomly initialized injective neural network gω(·):Rd→Rdθ ;
Require: Number of projections L, hyperparameter λ, learning rate ε, number of iterationsM ;

1: InitializeD=0,Lλ=0,m=1;
2: while ω has not converged andm≤M do
3: Draw a set of samples {θl}Ll=1 from ∈Sdθ−1;
4: for n=1 toN do
5: Compute gω(xn) and gω(yn);
6: Calculate the regularization term Lλ←Lλ+ λ

N (||gω(xn)||2+||gω(yn)||2);
7: end for
8: for l=1 to L do
9: Compute β(xn,θl)=〈gω(xn),θl〉, β(yn,θl)=〈gω(yn),θl〉 for each n;

10: Sort β(xn, θl) and β(yn, θl) in ascending order s.t. β(xIlx[n], θl) ≤ β(xIlx[n+1], θl) and
β(yIly[n],θl)≤β(yIly[n+1],θl);

11: Calculate the ASWD:D←D+( 1
L

∑N
n=1|β(xIlx[n],θl)−β(yIly[n],θl)|k)

1
k ;

12: end for
13: L←D−Lλ;
14: Update ω by gradient ascent ω←ω+ε·∇ωL;
15: ResetD=0,Lλ=0, updatem←m+1;
16: end while
17: Draw a set of samples {θl}Ll=1 from ∈Sdθ−1;
18: for n=1 toN do
19: Compute gω(xn) and gω(yn);
20: end for
21: for l=1 to L do
22: Compute β(xn,θl)=〈gω(xn),θl〉, β(yn,θl)=〈gω(yn),θl〉 for each n;
23: Sort β(xn, θl) and β(yn, θl) in ascending order s.t. β(xIlx[n], θl) ≤ β(xIlx[n+1], θl) and

β(yIly[n],θl)≤β(yIly[n+1],θl);

24: Calculate the ASWD:D←D+( 1
L

∑N
n=1|β(xIlx[n],θl)−β(yIly[n],θl)|k)

1
k ;

25: end for
26: Output: Augmented sliced Wasserstein distanceD.
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APPENDIX E EXPERIMENTAL SETUPS

E.1 HYPERPARAMETERS IN THE SLICED WASSERSTEIN FLOW EXPERIMENT

We randomly generate 500 samples both for target distributions and source distributions. We initialize
the source distributions µ0 as standard normal distributionsN (0,I), where I is a 2-dimensional identity
matrix. We update source distributions using Adam optimizer (Kingma & Ba, 2015), and set the learning
rate=0.002. For all methods, we set the order k=2. When testing the ASWD, the number of iterationsM
in Algorithm 1 is set to 10. Empirical errors in the experiment are found to be not sensitive to the choice
of λ in a candidate set of{0.01, 0.05, 0.1, 0.5}. The reported results are produced with λ=0.1.

E.2 NETWORK ARCHITECTURE IN THE GENERATIVE MODELING EXPERIMENT

Denote a convolutional layer whose kernel size is swithC kernels byConvC(s×s), and a fully-connected
layer whose input and output layer have s1 and s2 neurons by FC(s1×s2). The network structure used
in the generative modeling experiment is configured to be the same as described in (Nguyen et al., 2020):

hψ :(64×64×3)→Conv64(4×4)→LeakyReLU(0.2)→Conv128(4×4)→BatchNormalization

→LeakyReLU(0.2)→Conv256(4×4)→BatchNormalization→LeakyReLU(0.2)→

Conv512(4×4)→BatchNormalization→Tanh
Output−−−−−→(512×4×4)

DΨ :Conv1(4×4)→Sigmoid
Output−−−−−→(1×1×1)

GΦ :z∈R32→ConvTranspose512(4×4)→BatchNormalization→ReLU→
ConvTranspose256(4×4)→BatchNormalization→ReLU→ConvTranspose128(4×4)→
BatchNormalization→ReLU→ConvTranspose64(4×4)→BatchNormalization→

ConvTranspose3(4×4)→Tanh
Ouput−−−−→(64×64×3)

φ :FC(8192×8192)
Output−−−−−→(8192)-dimensional vector

We train the models with the Adam optimizer (Kingma & Ba, 2015), and set the batch size to 512.
Following the setup in (Nguyen et al., 2020), the learning rate is set to 0.0005 and beta=(0.5, 0.999) for
both CIFAR10 dataset and CELEBA dataset. For all methods, we set the order k to 2. For the ASWD, the
number of iterationsM in Algorithm 1 is set to 5. The hyperparameter λ is set to 0.5 to introduce slightly
larger regularization of the optimization objective due to the small output values from the feature layer hψ.
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APPENDIX F ADDITIONAL RESULTS IN THE SLICED WASSERSTEIN FLOW
EXPERIMENT

F.1 FULL EXPERIMENTAL RESULTS ON THE SLICED WASSERSTEIN EXPERIMENT
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Figure 4: Full experimental results on the sliced Wasserstein flow example. The first and third columns
are target distributions. The second and fourth columns are log 2-Wasserstein distances between the target
distributions and the source distributions. The horizontal axis shows the number of training iterations. Solid
lines and shaded areas represent the average values and 95% confidence intervals of log 2-Wasserstein
distances over 50 runs.
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F.2 ABLATION STUDY
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Figure 5: Ablation study on the impact from injective neural networks and the optimization of hypersurfaces
on the ASWD. ASWDs with different mappings are compared to GSWDs with different defining
functions. The first and third columns show target distributions. The second and fourth columns plot log
2-Wasserstein distances between the target distributions and the source distributions. In the second and
fourth columns, the horizontal axis shows the number of training iterations. Solid lines and shaded areas
represent the average values and 95% confidence intervals of log 2-Wasserstein distances over 50 runs.

Impact of the injectivity of the mapping

In this ablation study, we first compare ASWDs constructed by different mappings to GSWDs with
different predefined defining functions, and investigate the effects of the optimization and injectivity of
the adopted mapping gω(·) used in the ASWDs. In what follows, “ASWD-vanilla” is used to denote
ASWDs that employ randomly initialized neural network φω(·) to parameterize the injective mapping
gω(·) = [·, φω(·)], i.e. the mapping gω(·) is not optimized in the ASWD-vanilla and the results of
ASWD-vanilla reported in Figure 5 are obtained by projecting samples onto random hypersurfaces.
Furthermore, the “ASWD-non-injective” refers to ASWDs that do not use the injectivity trick, i.e. the
mapping gω(·)=φω(·) is not guaranteed to be injective. In addition, the “ASWD-vanilla-non-injective”
adopts both setups in the “ASWD-vanilla” and ”ASWD-non-injective”, resulting in a random non-injective
mapping gω(·). The reported experiment results in this ablation study is calculated over 50 runs, and the
neural network φω(·) is reinitialized randomly in each run.
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Figure 6: Ablation study on the impact from the value of λ. The performance of the ASWD with different
values of λ are compared. The first and third columns show target distributions. The second and fourth
columns plot log 2-Wasserstein distances between the target distributions and the source distributions.
In the second and fourth columns, the horizontal axis shows the number of training iterations. Solid lines
and shaded areas represent the average values and 95% confidence intervals of log 2-Wasserstein distances
over 50 runs.

From Figure 5, it can be observed that the ASWD-vanilla shows comparable performance to GSWDs
defined by polynomial and circular defining functions, which implies GSWDs with predefined defining
functions are as uninformative as projecting distributions onto random hypersurfaces constructed by the
ASWD. In GSWDs, the hypersurfaces are predefined and cannot be optimized since they are determined
by the functional forms of the defining functions. On the contrary, we found that the optimization of
hypersurfaces in the ASWD framework can help improve the performance of the slice-based Wasserstein
distance. As in Figure 5, the ASWD and the ASWD-non-injective present significantly better performance
than methods that do not optimize their hypersurfaces (ASWD-vanilla, ASWD-vanilla-non-injective, and
GSWDs). In terms of the impact of the injectivity of the mapping gω, in this experiment, the ASWD-vanilla
exhibits lower 2-Wasserstein distances than the ASWD-vanilla-non-injective in all tested distributions,
and the ASWD leads to more stable training than the ASWD-non-injective. Therefore, the injectivity of
the mapping gω(·) does not only guarantee the ASWD to be a valid distance metric as proved in Section 3,
but also better empirical performance in this experiment setup.
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Figure 7: Ablation study on the impact from the choice of injective networks. The performance of
the ASWD with different types of injective networks are compared. The first and third columns show
target distributions. The second and fourth columns plot log 2-Wasserstein distances between the target
distributions and the source distributions. In the second and fourth columns, the horizontal axis shows
the number of training iterations. Solid lines and shaded areas represent the average values and 95%
confidence intervals of log 2-Wasserstein distances over 50 runs.

Impact of the regularization coefficient

In addition, the sensitivity of the ASWD to the value of λ in Equation (16) is also tested in this ablation
study. In this experiment, the value of λ is selected from a candidate set {0.01, 0.05, 0.1, 0.5}. The
numerical results in Figure 6 indicate that the performance of ASWD is not sensitive to the value of λ in
that candidate set, as it can be observed that different values of λ lead to similar performance of the ASWD.

Choice of injective mapping

We reported in Figure 7 the performance of the ASWD defined with other types of injective mappings
other than Equation (15). In particular, we examined two invertible mappings, including the planar flow
and radial flow (Rezende & Mohamed, 2015), as alternatives to the injective mapping defined by Equation
(15). The numerical results presented in Figure 7 show that the ASWD defined with planar flow and radial
flow produced better performance than GSWD variants in most setups in Figure 7. They exhibit slightly
worse performance compared with the ASWD with injective mapping defined in Equation (15), possibly
due to the additional restriction in invertible mapping imposed the planar flow and radial flow.
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APPENDIX G ADDITIONAL
RESULTS IN THE GENERATIVE MODELING EXPERIMENT

(a) ASWD on CELEBA (L=10) (b) ASWD on CELEBA (L=100) (c) ASWD on CELEBA (L=1000)

(d) ASWD on CIFAR10 (L=10) (e) ASWD on CIFAR10 (L=100) (f) ASWD on CIFAR10 (L=1000)

Figure 8: Visualized experimental results of the ASWD on CELEBA and CIFAR10 datasets with 10,
100, 1000 projections. The first row shows randomly selected samples of generated CELEBA images,
the second row shows randomly selected samples of generated CIFAR10 images.
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(a) SWD on CELEBA (L=1000) (b) GSWD on CELEBA (L=1000) (c) DSWD on CELEBA (L=1000)

(d) SWD on CIFAR10 (L=1000) (e) GSWD on CIFAR10 (L=1000) (f) DSWD on CIFAR10 (L=1000)

Figure 9: Visualized experimental results of the SWD, GSWD, and DSWD on CELEBA and CIFAR10
datasets with 1000 projections. The first row shows randomly selected samples of generated CELEBA
images, the second row shows randomly selected samples of generated CIFAR10 images.
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