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ABSTRACT

We present a new accelerated stochastic second-order method that is robust to both
gradient and Hessian inexactness, which occurs typically in machine learning. We
establish theoretical lower bounds and prove that our algorithm achieves optimal
convergence in both gradient and Hessian inexactness in this key setting. We
further introduce a tensor generalization for stochastic higher-order derivatives.
When the oracles are non-stochastic, the proposed tensor algorithm matches the
global convergence of Nesterov Accelerated Tensor method. Both algorithms allow
for approximate solutions of their auxiliary subproblems with verifiable conditions
on the accuracy of the solution.

1 INTRODUCTION

In this paper, we consider the following general convex optimization problem:
min
x∈Rd

f(x), (1)

where f(x) is a convex and sufficiently smooth function. We assume that a solution x∗ ∈ Rd exists
and we denote f∗ := f(x∗). We define R = ∥x0 − x∗∥ as a distance to the solution.
Assumption 1.1. The function f(x) ∈ C2 has L2-Lipschitz-continuous Hessian if for any x, y ∈ Rd

∥∇2f(x)−∇2f(y)∥ ≤ L2∥x− y∥.
Since the calculation of an exact gradient is very expensive or impossible in many applications in
several domains, including machine learning, statistics, and signal processing, efficient methods that
can work with inexact stochastic gradients are of great interest.
Assumption 1.2. For all x ∈ Rd, we assume that stochastic gradients g(x, ξ) ∈ Rd satisfy

E[g(x, ξ) | x] = ∇f(x), E
[
∥g(x, ξ)−∇f(x)∥2 | x

]
≤ σ2

1 . (2)
Extensive research has been conducted on first-order methods, both from a theoretical and practical
perspective. For L1-smooth functions with stochastic gradients characterized by a variance of
σ2
1 , lower bound Ω

(
σ1R√

T
+ L1R

2

T 2

)
has been established by Nemirovski & Yudin (1983). For

f(x) = E[F (x, ξ)], the stochastic approximation (SA) was developed, starting from the pioneering
paper by Robbins & Monro (1951). Important improvements of the SA were developed by Polyak
(1990); Polyak & Juditsky (1992); Nemirovski et al. (2009), where longer stepsizes with iterate
averaging and proper step-size modifications were proposed, obtaining the rate O

(
σ1R√

T
+ L1R

2

T

)
.

The optimal method matching the lower bounds has been developed by Lan (2012) with a convergence
rate O

(
σ1R√

T
+ L1R

2

T 2

)
. However, the literature on second-order methods is significantly limited for

the study of provable, globally convergent stochastic second-order methods for convex minimization.
Second-order methods. Although second-order methods have been studied for centuries (Newton,
1687; Raphson, 1697; Simpson, 1740; Kantorovich, 1949; Moré, 1977; Griewank, 1981), most of the
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results are connected with local quadratic convergence. The significant breakthroughs regarding global
convergence have been achieved only recently, starting from the paper on Cubic Regularized Newton
(CRN) method by Nesterov & Polyak (2006), the first second-order method with a global convergence
rate O

(
L2R

3

T 2

)
. Following this work, Nesterov (2008) proposes an acceleration mechanism on top

of CRN and achieves the convergence rate of O
(

L2R
3

T 3

)
, going beyond the Ω(1/T 2) lower bound

for first-order methods. Another cornerstone in the field is the work by Monteiro & Svaiter (2013),
which achieves lower complexity bound Ω

(
L2R

3

T 7/2

)
(Agarwal & Hazan, 2018; Arjevani et al., 2019)

up to a logarithmic factor, for the first time in the literature. The gap between upper and lower bounds
was closed only in 2022 in subsequent works of Kovalev & Gasnikov (2022); Carmon et al. (2022).
One of the main limitations of the second-order methods is a high per-iteration cost as they require
computation of exact Hessian. Therefore, it is natural to use approximations of derivatives instead
of their exact values. In (Ghadimi et al., 2017), CRN method with δ2-inexact Hessian information
and its accelerated version were proposed, achieving convergence rate O

(
δ2R

2

T 2 + L2R
3

T 3

)
. This

algorithm was later extended by Agafonov et al. (2023) to handle δ1-inexact gradients (and high-
order derivatives) with a resulting convergence rate of O

(
δ1R+ δ2R

2

T 2 + L2R
3

T 3

)
. A recent paper

by Antonakopoulos et al. (2022) proposes a stochastic adaptive second-order method based on the
extragradient method without line-search and with the convergence rate O

(
σ1R√

T
+ σ2R

2

T 3/2 + L2R
3

T 3

)
when gradients and Hessians are noisy with variances σ2

1 and σ2
2 . In the light of these results, we

identify several shortcomings and open questions:

What are the lower bounds for inexact second-order methods?
What is the optimal trade-off between inexactness in the gradients and the Hessian?

In this work, we attempt to answer these questions in a systematic manner. Detailed descriptions of
other relevant studies can be found in Appendix A.

Table 1: Comparison of existing results for second-order methods under inexact feedback. T denotes
the number of iterations, and L2 represents the Lipschitz constant of the Hessian.

Algorithm Inexactness Gradient
convergence

Hessian
convergence

Exact
convergence

Accelerated Inexact Cubic Newton
(Ghadimi et al., 2017)

exact gradient
δ2-inexact Hessian 1 ✗ O

(
δ2R

2

T 2

)
O
(

L2R
3

T 3

)
Accelerated Inexact Tensor Method 2

(Agafonov et al., 2023)
δ1-inexact gradient 3

δ2-inexact Hessian 4 O(δ1R) O
(

δ2R
2

T 2

)
O
(

L2R
3

T 3

)
Extra-Newton

(Antonakopoulos et al., 2022)
stochastic gradient (2)

unbiased stochastic Hessian 5 O
(

σ1R√
T

)
O
(

σ2R
2

T 3/2

)
O
(

L2R
3

T 3

)
Accelerated Stochastic Second-order method

[This Paper]
stochastic gradient (2)
stochastic Hessian (4) O

(
σ1R√

T

)
O
(

σ2R
2

T 2

)
6 O

(
L2R

3

T 3

)
Lower bound
[This Paper]

stochastic gradient (2)
stochastic Hessian (4) Ω

(
σ1R√

T

)
Ω
(

σ2R
2

T 2

)
Ω
(

L2R
3

T 7/2

)

Contributions. We summarize our contributions as follows:

1δ2-inexact Hessian: δ2
2
I ⪯ Hx −∇2f(x) ⪯ δ2I

2It is worth noting that the Accelerated Inexact Tensor Method can also be applied to the case of stochastic
derivatives. Specifically, when p = 2, the total number of stochastic gradient computations is on the order of
O(ε−7/3), while the total number of stochastic Hessian computations is on the order of O(ε−2/3) Agafonov
et al. (2023). In our work, we propose an algorithm that achieves the same number of stochastic Hessian
computations but significantly improves the number of stochastic gradient computations to O(ε−2).

3δ1-inexact gradient: ∥gx −∇f(x)∥ ≤ δ1
4δ2-inexact Hessian: ∥

(
Hx −∇2f(x)

)
(y − x)∥ ≤ δ2∥y − x∥

5Unbiased stochasic Hessian: E[H(x, ξ) | x] = ∇2f(x), E
[∥∥H(x, ξ)−∇2f(x)

∥∥2 | x
]
≤ σ2

2

6Under assumption of δ2-inexact Hessian the convergence is O
(

δ2R
2

T2

)
2
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1. We propose an accelerated second-order algorithm that achieves the convergence rate of
O
(

σ1R√
T

+ σ2R
2

T 2 + L2R
3

T 3

)
for stochastic Hessian with variance σ2

2 and O
(

σ1R√
T

+ δ2R
2

T 2 + L2R
3

T 3

)
for δ2-inexact Hessian, improving the existing results (Agafonov et al., 2023; Antonakopoulos
et al., 2022) (see Table 1).

2. We prove that the above bounds are tight with respect to the variance of the gradient and the
Hessian by developing a matching theoretical complexity lower bound (see Table 1).

3. Our algorithm involves solving a cubic subproblem that arises in several globally convergent
second-order methods (Nesterov & Polyak, 2006; Nesterov, 2008). To address this, we propose a
criterion based on the accuracy of the subproblem’s gradient, along with a dynamic strategy for
selecting the appropriate level of inexactness. This ensures an efficient solution of the subproblems
without sacrificing the fast convergence of the initial method.

4. We extend our method for higher-order minimization with stochastic/inexact oracles. We achieve

the O
(

σ1R√
T

+
p∑

i=2

δiR
i

T i +
LpR

p+1

Tp+1

)
rate with δi-inexact i-th derivative.

5. We propose a restarted version of our algorithm for strongly convex minimization, which ex-
hibits a linear rate. Via a mini-batch strategy, we demonstrate that the total number of Hessian
computations scales linearly with the desired accuracy ε.

2 PROBLEM STATEMENT AND PRELIMINARIES

Taylor approximation and oracle feedback. Our starting point for constructing second-order
method is based primarily on the second-order Taylor approximation of the function f(x)

Φx(y)
def
= f(x) + ⟨∇f(x), y − x⟩+ 1

2

〈
y − x,∇2f(x)(y − x)

〉
, y ∈ Rd.

In particular, since the exact computation of the Hessians can be a quite tiresome task, we attempt
to employ more tractable inexact estimators g(x) and H(x) for the gradient and Hessian. These
estimators are going to be the main building blocks for the construction of the "inexact" second-order
Taylor approximation. Formally, this is given by:

ϕx(y) = f (x) + ⟨g(x), y − x⟩+ 1
2 ⟨y − x,H(x)(y − x)⟩ , y ∈ Rd. (3)

Therefore, by combining Assumption 1.1 with the aforementioned estimators, we readily get the
following estimation:
Lemma 2.1 ((Agafonov et al., 2023, Lemma 2)). Let Assumption 1.1 hold. Then, for any x, y ∈ Rd,
we have
|f(y)− ϕx(y)| ≤

(
∥g(x)−∇f(x)∥+ 1

2∥
(
H(x)−∇2f(x)

)
(y − x)∥

)
∥y − x∥+ L2

6 ∥y − x∥3.

∥∇f(y)−∇ϕx(y)∥ ≤ ∥g(x)−∇f(x)∥+ ∥
(
H(x)−∇2f(x)

)
(y − x)∥+ L2

3 ∥y − x∥2.

Now, having established the main toolkit concerning the approximation of f in the rest of this section,
we introduce the blanket assumptions regarding the inexact gradients and Hessians (for a complete
overview, we refer to Table 1). In particular, we assume that our estimators satisfy the following
statistical conditions.
Assumption 2.2 (Unbiased stochastic gradient with bounded variance and stochastic Hessian with
bounded variance). For all x ∈ Rd, stochastic gradient g(x, ξ) satisfies (2) and stochastic Hessian
H(x, ξ) satisfies

E
[
∥H(x, ξ)−∇2f(x)∥22 | x

]
≤ σ2

2 . (4)
Assumption 2.3 (Unbiased stochastic gradient with bounded variance and inexact Hessian). For all
x ∈ Rd stochastic gradient g(x, ξ) satisfies (2). For given x, y ∈ Rd inexact Hessian H(x) satisfies

∥(H(x)−∇2f(x))[y − x]∥ ≤ δx,y2 ∥y − x∥. (5)

Assumptions 2.2 and 2.3 differ from Condition 1 in (Agafonov et al., 2023) by the unbiasedness of
the gradient. An unbiased gradient allows us to attain optimal convergence in the corresponding term
O(1/

√
T ), while an inexact gradient slows down the convergence to O(1) since a constant error can

misalign the gradient. Note, that we do not assume the unbiasedness of the Hessian in all assumptions.
Finally, note that Assumption 2.3 does not require (5) to be met for all x, y ∈ Rd. Instead, we only
consider inexactness along the direction y − x, which may be significantly less than the norm of the
difference between Hessian and its approximation H(x).
Auxiliary problem. Most second-order methods with global convergence require solving an auxiliary
subproblem at each iteration. However, to the best of our knowledge, existing works that consider
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convex second-order methods under inexact derivatives do not account for inexactness in the solu-
tion of the subproblem. To address this gap, we propose incorporating a gradient criteria for the
subproblem solution, given by

miny∈Rdωx(y) such that ∥∇ωx(y)∥ ≤ τ, (6)
where ωx(y) is the objective of subproblem and τ ≥ 0 is a tolerance parameter. We highlight that
this criterion is verifiable at each step of the algorithm, which facilitates determining when to stop.
By setting a constant tolerance parameter τ , we get the following relationship between the absolute
accuracy ϵ required for the initial problem and τ : τ = O

(
ϵ

5
6

)
. In practice, it may not be necessary

to use a very small accuracy in the beginning. Later, we will discuss strategies for choosing the
sequence of τt based on the number of iterations t.

3 THE METHOD

In this section, we present our proposed method, dubbed as Accelerated Stochastic Cubic Regularized
Newton’s method. In particular, extending on recent accelerated second-order algorithms (Nesterov,
2021b; Ghadimi et al., 2017; Agafonov et al., 2023), we propose a new variant of the accelerated
cubic regularization method with stochastic gradients that achieves optimal convergence in terms
corresponding to gradient and Hessian inexactness. Moreover, the proposed scheme allows for the
approximate solution of the auxiliary subproblem, enabling a precise determination of the required
level of subproblem accuracy.
We begin the algorithm description by introducing the main step. Given constants δ̄ > 0 andM ≥ L2,
we define a model of the objective

ωM,δ̄
x (y) := ϕx(y) +

δ̄
2∥x− y∥2 + M

6 ∥x− y∥3.
At each step of the algorithm, we aim to find u ∈ argminy∈Rd ωM,δ̄

x (y). However, finding the
respective minimizer is a separate challenge. Instead of computing the exact minimum, we aim to
find a point s ∈ Rd with a small norm of the gradient.

Definition 3.1. Denote by sM,δ̄,τ (x) a τ -inexact solution of subproblem, i.e. a point s := sM,δ̄,τ (x)
such that

∥∇ωM,δ̄
x (s)∥ ≤ τ.

Next, we employ the technique of estimating sequences to propose the Accelerated Stochastic Cubic
Newton method. Such acceleration is based on aggregating stochastic linear models given by

l(x, y) = f(y) + ⟨g(y, ξ), x− y⟩
in function ψt(x) (8), (9). The method is presented in detail in Algorithm 1.

Algorithm 1 Accelerated Stochastic Cubic Newton

1: Input: y0 = x0 is starting point; constants M ≥ 2L2; non-negative non-decreasing sequences
{δ̄t}t≥0, {λt}t≥0, {κ̄t2}t≥0, {κ̄t3}t≥0, and

αt =
3

t+3 , At =
t∏

j=1

(1− αj), A0 = 1, (7)
ψ0(x) :=

κ̄0
2+λ0

2 ∥x− x0∥2 + κ̄0
3

3 ∥x− x0∥3. (8)

2: for t ≥ 0 do
3:

vt = (1− αt)xt + αtyt, xt+1 = sM,δ̄t,τ (vt)

4: Compute
yt+1 = arg min

x∈Rn

{
ψt+1(x) := ψt(x) +

λt+1−λt

2 ∥x− x0∥2

+
3∑

i=2

κ̄t+1
i −κ̄t

i

i ∥x− x0∥i + αt

At
l(x, xt+1)

}
.

(9)

Theorem 3.2. Let Assumption 1.1 hold and M ≥ 2L2.

• Let Assumption 2.2 hold. After T ≥ 1 with parameters

κ̄t+1
2 =

2δ̄tα
2
t

At
, κ̄t+1

3 = 8M
3

α3
t+1

At+1
, λt =

σ1

R (t+ 3)
5
2 , δ̄t = 2σ2 +

σ1+τ
R (t+ 3)

3
2 , (10)

we get the following bound
E [f(xT )− f(x∗)] ≤ O

(
τR√
T
+ σ1R√

T
+ σ2R

2

T 2 + MR3

T 3

)
. (11)

4
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• Let Assumption 2.3 hold. After T ≥ 1 with parameters defined in (10) and
σ2 = δ2 = max

t=1,...,T
δ
vt−1,xt

t , we get the following bound

E[f(xT )− f(x∗)] ≤ O
(

τR√
T
+ σ1R√

T
+ δ2R

2

T 2 + MR3

T 3

)
. (12)

This result provides an upper bound for the objective residual after T iterations of Algorithm 1. The
last term in the RHS of (11) and (12) corresponds to the case of exact Accelerated Cubic Newton
method (Nesterov, 2008). The remaining terms reveal how the convergence rate is affected by the
imprecise calculation of each derivative and by inexact solution of subproblem. We provide sufficient
conditions for the inexactness in the derivatives to ensure that the method can still obtain an objective
residual smaller than ε. Specifically, this result addresses the following question: given that the errors
are controllable and can be made arbitrarily small, how small should each derivative’s error be to
achieve an ε-solution?
Corollary 3.3. Let assumptions of Theorem 3.2 hold and let ε > 0 be the desired solution accuracy.

• Let the levels of inexactness in Assumption 2.2 be:

τ = O
(
ε

5
6

(
M
R3

) 1
6

)
, σ1 = O

(
ε

5
6

(
M
R3

) 1
6

)
, σ2 = O

(
ε

1
3M

2
3

)
• Let the levels of inexactness in Assumption 2.3 be:

τ = O
(
ε

5
6

(
M
R3

) 1
6

)
, σ1 = O

(
ε

5
6

(
M
R3

) 1
6

)
, δ2 = O

(
ε

1
3M

2
3

)
And let the number of iterations of Algorithm 1 satisfy T = O

(
MR3

ε

) 1
3

. Then xT is an ε-solution of

problem (1), i.e. f(xT )− f(x∗) ≤ ε.

In practice, achieving an excessively accurate solution for the subproblem on the initial iterations
is not essential. Instead, a dynamic strategy can be employed to determine the level of accuracy
required for the subproblem. Specifically, we can choose a dynamic precision level according to
τt =

c
t5/2

, where c > 0. As a result, the convergence rate term associated with the inexactness of the
subproblem becomes O

(
c
T 3

)
, which matches the convergence rate of the Accelerated Cubic Newton

method.

4 THEORETICAL COMPLEXITY LOWER BOUND

In this section, we present a novel theoretical complexity lower bound for inexact second-order
methods with stochastic gradient and inexact (stochastic) Hessian. The proof technique draws
inspiration from the works (Devolder et al., 2014; Nesterov, 2021b; 2018). For this section, we
assume that the function f(x) is convex and has L1-Lipschitz-continuous gradient and L2-Lipschitz-
continuous Hessian.
To begin, we describe the information and structure of stochastic second-order methods. At each
point xt, the oracle provides us with an unbiased stochastic gradient gt = g(xt, ξ) and an inexact
(stochastic) Hessian Ht = H(xt, ξ). The method can compute the minimum of the following models:

ht+1 = argminh
{
ϕxt

(h) = a1 ⟨gt, h⟩+ a2 ⟨Hth, h⟩+ b1∥h∥2 + b2∥h∥3
}
.

Now, we formulate the main assumption regarding the method’s ability to generate new points.
Assumption 4.1. The method generates a recursive sequence of test points xt that satisfies the
following condition

xt+1 ∈ x0 + Span {h1, . . . , ht+1}

Most first-order and second-order methods, including accelerated versions, typically satisfy this
assumption. However, we highlight that randomized methods are not covered by this lower bound.
Randomized lower bound even for exact high-order methods is still an open problem. More details
on randomized lower bounds for first-order methods are presented in (Woodworth & Srebro, 2017;
Nemirovski & Yudin, 1983). Finally, we present the main theoretical complexity lower bound
theorem for stochastic second-order methods.
Theorem 4.2. Let some second-order method M with exactly solved subproblem satisfy Assumption
4.1 and have access only to unbiased stochastic gradient and inexact Hessian satisfying Assumption
2.2 or Assumption 2.3 with σ2 = δ2 = max

t=1,...,T
δ
xt−1,xt

t . Assume the method M ensures for any

function f with L1-Lipschitz-continuous gradient and L2-Lipschitz-continuous Hessian the following
convergence rate

min
0≤t≤T

E [f(xt)− f(x∗)] ≤ O(1)max
{

σ1R
Ξ1(T ) ;

σ2R
2

Ξ2(T ) ;
L2R

3

Ξ3(T )

}
. (13)
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Then for all T ≥ 1 we haven
Ξ1(T ) ≤

√
T , Ξ2(T ) ≤ T 2, Ξ3(T ) ≤ T 7/2. (14)

Proof. We prove this Theorem from contradiction. Let assume that there exist the method M that
satisfies conditions of the Theorem 4.2 and it is faster in one of the bounds from (14).

The first case, Ξ1(T ) >
√
T or Ξ2(T ) > T 2. Let us apply this method for the first-order lower bound

function. It is well-known, that for the first-order methods, the lower bound is Ω
(

σ1R√
T

+ L1R
2

T 2

)
(Nemirovski & Yudin, 1983). Also, the first-order lower bound function has 0-Lipschitz-continuous
Hessian. It means, that the method M can be applied for the first-order lower-bound function. We
fix stochastic Hessian oracle as H(x, ξ) = 2L1I . It means that σ2 = 2L for such inexact Hessian.
With such matrix H(x, ξ) = 2L1I , the method M has only the first-order information and lies in the
class of first-order methods. Hence, we apply the method M to the first-order lower bound function
and get the rate min

0≤t≤T
E [f(xt)− f(x∗)] ≤ O(1)max

{
σ1R
Ξ1(T ) ;

σ2R
2

Ξ2(T )

}
, where Ξ1(T ) >

√
T or

Ξ2(T ) > T 2. It means that we’ve got a faster method than a lower bound. It is a contradiction,
hence the rates for the method M are bounded as Ξ1(T ) ≤

√
T ,Ξ2(T ) ≤ T 2. The second case,

Ξ3(T ) > T 7/2. It is well-known, that the deterministic second-order lower bound is Ω
(

L2R
3

T 7/2

)
.

Let us apply the method M for the second-order lower bound function, where the oracle give us
exact gradients and exact Hessians, then σ1 = 0, σ2 = 0 and the method M is in class of exact
second-order methods but converges faster than the lower bound. It is a contradiction, hence the rate
for the method M is bounded as Ξ3(T ) ≤ T 7/2.

5 TENSOR GENERALIZATION

In this section we propose a tensor generalization of Algorithm 1. We start with introducing the
standard assumption on the objective f for tensor methods.

Assumption 5.1. Function f is convex, p times differentiable on Rd, and its p-th derivative is
Lipschitz continuous, i.e. for all x, y ∈ Rd

∥∇pf(x)−∇pf(y)∥ ≤ Lp∥x− y∥.

We denote the i-th directional derivative of function f at x along directions s1, . . . , si ∈ Rn as
∇if(x)[s1, . . . , si]. If all directions are the same we write ∇if(x)[s]i. For a p-th order tensor U , we
denote by ∥U∥ its tensor norm recursively induced (Cartis et al., 2017) by the Euclidean norm on the
space of p-th order tensors:

∥U∥ = max
∥s1∥=...=∥sp∥=1

{|U [s1, . . . , sp]|},

where ∥ · ∥ is the standard Euclidean norm.
We construct tensor methods based on the p-th order Taylor approximation of the function f(x),
which can be written as follows:

Φx,p(y)
def
= f(x) +

∑p
i=1

1
i!∇

if(x)[y − x]i, y ∈ Rd.

Using approximations Gi(x) for the derivatives ∇if (x) we create an inexact p-th order Taylor series
expansion of the objective

ϕx,p(y) = f (x) +
∑p

i=1
1
i!Gi(x)[y − x]i.

Next, we introduce a counterpart of Lemma 2.1 for high-order methods.

Lemma 5.2 ((Agafonov et al., 2023, Lemma 2)). Let Assumption 5.1 hold. Then, for any x, y ∈ Rd,
we have

|f(y)− ϕx,p(y)| ≤
p∑

i=1

1
i!∥(Gi(x)−∇if(x))[y − x]i−1∥∥y − x∥+ Lp

(p+1)!∥y − x∥p+1,

∥∇f(y)−∇ϕx,p(y)∥ ≤
p∑

i=1

1
(i−1)!∥(Gi(x)−∇if(x))[y − x]i−1∥+ Lp

p! ∥y − x∥p,

where we use the standard convention 0! = 1.

Following the assumptions for the second-order method we introduce analogical assumptions for
high-order method.

Assumption 5.3 (Unbiased stochastic gradient with bounded variance and stochastic high-order
derivatives with bounded variance). For any x ∈ Rd stochastic gradient G1(x, ξ) and stochastic

6
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high-order derivatives Gi(x, ξ), i = 2, . . . , p satisfy
E[G1(x, ξ) | x] = ∇f(x), E

[
∥G1(x, ξ)−∇f(x)∥2 | x

]
≤ σ2

1 , (15)

E
[
∥Gi(x, ξ)−∇if(x)∥2 | x

]
≤ σ2

i , i = 2, . . . , p.

Assumption 5.4 (Unbiased stochastic gradient with bounded variance and inexact high-order deriva-
tives). For any x ∈ Rd stochastic gradient G1(x, ξ) satisfy (15). For given x, y ∈ Rd inexact
high-order derivatives Gi(x), i = 2, . . . , p satisfy

∥(Gi(x)−∇if(x))[y − x]i−1∥ ≤ δx,yi ∥y − x∥i−1.
To extend Algorithm 1 to tensor methods, we introduce a p-th order model of the function:

ωM,δ̄
x,p (y) := ϕx,p(y) +

δ̄
2∥x− y∥2 +

p∑
i=3

ηiδi
i! ∥x− y∥i + pM

(p+1)!∥x− y∥p+1,

where ηi > 0, 3 ≤ i ≤ p. Next, we modify Definition 3.1 for the high order derivatives case

Definition 5.5. Denote by SM,δ̄,τ
p (x) a point S := SM,δ̄,τ

p (x) such that ∥∇ωM,δ̄
x,p (S)∥ ≤ τ.

Now, we are prepared to introduce the method and state the convergence theorem.

Algorithm 2 Accelerated Stochastic Tensor Method

1: Input: y0 = x0 is starting point; constants M ≥ 2
pLp; ηi ≥ 4, 3 ≤ i ≤ p; starting inexactness

δ̄0 ≥ 0; nonnegative nondecreasing sequences {κ̄ti}t≥0 for i = 2, . . . , p+ 1, and

αt =
p+1

t+p+1 , At =
t∏

j=1

(1− αj), A0 = 1. (16)

ψ0(x) :=
κ̄0
2+λ0

2 ∥x− x0∥2 +
p∑

i=3

κ̄0
i

i! ∥x− x0∥i.

2: for t ≥ 0 do
3:

vt = (1− αt)xt + αtyt, xt+1 = SM,δ̄t,τ
p (vt)

4: Compute
yt+1 = arg min

x∈Rn

{
ψt+1(x) := ψt(x) +

λt+1−λt

2 ∥x− x0∥2

+
p∑

i=2

κ̄t+1
i −κ̄t

i

i! ∥x− x0∥i + αt

At
l(x, xt+1)

}
.

Theorem 5.6. Let Assumption 5.1 hold and M ≥ 2
pLp.

• Let Assumption 5.3 hold. After T ≥ 1 with parameters

κ̄t2 = O
(

δ̄tα
2
t

At

)
, κ̄t+1

i = O
(

αi
t+1δi
At+1

)
, κ̄t+1

p+1 = O

(
αp+1

t+1M

At+1

)
,

λt = O
(

σ1

R t
p+1/2

)
, δt = O

(
σ2 +

σ1+τ
R t

3
2

) (17)

we get the following bound
E [f(xT )− f(x∗)] ≤ O

(
τR√
T
+ σ1R√

T
+
∑p

i=2
σiR

i

T i + MRp+1

Tp+1

)
.

• Let Assumption 5.4 hold. After T ≥ 1 with parameters defined in (10) and
σi = δi = max

t=1,...,T
δ
vt−1,xt

i,t we get the following bound

E [f(xT )− f(x∗)] ≤ O
(

τR√
T
+ σ1R√

T
+
∑p

i=2
δiR

i

T i + MRp+1

Tp+1

)
.

6 STRONGLY CONVEX CASE

Assumption 6.1. Function f is µ-strongly convex, p times differentiable on Rd, and its p-th derivative
is Lipschitz continuous, i.e. for all x, y ∈ Rd

∥∇pf(x)−∇pf(y)∥ ≤ Lp∥x− y∥.
To exploit the strong convexity of the objective function and attain a linear convergence rate, we
introduce a restarted version of Restarted Accelerated Stochastic Tensor Method (Algorithm 2).
In each iteration of Restarted Accelerated Stochastic Tensor Method (Algorithm 3), we execute
Algorithm 2 for a predetermined number of iterations as specified in equation (18). The output of
this run is then used as the initial point for the subsequent iteration of Algorithm 1, which resets the
parameters, and this process repeats iteratively.

7
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Algorithm 3 Restarted Accelerated Stochastic Tensor Method
Input: z0 ∈ Rd, strong convexity parameter µ > 0, M ≥ Lp, and R0 > 0 such that ∥z0−x∗∥ ≤ R0.
For s = 1, 2, . . .:

1. Set x0 = zs−1, rs−1 = R0

2s−1 , and Rs−1 = ∥zs−1 − x∗∥.
2. Run Algorithm 2 for ts iterations, where

ts = O(1)max

{
1,
(

τ
µrs−1

)2
,
(

σ1

µrs−1

)2
, max
i=2,...,p

(
δiR

i−2
s−1

µ

) 1
i

,

(
LpR

p−1
s−1

µ

) 1
p+1

}
. (18)

3. Set zs = xts .

Theorem 6.2. Let Assumption 6.1 hold and let parameters of Algorithm 1 be chosen as in (17). Let
{zs}s≥0 be generated by Algorithm 3 and R > 0 be such that ∥z0 − x∗∥ ≤ R. Then for any s ≥ 0
we have

E∥zs − x∗∥2 ≤ 4−sR2, Ef(zs)− f(x∗) ≤ 2−2s−1µR2. (19)
Moreover, the total number of iterations to reach desired accuracy ε : f(zs) − f(x∗) ≤ ε in
expectation is

O

(
(τ+σ1)

2

µε +
(√

σ2

µ + 1
)
log f(z0)−f(x∗)

ε +
∑p

i=3

(
σiR

i−2

µ

) 1
i

+
(

LpR
p−1

µ

) 1
p+1

)
.

Now, let us make a few observations regarding the results obtained in Theorem 6.2. For simplicity let
solution of the subproblem be exact and p = 2, i.e. we do the restarts of the Accelerated Stochastic
Cubic Newton, so the total number of iterations is

O

(
σ2
1

µε +
(√

σ2

µ + 1
)
log f(z0)−f(x∗)

ε +
(

L2R
µ

) 1
3

)
. (20)

Next, let’s consider solving the stochastic optimization problem min
x∈Rd

F (x) = E[f(x, ξ)] using

the mini-batch Restarted Accelerated Stochastic Cubic Newton method (Algorithm 3) with p = 2.
In this approach, the mini-batched stochastic gradient is computed as 1

r1

∑r1
i=1 ∇f(x, ξi) and the

mini-batched stochastic Hessian is computed as 1
r2

∑r2
i=1 ∇2f(x, ξi), where r1 and r2 represent the

batch sizes for gradients and Hessians, respectively.
From the convergence estimates in (19) and (20), we can determine the required sample sizes for
computing the batched gradients and batched Hessians. Specifically, we have r1 = Õ

(
σ2
1

εµ2/3

)
and

r2 = O
(

σ2

µ1/3

)
. Consequently, the overall number of stochastic gradient computations is O

(
σ2
1

εµ2/3

)
,

which is similar to the accelerated SGD method (Ghadimi & Lan, 2013). Interestingly, the number of
stochastic Hessian computations scales linearly with the desired accuracy ε, i.e., O

(
σ2

µ1/3 log
1
ε

)
.

This result highlights the practical importance of second-order methods. Since the batch size of the
Hessian is constant, there is no need to adjust it as the desired solution as accuracy increases. This is
particularly useful in distributed optimization problems under the assumption of beta similarity (Zhang
& Lin, 2015). In methods with such assumption (Zhang & Lin, 2015; Daneshmand et al., 2021;
Agafonov et al., 2023), the server stores a Hessian sample that provides a "good" approximation of the
exact Hessian of the objective function. Algorithms utilize this approximation instead of exchanging
curvature information with the workers. The constant batch size allows for accurately determining
the necessary sample size to achieve fast convergence to any desired accuracy.

7 EXPERIMENTS

In this section, we present numerical experiments conducted to demonstrate the efficiency of our
proposed methods. We consider logistic regression problems of the form:

f(x) = E
[
log(1 + exp(−bξ · a⊤ξ x))

]
,

where (aξ, bξ) are the training samples described by features aξ ∈ Rd and class labels bi ∈ {−1, 1}.

Setup. We present results on the a9a dataset (d = 123) from LibSVM by Chang & Lin (2011).
We demonstrate the performance of Accelerated Stochastic Cubic Newton in three regimes: de-
terministic oracles (Figure 1), stochastic oracles with the same batch size for gradient and Hes-
sians (Figures 2a, 2b), and stochastic oracles with smaller batch size for Hessians (Figures 2c, 2d).
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The final mode is especially intriguing because the convergence component of Algorithm 1 as-
sociated with gradient noise decreases as 1/

√
t, while the component related to Hessian noise

decreases as 1/t2. This enables the use of smaller Hessian batch sizes (see Corollary 3.3).

Figure 1: Logistic regression
on a9a with deterministic or-
acles

For stochastic experiments, we randomly split the dataset into train-
ing (30000 data samples) and test (2561 data samples) sets. The
methods randomly sample data from the training set and do not
have access to the test data. In this case, the training loss repre-
sents finite sum minimization properties, and the test loss represents
expectation minimization. We compare the performance of the
SGD, Extra-Newton (EN), and Accelerated Stochastic Cubic New-
ton (ASCN). We present experiments for fine-tuned hyperparameters
in Figures 1, 2. For SGD, we’ve fine-tuned 1 parameter lr. For EN,
we’ve fine-tuned 2 parameters: γ and β0. For ASCN, we’ve fine-
tuned 2 parameters: M and σ1

R (only for stochastic case) as the entity,
also τ = 0 and σ2 = 0 as they are dominated by σ1

R . To demonstrate
the globalization properties of the methods, we consider the starting
point x0 far from the solution, specifically x0 = 3 · e, where e is the all-one vector. All methods
are implemented as PyTorch 2.0 optimizers. Additional details and experiments are provided in the
Appendix C.

(a) Train loss. Gradient
and Hessian batch sizes are
1500

(b) Test loss. Gradient
and Hessian batch sizes are
1500

(c) Train loss. Gradient
batch size is 10000, Hes-
sian batch size is 150

(d) Test loss. Gradient
batch size is 10000, Hes-
sian batch size is 150

Figure 2: Logistic regression on a9a with stochastic oracles

Results. The ASCN method proposed in this study consistently outperforms Extra-Newton and SGD
across all experimental scenarios. In deterministic settings, ASCN exhibits a slight superiority over
Extra-Newton. In stochastic experiments, we observe a notable improvement as well. However, it’s
worth noting that in stochastic regime as we approach convergence, all methods tend to converge to
the same point. This convergence pattern is primarily influenced by the stochastic gradient noise σ1R√

T
term, which dominates in rates as we converge to solution. Furthermore, experiment with different
batch sizes for gradients and Hessians support the theory, confirming that the Hessian inexactness
term in ASCN σ2R

2

T 2 has faster rate than the corresponding term in Extra-Newton σ2R
2

T 3/2 . To conclude,
the experiments show that second-order information could significantly accelerate the convergence.
Moreover, the methods need significantly less stochastic Hessians than stochastic gradients.

8 CONCLUSION

In summary, our contribution includes a novel stochastic accelerated second-order algorithm for
convex and strongly convex optimization. We establish a lower bound for stochastic second-order
optimization and prove our algorithm’s achievement of optimal convergence in both gradient and
Hessian inexactness. Additionally, we introduce a tensor generalization of second-order methods
for stochastic high-order derivatives. Nevertheless, it’s essential to acknowledge certain limitations.
Like other globally convergent second-order methods, our algorithm involves a subproblem that
necessitates an additional subroutine to find its solution. To mitigate this challenge, we offer
theoretical insights into the required accuracy of the subproblem’s solution. Future research could
involve enhancing the adaptiveness of the algorithm. Additionally, there is a potential for constructing
optimal stochastic second-order and tensor methods by incorporating stochastic elements into existing
exact methods. These efforts could further improve both practical and theoretical aspects of stochastic
second-order and high-order optimization.
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A RELATED WORK

The idea of using high-order derivatives in optimization has been known for a long time Hoffmann &
Kornstaedt (1978). In 2009, M. Baes extended the cubic regularization approach with second-order
derivatives (p = 2) from Nesterov & Polyak (2006) to high-order derivatives (p > 2) in Baes (2009).
However, the subproblem of these methods was non-convex, making them impractical. In 2018,
Yu. Nesterov proposed the implementable (Accelerated) Tensor Method Nesterov (2021b), wherein
the convexity of the subproblem was reached by increasing a regularization parameter. Hence, the
convex subproblem could be efficiently solved by appropriate subsolvers, making the algorithm
practically applicable. In the same work, a lower complexity bound for tensor methods under higher-
order smoothness assumption was proposed. Shortly after, near-optimal Gasnikov et al. (2019b;a);
Bubeck et al. (2019); Jiang et al. (2019) and optimal Kovalev & Gasnikov (2022); Carmon et al.
(2022) high-order methods were introduced. Furthermore, under higher smoothness assumptions,
second-order methods Nesterov (2021c;a); Kamzolov (2020); Doikov et al. (2024) can surpass the
corresponding lower complexity bound for functions with Lipschitz-continuous Hessians. For more
comprehensive information on high-order methods, one can refer to the review Kamzolov et al.
(2022).
In general, second and higher-order methods are known for their faster convergence compared to
first-order methods. However, their computational cost per iteration is significantly higher due to
the computation of high-order derivatives. To alleviate this computational burden, it is common
to employ approximations of derivatives instead of exact values. While there is a wide range of
second-order and tensor methods available for the non-convex case, assuming stochastic or inexact
derivatives Cartis et al. (2011a;b); Cartis & Scheinberg (2018); Kohler & Lucchi (2017); Xu et al.
(2020); Tripuraneni et al. (2018); Lucchi & Kohler (2023); Bellavia & Gurioli (2022); Bellavia
et al. (2022); Doikov et al. (2023), the same cannot be said for the convex case. In the context of
convex problems, there have been studies on high-order methods such as second-order methods
with inexact Hessian information Ghadimi et al. (2017), tensor methods with inexact and stochastic
derivatives Agafonov et al. (2023), and Extra-Newton algorithm with stochastic gradients and
Hessians Antonakopoulos et al. (2022). As a possible application of methods with inexact Hessians,
we highlight Quasi-Newton(QN) methods. Such methods approximate second-order derivatives using
the history of gradient feedback. Quasi-Newton methods are known for their impressive practical
performance and local superlinear convergence. However, for the long period of time, the main
drawback of such methods was a slow theoretical global convergence, slower than gradient descent.
First steps to improve the global convergence of such methods were done in (Scheinberg & Tang,
2016; Ghanbari & Scheinberg, 2018) but the methods could be still slower than gradient descent. The
first global Quasi-Newton methods that provably matches the gradient descent were reached by cubic
regularization in two consecutive papers Kamzolov et al. (2023); Jiang et al. (2023). It also opened a
possibility for accelerated QN Kamzolov et al. (2023) that theoretically matches fast gradient method
and first-order lower-bounds. This direction were further explored for different methods in Scieur
(2023); Jiang & Mokhtari (2023). Another possible application for high-order methods with inexact
or stochastic derivatives is distributed optimization Zhang & Lin (2015); Daneshmand et al. (2021);
Agafonov et al. (2021); Dvurechensky et al. (2022).
One of the main challenges of tensor and regularized second-order methods is solving the auxiliary
subproblem to compute the iterate update. In both second-order and higher-order cases, it usually
requires running a subsolver algorithm. The impact of the accuracy, up to which we solve the
auxiliary problem, on the convergence of the algorithm has been studied in several works Grapiglia
& Nesterov (2021; 2020); Doikov & Nesterov (2020). One actively developing direction relies on
the constructions of CRN with explicit step Polyak (2009; 2017); Mishchenko (2023); Doikov &
Nesterov (2023); Doikov et al. (2024); Hanzely et al. (2022).

B ON THE INTUITION BEHIND THE ALGORITHM

Model. For the second-order case the model ωδ̄
x,M (y) comprises three key components: an inexact

Taylor approximation ϕx(y); cubic regularization M
6 ∥x− y∥3 and additional quadratic regularization

δ̄
2∥x− y∥2. The combination of Taylor polynomial and cubic regularization is the standard model
for exact second-order methods, as they create a model that is both convex and upper bounds the
objective (Nesterov, 2008) (see (Nesterov, 2021b) for high-order optimization). However, inserting
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inexactness to the Taylor approximation leads to the necessity of additional regularization (Agafonov
et al., 2023).

The first reason to add quadratic regularization is to ensure that the Hessian of the function is
majorized by the Hessian of the model:

0 ⪯ ∇2f(y) ⪯ ∇2ϕx(y) + δ2I + L2||y − x|| ⪯ ∇2ϕx(y) + δ̄2I +M ||y − x|| = ∇2ωδ̄
x.

Moreover, this regularization is essential for handling stochastic gradients correctly. Note, that we
add quadratic regularizer with the constant δ̄t = 2δ2 +

σ1

R (t+ 1)3/2. Here, δ2 accounts for a Hessian
majorization, while σ1

R (t+1)3/2 is crucial for achieving optimal convergence in gradient inexactness.
From our perspective, this regularization can be viewed as a damping for the size of stochastic Cubic
Newton step, as stochastic gradients may lead to undesirable directions.

For further clarification, please refer to Lemma E.3. This lemma serves as a bound on the progress of
the step. Take a look at the right-hand side of equation (29). Without proper quadratic regularization,
we won’t capture the correct term related to Hessian inexactness δ2. Consequently, the desired
convergence term, δ2R

2

T 2 , cannot be achieved. Moving on to the left-hand side of (29), we encounter
the term 2

δ̄
||g(x)−∇f(x)||. Here, choosing the appropriate δ̄ is crucial to compensate for stochastic

gradient errors and achieve optimal convergence in the gradient inexactness term.

Estimating sequences. Estimating sequences are a standard optimization technique to achieve
acceleration (Nesterov, 2018)[Section 2.2.1]. As far as our knowledge extends, the application of
estimating sequences to second-order methods was first introduced in (Nesterov, 2008). The concept
involves adapting acceleration techniques traditionally applied to first-order methods to the realm of
second-order methods. In this work, we make slight modifications to the estimating sequences derived
from (Nesterov, 2008) to preserve the customary relationships inherent in accelerated methods:

f(xt)

At−1
− errlow ≤ ψ∗

t ≤ f(x∗)

At−1
+ c2∥x∗ − x0∥2 + c3∥x∗ − x0∥3 + errup,

where At and αt are scaling factors, common for acceleration (Nesterov, 2018; 2008).

For simplicity, let errlow = 0, errup = 0, c2 = 0. That is the case for exact derivatives and
subproblem solutions. Then, one can get the convergence, with a specific choice of scaling factors:

f(xt)− f(x∗) ≤ At−1c3∥x∗ − x0∥3.
In our case, errors and c2 are non zero and stay for gradient, Hessian and subproblem inexactness. By
applying estimating sequence technique we get rates (11), (12).

The choice of parameters. The cubic regularization parameter M ≥ 2L2 represents the standard
choice for second-order methods (Nesterov & Polyak, 2006). The quadratic regularization parameter
δ̄t = 2δ2 +

σ1+τ
R (t + 1)3/2 consists of 2δ2 for compensating Hessian errors, and σ1+τ

R (t + 1)3/2

for compensating stochastic gradient and subproblem solution errors. The regularization parameters
κ̄t2, κ̄

t
3, λt are utilized for the second step of the method. The κ̄’s are chosen in (40), (42) to uphold the

inequality (34) for acceleration. λt = σ
R (t+1)5/2 serves to compensate for stochastic gradient errors

in the estimation functions ψt. The specific choice for δ̄ and λ is made in the proof of Theorem E.7
to achieve optimal convergence rate.

C ADDITIONAL EXPERIMENTS

After tuning we got the following hyperparameters. For deterministic oracles: lr = 20 for GD, γ = 5
and β0 = 0.5 for Extra-Newton, M = 0.01 for ASCN. For stochastic oracles: lr = 20 for SGD,
γ = 5 and β0 = 0.05 for Extra-Newton, M = 0.01 and σ = 1e− 7 for ASCN. For stochastic oracles
with different batch sizes: lr = 20 for SGD, γ = 5 and β0 = 1.0 for Extra-Newton, M = 0.01 and
σ = 1e− 7 for ASCN.

On Figures 3, 4 we present additional experiments with different batch sizes for gradients and
Hessians, and on Figures 5, 6 we present Figure 2 with increased size. Moving forward to Figures 7
and 8, a comparison in running time is illustrated for two distinct setups: the gradient batch size is
set at 10000, and Hessian batch sizes are configured to be 150 and 450. Specifically, one iteration of
SGD consumes 0.16 seconds, while the execution times for EN and ASCN are approximately 0.33
seconds for both scenarios.
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(a) Train loss (b) Test loss

Figure 3: Logistic regression on a9a. Gradient batch size is 10000, Hessian batch size is 450

(a) Train loss (b) Test loss

Figure 4: Logistic regression on a9a. Gradient batch size is 10000, Hessian batch size is 900

D PROOF OF LEMMAS 2.1 AND 5.2

Lemma 5.2. Let Assumption 5.1 hold. Then, for any x, y ∈ Rd, we have

|f(y)− ϕx,p(y)| ≤
p∑

i=1

1
i!∥(Gi(x)−∇if(x))[y − x]i−1∥∥y − x∥+ Lp

(p+1)!∥y − x∥p+1,

∥∇f(y)−∇ϕx,p(y)∥ ≤
p∑

i=1

1
(i−1)!∥(Gi(x)−∇if(x))[y − x]i−1∥+ Lp

p! ∥y − x∥p,

The proof of that lemma is the same as proofs of Lemmas 1, 2 from Agafonov et al. (2023). Lemma 2.1
is a special case of the Lemma 5.2 for p = 2.

E PROOF OF THEOREM 3.2

The full proof is organized as follows:

• Lemma E.1 provides an upper bound for the estimating sequence ψt(x);
• Lemmas E.2, E.6 present the efficiency of Inexact Cubic Newton step xt+1 = SM,δt(vt).
• Lemma E.6 provides a lower bound on ψt(x) based on results of technical Lemmas E.5-

E.4;
• Everything is combined together in Theorem E.7 in order to prove convergence and obtain

convergence rate.

The following lemma shows that the sequence of functions ψ̄t(x) can be upper bounded by the
properly regularized objective function.
Lemma E.1. For convex function f(x) and ψt(x), we have

ψt(x
∗) ≤ f(x∗)

At−1
+
κ̄t2 + λt

2
∥x∗ − x0∥2 +

κ̄t3
6
∥x∗ − x0∥3 + errupt , (21)
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(a) Train loss (b) Test loss

Figure 5: Logistic regression on a9a. Gradient and Hessian batch sizes are 1500

(a) Train loss (b) Test loss

Figure 6: Logistic regression on a9a. Gradient batch size is 10000, Hessian batch size is 150

where

errupt =

t−1∑
j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), x

∗ − xj+1⟩ (22)

Proof. For t = 0, let us define A−1 such that 1
A−1

= 0 then f(x∗)
A−1

= 0 and

ψ0(x
∗) ≤ κ̄02 + λ0

2
∥x∗ − x0∥2 +

κ̄03
3
∥x∗ − x0∥3

From

ψt+1(x) := ψt(x) +
λt+1−λt

2 ∥x− x0∥2 +
3∑

i=2

κ̄t+1
i −κ̄t

i

i ∥x− x0∥i + αt

At
l(x, xt+1), (23)

we have

ψt(x
∗) =

κ̄t2 + λt
2

∥x∗ − x0∥2 +
κ̄t3
3
∥x∗ − x0∥3 +

t−1∑
j=0

αj

Aj
l(x∗, xj+1). (24)

From (7), we have that, for all j ≥ 1, Aj = Aj−1(1− αj), which leads to αj

Aj
= 1

Aj
− 1

Aj−1
. Hence,

we have
t−1∑
j=0

αj

Aj
= 1

At−1
− 1

A−1
= 1

At−1
and, using the convexity of the objective f , we get

t−1∑
j=0

αj

Aj
l(x∗, xj+1) ≤

t−1∑
j=0

αj

Aj
l̄(x∗, xj+1) +

t−1∑
j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), x

∗ − xj+1⟩ (25)

≤ f(x∗)

t−1∑
j=0

αj

Aj
+ errupt =

f(x∗)

At−1
+ errupt , (26)

18



Published as a conference paper at ICLR 2024

(a) Train loss (b) Test loss

Figure 7: Logistic regression on a9a. Gradient batch size is 10000, Hessian batch size is 150

(a) Train loss (b) Test loss

Figure 8: Logistic regression on a9a. Gradient batch size is 10000, Hessian batch size is 450

where l̄(x, y) = f(y) + ⟨∇f(y), x − y⟩. Finally, combining all the inequalities from above, we
obtain

ψt(x
∗)

(24),(26)
≤ f(x∗)

At−1
+
κ̄t2 + λt

2
∥x∗ − x0∥2 +

κ̄t3
6
∥x∗ − x0∥3 + errupt . (27)

Lemma E.2. For the function f(x) with L2-Lipschitz-continuous Hessian and H(xt) is δt2-inexact
Hessian for vt, xt+1 ∈ Rd we have

∥∇ϕvt(xt+1)−∇f(xt+1)∥ ≤ δt2∥xt+1 − vt∥+
L2

2
∥xt+1 − vt∥2 + ∥g(vt)−∇f(vt)∥, (28)

where we denote δt2 = δ
vt,xt+1

t to simplify the notation.

Proof.
∥∇ϕvt

(xt+1)−∇f(xt+1)∥ = ∥∇ϕvt(xt+1)− Φvt(xt+1) + Φvt(xt+1)−∇f(xt+1)∥
≤ ∥∇ϕvt(xt+1)− Φvt(xt+1)∥+ ∥Φvt(xt+1)−∇f(xt+1)∥
= ∥(∇2f(vt)−Bvt)(xt+1 − vt)∥+ ∥Φvt(xt+1)−∇f(xt+1)∥
+ ∥g(vt)−∇f(vt)∥

≤δt2∥xt+1 − vt∥+
L2

2
∥xt+1 − vt∥2 + ∥g(vt)−∇f(vt)∥

The next Lemma characterizes the progress of the inexact cubic step SM,δt(vt) in Algorithm 1.
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Lemma E.3. Let {xt, vt}t≥1 be generated by Algorithm 1. Then, for any δ̄t ≥ 4δt2, M ≥ 4L2 and
xt+1 = SM,δ̄t(vt), the following holds

τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩

≥ min
{
∥∇f(xt+1)∥2

(
1
4δt

)
, ∥∇f(xt+1)∥

3
2

(
1

3M

) 1
2

}
.

(29)

Proof. For simplicity, we denote rt+1 = ∥xt+1 − vt∥ and

ζt+1 = δ̄t +
M

2
∥xt+1 − vt∥. (30)

By Definition 3.1 for xt+1 = SM,δ̄t,τ (vt)

τ ≥∥∇ϕvt(xt+1) + δ̄t(xt+1 − vt) +
M

2
∥xt+1 − vt∥(xt+1 − vt)∥

(30)
= ∥∇ϕvt(xt+1) + ζt+1(xt+1 − vt)∥.

(31)

We start with getting an upper bound for ∥∇ϕvt(xt+1)−∇f(xt+1)∥.

∥∇ϕvt(xt+1)−∇f(xt+1)∥
(28)
≤ δt2rt+1 +

L2

2
r2t+1 + ∥g(vt)−∇f(vt)∥. (32)

From inexact solution of the subproblem we get
∥∇f(xk+1) + ζt+1(xt+1 − vt)∥2

≤ ∥∇ϕvt(xt+1)−∇f(xt+1)−∇ϕvt(xt+1)− ζt+1(xt+1 − vt)∥2

≤ 2∥∇ϕvt(xt+1)−∇f(xt+1)∥2 + 2∥∇ϕvt(xt+1) + ζt+1(xt+1 − vt)∥2

Def. 3.1
≤ 2∥∇ϕvt(xt+1)−∇f(xt+1)∥2 + 2τ2

(33)

Next, from the previous inequality and (32), we get

4∥g(vt)−∇f(vt)∥2 + 4(δt2 +
L2

2 rt+1)
2r2t+1

(32)
≥ 2∥∇ϕvt,p(xt+1)−∇f(xt+1)∥2

(33)
≥ ∥∇f(xt+1) + ζt+1(xt+1 − vt)∥2 − 2τ2

= 2⟨∇f(xt+1), xt+1 − vt⟩ζt+1 + ∥∇f(xt+1)∥2 + ζ2t+1∥xt+1 − vt∥2 − 2τ2.

Hence,

τ2

ζt+1
+

2

ζt+1
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩ ≥

1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

(
ζ2t+1 − 4(δt2 +

L2

2 rt+1)
2
)
r2t+1,

and finally by using defenetion of ζt+1, we get

τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩ ≥

1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

(
ζ2t+1 − 4(δt2 +

L2

2 rt+1)
2
)
r2t+1

Next, we consider 2 cases depending on which term dominates in the ζt+1.

• If δ̄t ≥ M
2 ∥xt+1 − vt∥, then we get the following bound

τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩ ≥

1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

(
ζ2t+1 − 4(δt2 +

L2

2 rt+1)
2
)
r2t+1

≥ 1
4δ̄t

∥∇f(xt+1)∥2

• If δ̄t < M
2 ∥xt+1 − vt∥ , then similarly to previous case, we get

τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩

≥ ∥∇f(xt+1)∥2

2ζt+1
+
((
δ̄t +

M
2 rt+1

)2 − 4
(
δt2 +

L2

2 rt+1

)2) r2t+1

2ζt+1

=
∥∇f(xt+1)∥2

2ζt+1
+
((
δ̄t − 2δt2 +

M−2L2

2 rt+1

) (
δ̄t + 2δt2 +

2L2+M
2 rt+1

)) r2t+1

2ζt+1

20



Published as a conference paper at ICLR 2024

≥ ∥∇f(xt+1)∥2

2Mrt+1
+
M2 − 4L2

2

4

r3t+1

2M
≥ ∥∇f(xt+1)∥2

2Mrt+1
+

2M

32
r3t+1 ≥

(
1

3M

) 1
2

∥∇f(xt+1)∥
3
2 ,

where for the last inequality, we use α
r + βr3

3 ≥ 4
3β

1/4α3/4.

We use the following lemma (Agafonov et al., 2023, Lemma 7).

Lemma E.4. Let h(x) be a convex function, x0 ∈ Rn, θi ≥ 0 for i = 2, . . . , p+ 1 and

x̄ = arg min
x∈Rn

{h̄(x) = h(x) +

p+1∑
i=2

θidi(x− x0)},

where di(x) = 1
i ∥x∥

i is a power-prox function. Then, for all x ∈ Rn,

h̄(x) ≥ h̄(x̄) +

p+1∑
i=2

(
1

2

)i−2

θidi(x− x̄).

We will also use the next technical lemma Nesterov (2008); Ghadimi et al. (2017) on Fenchel
conjugate for the p-th power of the norm.

Lemma E.5. Let g(z) = θ
p∥z∥

p for p ≥ 2 and g∗ be its conjugate function i.e., g∗(v) =

supz{⟨v, z⟩− g(z)}. Then, we have

g∗(v) =
p− 1

p

(
∥v∥p

θ

) 1
p−1

Moreover, for any v, z ∈ Rn, we have g(z) + g∗(v)− ⟨z, v⟩ ≥ 0.

Finally, the last step is the next Lemma which prove that f(xt)
At−1

≤ min
x
ψ̄t(x) = ψ̄∗

t .

Lemma E.6. Let {xt, yt}t≥1 be generated by Algorithm 1. Then

ψ∗
t = min

x
ψt(x) ≥

f(xt)

At−1
− errvt − errxt −errτt , (34)

where

errvt =

t−1∑
j=0

2

Aj δ̄j
∥g(vj)−∇f(vj)∥2, (35)

errτt =

t−1∑
j=0

τ2

Aj δ̄j
, (36)

and

errxt =

t−1∑
j=0

α2
j

2A2
jλj

∥g(xj+1)−∇f(xj+1)∥2 +
t−1∑
j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), yj − xj+1⟩ . (37)

Proof. We prove Lemma by induction. Let us start with t = 0, we define A−1 such that 1
A−1

= 0.

Then f(x0)
A−1

= 0 and ψ∗
0 = 0, hence, ψ∗

0 ≥ f(x0)
A−1

. Let us assume that (34) is true for t and show that
(34) is true for t+ 1. By definition,

ψt(x) =
λt + κ̄t2

2
∥x− x0∥2 +

κ̄t3
3
∥x− x0∥3 +

t−1∑
j=0

αj

Aj
l(x, xj+1).

Next, we apply Lemma E.4 with the following choice of parameters: h(x) =
t−1∑
j=0

αj

Aj
l(x, xj+1),

θ2 = λt + κ̄t2, and θ3 = κ̄t3.
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By (23), yt = argmin
x∈Rd

h(x), and we have

ψt(yt+1) ≥ ψ∗
t +

κ̄t2 + λt
2

∥x− yt∥2 +
κ̄t3
6
∥x− yt∥3

(34)
≥ f(xt)

At−1
+
κ̄t2 + λt

2
∥x− yt∥2 +

κ̄t3
6
∥x− yt∥3 − errvt − errxt −errτt ,

where the last inequality follows from the assumption of the lemma.

By the definition of ψt+1(x), the above inequality, and convexity of f , we obtain

ψt+1(yt+1) = ψt(yt+1) +
λt+1 − λt

2
∥yt+1 − x0∥2 +

κ̄t+1
2 − κ̄t2

2
∥yt+1 − x0∥2

+
κ̄t+1
3 − κ̄t3

3
∥yt+1 − x0∥3 +

αt

At
l(yt+1, xt+1)

≥ f(xt)

At−1
+
κ̄t2 + λt

2
∥yt+1 − yt∥2 +

κ̄t3
6
∥yt+1 − yt∥3 +

αt

At
l(yt+1, xt+1)− errvt − errxt −errτt

=
f(xt)

At−1
+
κ̄t2 + λt

2
∥yt+1 − yt∥2 +

κ̄t3
6
∥yt+1 − yt∥3 − errvt − errxt −errτt

αt

At
(f(xt+1) + ⟨∇f(xt+1), yt+1 − xt+1⟩+ ⟨g(xt+1)−∇f(xt+1), yt+1 − yt⟩+ ⟨g(xt+1)−∇f(xt+1), yt − xt+1⟩)

≥ f(xt)

At−1
+
κ̄t2
2
∥yt+1 − yt∥2 +

κ̄t3
6
∥yt+1 − yt∥3 − errvt − errxt −errτt

+
αt

At
(f(xt+1) + ⟨∇f(xt+1), yt+1 − xt+1⟩)−

α2
t

2A2
tλt

∥g(xt+1)−∇f(xt+1)∥2 +
αt

At
⟨g(xt+1)−∇f(xt+1), yt − xt+1⟩

=
f(xt)

At−1
+
κ̄t2
2
∥yt+1 − yt∥2 +

κ̄t3
6
∥yt+1 − yt∥3 − errvt − errxt+1−errτt +

αt

At
(f(xt+1) + ⟨∇f(xt+1), yt+1 − xt+1⟩)

≥ κ̄t2
2
∥yt+1 − yt∥2 +

κ̄t3
6
∥yt+1 − yt∥3 − errvt − errxt+1−errτt

+
1

At−1
(f(xt+1) + ⟨∇f(xt+1), xt − xt+1⟩) +

αt

At
(f(xt+1) + ⟨∇f(xt+1), yt+1 − xt+1⟩) .

Next, we consider the sum of two linear models from the last inequality:
1

At−1
(f(xt+1) + ⟨∇f(xt+1), xt − xt+1⟩) +

αt

At
(f(xt+1) + ⟨∇f(xt+1), yt+1 − xt+1⟩)

(7)
=

1− αt

At
f(xt+1) +

1− αt

At
⟨∇f(xt+1), xt − xt+1⟩+

αt

At
f(xt+1) +

αt

At
⟨∇f(xt+1), yt+1 − xt+1⟩

=
f(xt+1)

At
+

1− αt

At
⟨∇f(xt+1),

vt − αtyt
1− αt

− xt+1⟩+
αt

At
⟨∇f(xt+1), yt+1 − xt+1⟩

=
f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩+

αt

At
⟨∇f(xt+1), yt+1 − yt⟩.

As a result, by (23), we get

ψ∗
t+1 = ψt+1(yt+1) ≥

f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩+

κ̄t2
2
∥yt+1 − yt∥2

+
κ̄t3
6
∥yt+1 − yt∥3 +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩ − errvt − errxt+1−errτt .

(38)

To complete the induction step, we show, that the sum of all terms in the RHS except f(xt+1)
At

is
non-negative (except err).

Lemma E.3 provides the lower bound for ⟨∇f(xt+1), vt − xt+1⟩. Let us consider the case when the
minimum in the RHS of (29) is attained at the first term. By Lemma E.5 with the following choice of
the parameters

z = yt − yt+1, v =
αt

At
∇f(xt+1), θ = κ̄ti,
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we have
κ̄t2
2
∥yt − yt+1∥2 +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩ ≥ −1

2

(
∥ αt

At
∇f(xt+1)∥2

κ̄t2

)
. (39)

Hence,
1

At
⟨∇f(xt+1), vt − xt+1⟩+

κ̄t2
2
∥yt+1 − yt∥2 +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩

(39)
≥ 1

At
⟨∇f(xt+1), vt − xt+1⟩ −

∥ αt

At
∇f(xt+1)∥i

2κ̄t2
(29)
≥ 1

At
∥∇f(xt+1)∥2

(
1

4δ̄t

)
−

∥ αt

At
∇f(xt+1)∥2

2κ̄t+1
2

− 2

Atδ̄t
∥g(vt)−∇f(vt)∥2 −

τ2

Atδ̄t

≥ − 2

Atδ̄t
∥g(vt)−∇f(vt)∥2 −

τ2

Atδ̄t
,

where the last inequality holds by our choice of the parameters

κ̄t+1
2 ≥ 2δ̄tα

2
t

At
. (40)

Next, we consider the case when the minimum in the RHS of (29) is achieved on the second term.
Again, by Lemma E.5 with the same choice of z, v and with θ = κ̄t

3

2 , we have

κ̄t3
6
∥yt − yt+1∥3 +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩ ≥ −2

3

(
2∥ αt

At
∇f(xt+1)∥3

κ̄t3

) 1
2

. (41)

Hence, we get
1

At
⟨∇f(xt+1), vt − xt+1⟩+

κ̄t3
6
∥yt+1 − yt∥3 +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩

(41)
≥ 1

At
⟨∇f(xt+1), vt − xt+1⟩ −

2

3

(
2∥ αt

At
∇f(xt+1)∥3

κ̄t3

) 1
2

(29)
≥ 1

At
∥∇f(xt+1)∥

3
2

(
1

3M

) 1
2

− 2

3

(
2∥ αt

At
∇f(xt+1)∥3

κ̄t3

) 1
2

− 2

Atδ̄t
∥g(vt)−∇f(vt)∥2 −

τ2

Atδ̄t

≥ − 2

Atδ̄t
∥g(vt)−∇f(vt)∥2 −

τ2

Atδ̄t
,

where the last inequality holds by our choice of κ̄t3:

κ̄t3 ≥ 8M

3

α3
t

At
. (42)

As a result, we unite both cases and get

ψ∗
t+1 ≥ f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩+

κ̄t2
2
∥yt+1 − yt∥2

+
κ̄t3
6
∥yt+1 − yt∥3 +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩ − errvt − errxt+1−errτt

≥ f(xt+1)

At
− 2

Atδ̄t
∥g(vt)−∇f(vt)∥2 −

τ2

Atδ̄t
− errvt − errxt+1

=
f(xt+1)

At
− errvt+1 − errxt+1−errτt+1

To sum up, by our choice of the parameters κ̄ti, i = 2, 3, we prove the induction step.

Finally, we are in a position to prove the convergence rate theorem The proof uses the following
technical assumption. Let R be such that

∥x0 − x∗∥ ≤ R. (43)
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Theorem E.7. Let Assumption 1.1 hold and M ≥ 4L2. Let Assumption 2.3 hold. After T ≥ 1
with parameters defined in (10) and σ2 = δ2 = max

t=1,...,T
δ
vt−1,xt

t we get the following bound for the

objective residual

E [f(xT )− f(x∗)] ≤ 10τR√
T + 2

+
19σ1R√
T + 1

+
18δ2R

2

(T + 3)2
+

20L2R
3

(T + 1)3
.

Proof. First of all, let us bound AT .

αt =
3

t+ 3
, t ≥ 1. (44)

Then, we have

AT =

T∏
t=1

(1− αt) =

T∏
t=1

t

t+ 3
=

T !3!

(T + 3)!
=

6

(T + 1)(T + 2)(T + 3)
. (45)

And from Agafonov et al. (2023) we get
T∑

t=0

ATα
i
t

At
≤ 3i

(T + 3)i−1
(46)

From Lemmas E.6 and E.1, we obtain that, for all t ≥ 1,
f(xt+1)

At
− errvt+1 − errxt+1−errτt+1

(34)
≤ ψ∗

t+1 ≤ ψt+1(x
∗)

(21)
≤ f(x∗)

At
+
κ̄t2 + λt

2
∥x∗ − x0∥2 +

κ̄t3
6
∥x∗ − x0∥3 + errupt+1.

Next, we apply expectation

E [f(xT+1)− f(x∗)] ≤ ATE
[
κ̄T2 + λT

2
R2 +

κ̄T3
6
R3 + errupT+1 + errvT+1 + errxT+1 + errτT+1

]
.

(47)

Let us choose
δ̄t = δ2 +

τ + σ

R
(t+ 3)3/2, (48)

λt =
σ

R
(t+ 3)5/2. (49)

Then, we bound terms in (47) step by step. We start from deterministic terms.

ATE
[
κ̄T2 + λT

2
R2 +

κ̄T3
6
R3

]
(10)
=

18δ̄TR
2

(T + 3)2
+

6λTR
2

(T + 3)3
+

72MR3

(T + 3)3

(48),(49)
=

18τR

(T + 3)1/2
+

18σR

(T + 3)1/2
+

18δ2R
2

(T + 3)2
+

6σR

(T + 3)1/2
+

72MR3

(T + 3)3
.

Now, we bound expectation of all error terms. Firstly, we consider errupT+1

ATE
[
errupT+1

] (22)
= ATE

 T∑
j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), x

∗ − xj+1⟩

 = 0.

Next, we bound ATE
[
errvT+1

]
ATE

[
errvT+1

] (35)
= ATE

 T∑
j=0

2

Aj δ̄j
∥g(vj)−∇f(vj)∥2

 ≤ 2σ2
T∑

j=0

AT

Aj δ̄j

(44),(48)
=

2σR

33/2

T∑
j=0

ATα
3/2
j

Aj

(46)
≤ 2σR

(T + 3)1/2

Now we calculate ATE
[
errxT+1

]
ATE

[
errxT+1

] (37)
= ATE

 T∑
j=0

α2
j

2A2
jλj

∥g(xj+1)−∇f(xj+1)∥2 +
T∑

j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), yj − xj+1⟩


24



Published as a conference paper at ICLR 2024

(49)
=

σR

2

T∑
j=0

ATα
2
j

A2
j (j + 3)5/2

(44)
=

σR

35/22

T∑
j=0

ATα
9/2
j

A2
j

≤ σR

35/22AT

T∑
j=0

ATα
9/2
j

Aj

(46)
≤ 3σR

2AT (T + 3)7/2

(45)
≤ σR

4(T + 3)1/2
.

Finally, we consider errτT+1

ATE
[
errτT+1

] (60)
=

T∑
j=0

AT τ
2

Aj δ̄j

(48)
=

τR

33/2

∑ ATα
3/2
t

Aj

(46)
≤ τR

(T + 3)1/2
.

Combining all bounds from above we achieve convergence rate

E [f(xT+1)− f(x∗)] ≤ 19τR

(T + 3)1/2
+

27σR

(T + 3)1/2
+

18δ2R
2

(T + 3)2
+

72MR3

(T + 3)3
.

The case of stochastic Hessian (Theorem 3.2 under Assumption 2.3) can be obtained in the same way
by taking expectation in Lemma E.3.

F PROOF OF THEOREM 5.6

Algorithm 2 is the tensor generalization of Algorithm 1. So, we will follow the same steps as in
Appendix E.

First of all, we provide tensor counterpart of Lemmas E.1, E.2, E.3. The proofs directly follow the
proofs of Lemmas for 2-nd order case.

Lemma F.1. For convex function f(x) and ψt(x), we have

ψt(x
∗) ≤ f(x∗)

At−1
+
κ̄t2 + λt

2
∥x∗ − x0∥2 +

p+1∑
i=3

κ̄ti
i!
∥x∗ − x0∥i + errupt , (50)

where

errupt =

t−1∑
j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), x

∗ − xj+1⟩ (51)

Lemma F.2. For the function f(x) with Lp-Lipschitz-continuous Hessian and Gi(xt) is δti -inexact
i-th order derivative for vt, xt+1 ∈ Rd we have

∥∇ϕvt(xt+1)−∇f(xt+1)∥ ≤
p∑

i=2

δti
(i− 1)!

∥xt+1−vt∥i+
Lp

p!
∥xt+1−vt∥p+1+∥g(vt)−∇f(vt)∥,

(52)
where we denote δt2 = δ

vt,xt+1

t to simplify the notation.

Lemma F.3. Let {xt, vt}t≥1 be generated by Algorithm 1. Then, for any δ̄t ≥ 4δt2, ηi ≥ 4,M ≥ 2
pLp

and xt+1 = SM,δ̄t(vt), the following holds
τ2

δt
+

2

δt
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩

≥ min

{
2

p
∥∇f(xt+1)∥

p+1
p

(
(p− 1)!

M

) 1
p

; 1
4δ̄t

∥∇f(xt+1)∥2;

min
i=3,...,p

(
2

p
∥∇f(xt+1)∥

i
i−1

(
(i− 1)!

ηiδti

) 1
i−1

)}
.

(53)

Proof. For simplicity, we denote rt+1 = ∥xt+1 − vt∥ and

ζt+1 = δ̄t +

p∑
i=3

ηiδi
(i− 1)!

∥xt+1 − vt∥i−2 +
M

(p− 1)!
∥xt+1 − vt∥p−1. (54)
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By Definition 5.5 for xt+1 = SM,δ̄t,τ
p (vt)

τ2 ≥

∥∥∥∥∥∇ϕvt,p(xt+1) + δ̄t(xt+1 − vt) +

p∑
i=3

ηiδ
t
i

(i− 1)!
∥xt+1 − vt∥i−2(xt+1 − vt)

+
M

(p− 1)!
∥xt+1 − vt∥p−1(xt+1 − vt)

∥∥∥∥2
(54)
= ∥∇ϕvt,p + ζt+1(xt+1 − vt)∥2.

(55)

From inexact solution of subproblem we get
∥∇f(xt+1) + ζt+1(xt+1 − vt)∥2

≤ ∥∇ϕvt,p(xt+1)−∇f(xt+1)−∇ϕvt,p(xt+1)− ζt+1(xt+1 − vt)∥2

≤ 2∥∇ϕvt,p(xt+1)−∇f(xt+1)∥2 + 2∥∇ϕvt,p(xt+1) + ζt+1(xt+1 − vt)∥2

≤ 2∥∇ϕvt,p(xt+1)−∇f(xt+1)∥2 + 2τ2.

(56)

Next, from previous inequality and Lemma F.2

4∥g(vt)−∇f(vt)∥2 + 4

(
p∑

i=2

δti
(i− 1)!

rit+1 +
Lp

p!
rp+1
t+1

)2

+ 2τ2

≥ 2∥∇ϕvt,p(xt+1 − vt)∥2 + 2τ2

≥ ∥∇f(xt+1) + ζt+1(xt+1 − vt)∥2

≥ ∥∇f(xt+1)∥2 + 2ζt+1⟨∇f(xt+1), xt+1 − vt⟩+ ζ2t+1∥xt+1 − vt∥2.

(57)

Hence,
τ2

ζt+1
+

2

ζt+1
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩ ≥

1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

ζ2t+1 − 4

(
p∑

i=2

δti
(i− 1)!

ri−2
t+1 +

Lp

p!
rp−1
t+1

)2
 r2t+1,

and finally by using definition of ζt+1, we get
τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩ ≥

1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

ζ2t+1 − 4

(
p∑

i=2

δti
(i− 1)!

ri−2
t+1 +

Lp

p!
rp−1
t+1

)2
 r2t+1.

Next, we consider p cases depending on which term dominates in ζt+1.

• If δ̄t ≥
p∑

i=3

ηiδ
t
i

(i−1)!r
i−2
t+1 +

M
(p−1)!r

p−1
t+1 , then we get the following bound

τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩

≥ 1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

ζ2t+1 − 4

(
p∑

i=2

δti
(i− 1)!

ri−2
t+1 +

Lp

p!
rp−1
t+1

)2
 r2t+1

≥ 1
2pδ̄t

∥∇f(xt+1)∥2.

• If ηiδ
t
i

(i−1)!r
i−1
t+1 ≥ δ̄t +

p∑
j=3,j ̸=i

ηjδj
(j−1)!r

j−1
t+1 + M

(p−1)!r
p−1
t+1 for i, 3 ≤ i ≤ p, we get

τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩

≥ 1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

ζ2t+1 − 4

(
p∑

i=2

δti
(i− 1)!

rit+1 +
Lp

p!
rp+1
t+1

)2
 r2t+1
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≥ (i− 1)!∥∇f(xt+1)∥2

pηiδtir
i−1
t+1

+

(
δ̄t − 2δt2 +

p∑
i=3

ηiδ
t
i − 2δti

(i− 1)!
ri−2
t+1 +

pM − 2Lp

p!
rp−1
t+1

)

×

(
δ̄t + 2δt2 +

p∑
i=3

ηiδ
t
i + 2δti

(i− 1)!
ri−2
t+1 +

pM + 2Lp

p!
rp−1
t+1

)
r2t+1

ζt+1

≥ (i− 1)!∥∇f(xt+1)∥2

pηiδtir
i−2
t+1

+
ηiδ

t
i − 2δti

(i− 1)!

ηiδ
t
i + 2δti

(i− 1)!

rit+1(i− 1)!

pηiδti

≥ (i− 1)!∥∇f(xt+1)∥2

pηiδtir
i−2
t+1

+
ηiδ

t
i

(i− 1)!p
rit+1.

≥ 2

i

(
(i− 2)(i− 1)!∥∇f(xt+1)∥2

pηiδti

) i
2(i−1)

(
iηiδ

t
i

(i− 1)!p

) i−2
2(i−1)

≥ 2

p
∥∇f(xt+1)∥

i
i−1

(
(i− 1)!

ηiδti

) 1
i−1

,

where we used α
(i−2)ri−2 + βri

i ≥ 2
iα

i
2(i−1) β

i−2
2(i−1) .

• If M
(p−1)!r

p−1
t+1 ≥ δ̄t +

p∑
i=3

ηiδ
t
i

(i−1)!r
i−1
t+1, then similarly to previous case, we get

τ2

δ̄t
+

2

δ̄t
∥g(vt)−∇f(vt)∥2 + ⟨∇f(xt+1), vt − xt+1⟩

≥ 1

2ζt+1
∥∇f(xt+1)∥2 +

1

2ζt+1

ζ2t+1 − 4

(
p∑

i=2

δti
(i− 1)!

rit+1 +
Lp

p!
rp+1
t+1

)2
 r2t+1

(p− 1)!

pMrp−1
t+1

∥∇f(xt+1)∥2 +
pM

2p(p!)
rp+1
t+1

≥ 2

p
∥∇f(xt+1)∥

p+1
p

(
(p− 1)!

M

) 1
p

.

Next we will need technical Lemmas E.4, E.5.

Lemma F.4. Let {xt, yt}t≥1 be generated by Algorithm 2. Then

ψ∗
t = min

x
ψt(x) ≥

f(xt)

At−1
− errvt − errxt −errτt , (58)

where

errvt =

t−1∑
j=0

2

Aj δ̄j
∥g(vj)−∇f(vj)∥2, (59)

errτt =

t−1∑
j=0

τ2

Aj δ̄j
, (60)

and

errxt =

t−1∑
j=0

α2
j

2A2
jλj

∥g(xj+1)−∇f(xj+1)∥2 +
t−1∑
j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), yj − xj+1⟩ . (61)

Proof. We prove Lemma by induction. Let us start with t = 0, we define A−1 such that 1
A−1

= 0.

Then f(x0)
A−1

= 0 and ψ∗
0 = 0, hence, ψ∗

0 ≥ f(x0)
A−1

. Let us assume that (58) is true for t and show that
(58) is true for t+ 1.
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Following the steps of Lemma E.6 for p-th order case, we get

ψ∗
t+1 = ψt+1(yt+1) ≥

f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩

+

p+1∑
i=2

(
1

2

)i−2
κ̄ti

(i− 1)!
di(yt+1 − yt) +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩ − errvt − errxt+1−errτt .

(62)

To complete the induction step we will show, that the sum of all terms in the RHS except f(xt+1)
At

and
error terms is non-negative.

Lemma F.3 provides the lower bound for ⟨∇f(xt+1), vt − xt+1⟩. Let us consider the case when the
minimum in the RHS of (53) is attained at the term with particular i = 3, . . . , p. By Lemma E.5 with
the following choice of the parameters

z = yt − yt+1, vt =
αt

At
∇f(xt+1), θ =

(
1

2

)i−2
κ̄ti

(i− 1)!
,

we have

1

i

(
1

2

)i−2
κ̄ti

(i− 1)!
∥yt−yt+1∥i+

αt

At
⟨∇f(xt+1), yt+1−yt⟩ ≥ − i− 1

i

∥ αt

At
∇f(xt+1)∥i(

1
2

)i−2 κ̄t
i

(i−1)!

 1
i−1

.

(63)
Hence,
f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩+

(
1

2

)i−2
κ̄ti

(i− 1)!
di(yt+1 − yt) +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩

(39)
≥ f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩ −

i− 1

i

∥ αt

At
∇f(xt+1)∥i(

1
2

)i−2 κ̄t
i

(i−1)!

 1
i−1

(53)
≥ f(xt+1)

At
+

2

p
∥∇f(xt+1)∥

i
i−1

(
(i− 1)!

ηiδti

) 1
i−1

− i− 1

i

∥ αt

At
∇f(xt+1)∥i(

1
2

)i−2 κ̄t
i

(i−1)!

 1
i−1

≥ f(xt+1)

At
,

where the last inequality holds by our choice of the parameters

κ̄ti ≥
pi−1

2

αi
t

At
ηiδ

t
i . (64)

Let us consider the case when the minimum in the RHS of (53) is achieved on the second term.
Following similar steps, we get

κ̄t2 ≥ 2pα2
t

At
δ̄t. (65)

Next, we consider the case when the minimum in the RHS of (53) is achieved on the first term. Again,

by Lemma E.5 with the same choice of z, v and with θ =
(
1
2

)p−1 κ̄t−1
p+1

(p−1)! , we have

1

p

(
1

2

)p−1 κ̄t−1
p+1

p!
∥yt−yt+1∥p+1+

αt

At
⟨∇f(xt+1), yt+1−yt⟩ ≥ − p

p+ 1

∥ αt

At
∇f(xt+1)∥p+1(
1
2

)p−1 κ̄t
p+1

(p−1)!

 1
p

.

(66)

Hence, we get
f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩+

1

2p−1

κ̄t−1
p+1

p!
dp+1(yt+1 − yt) +

αt

At
⟨∇f(xt+1), yt+1 − yt⟩

(66)
≥ f(xt+1)

At
+

1

At
⟨∇f(xt+1), vt − xt+1⟩ −

p

p+ 1

∥ αt

At
∇f(xt+1)∥p+1(
1
2

)p−1 κ̄t
p+1

p!

 1
p
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(53)
≥ f(xt+1)

At
+

1

At

2

p
∥∇f(xt+1)∥

p+1
p

(
(p− 1)!

M

) 1
p

− p

p+ 1

∥ αt

At
∇f(xt+1)∥p+1(
1
2

)p−1 κ̄t
p+1

p!

 1
p

≥ f(xt+1)

At
,

where the last inequality holds by our choice of κ̄tp+1:

κ̄tp+1 ≥ (p+ 1)p+1

2

αp+1
t

At
M. (67)

To sum up, by our choice of the parameters κ̄ti, i = 2, ..., p, we obtain

ψ∗
t+1 ≥ f(xt+1)

At
− errvt+1 − errxt+1 − errτt+1.

Theorem F.5. Let Assumption 5.1 hold and M ≥ 2
pLp. Let Assumption 5.4 hold. After T ≥ 1

with parameters defined in (17) and σ2 = δ2 = max
t=1,...,T

δ
vt−1,xt

t we get the following bound for the

objective residual

E [f(xT )− f(x∗)] ≤ 2(p+ 1)3τR

(T + p+ 1)1/2
+

3(p+ 1)3σR

(T + p+ 1)1/2
+

p∑
i=3

2(p+ 1)2i−1δiR
i

i!(T + p+ 1)i
+

(p+ 1)2(p+1)

(p+ 1)!

MRp+1

(T + p+ 1)p+1

Proof. First of all, let us bound AT .

αt =
p+ 1

t+ p+ 1
, t ≥ 1. (68)

Then, we have

1

(T + p+ 1)p+1
≤ AT ≤ (p+ 1)!

(T + 1)p+1
. (69)

And from Agafonov et al. (2023) we get
T∑

t=0

ATα
i
t

At
≤ (p+ 1)i

(T + p+ 1)i−1
(70)

From Lemmas F.4 and F.1, we obtain that, for all t ≥ 1,
f(xt+1)

At
− errvt+1 − errxt+1−errτt+1

(58)
≤ ψ∗

t+1 ≤ ψt+1(x
∗)

(50)
≤ f(x∗)

At
+
κ̄t2 + λt

2
∥x∗ − x0∥2 +

κ̄t3
6
∥x∗ − x0∥3 + errupt+1.

Next, we apply expectation

E [f(xT+1)− f(x∗)] ≤ ATE

[
κ̄T2 + λT

2
R2 +

p+1∑
i=3

κ̄Ti
i!
Ri + errupT+1 + errvT+1 + errxT+1 + errτT+1

]
.

(71)

Let us choose
δ̄t = δ2 +

τ + σ

R
(t+ p+ 1)3/2, (72)

λt =
σ

R
(t+ p+ 1)p+1/2. (73)

Then, we bound terms in (71) step by step.

We start from deterministic terms.

29



Published as a conference paper at ICLR 2024

ATE

[
κ̄T2 + λT

2
R2 +

p∑
i=3

κ̄Ti
i!
Ri +

κ̄Tp+1

(p+ 1)!
Rp+1

]
(17)
= pα2

T δ̄TR
2 +

p∑
i=3

4pi−1

i!2
αi
T δiR

i +
(p+ 1)p+1

(p+ 1)!
αp+1
T MRp+1

(72),(73)
=

(p+ 1)3(τ + σ)R

(T + p+ 1)1/2
+

(p+ 1)3δ2R
2

(T + p+ 1)2
+

p∑
i=3

2(p+ 1)2i−1δiR
i

i!(T + p+ 1)i
+

(p+ 1)2(p+1)

(p+ 1)!

MRp+1

(T + p+ 1)p+1
.

Now, we bound expectation of all error terms. Firstly, we consider errupT+1

ATE
[
errupT+1

]
= ATE

 T∑
j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), x

∗ − xj+1⟩

 = 0.

Next, we bound ATE
[
errvT+1

]
ATE

[
errvT+1

]
= ATE

 T∑
j=0

2

Aj δ̄j
∥g(vj)−∇f(vj)∥2

 ≤ 2σ2
T∑

j=0

AT

Aj δ̄j

(68),(72)
=

2σR

(p+ 1)3/2

T∑
j=0

ATα
3/2
j

Aj

(70)
≤ 2σR

(T + p+ 1)1/2

Now we calculate ATE
[
errxT+1

]
ATE

[
errxT+1

] (37)
= ATE

 T∑
j=0

α2
j

2A2
jλj

∥g(xj+1)−∇f(xj+1)∥2 +
T∑

j=0

αj

Aj
⟨g(xj+1)−∇f(xj+1), yj − xj+1⟩


(73)
=

σR

2

T∑
j=0

ATα
2
j

A2
j (j + 3)p+1/2

(44)
=

σR

(p+ 1)5/22

T∑
j=0

ATα
p+5/2
j

A2
j

≤ σR

(p+ 1)5/22AT

T∑
j=0

ATα
p+5/2
j

Aj

(46)
≤ (p+ 1)2σR

2AT (T + p+ 1)p+3/2

(45)
≤ (p+ 1)2σR

2(T + p+ 1)1/2
.

Finally, we consider errτT+1

ATE
[
errτT+1

]
=

T∑
j=0

AT τ
2

Aj δ̄j

(72)
=

τR

(p+ 1)3/2

∑ ATα
3/2
t

Aj

(46)
≤ τR

(T + p+ 1)1/2
.

Combining all bounds from above we achieve convergence rate

E [f(xT+1)− f(x∗)] ≤ 2(p+ 1)3τR

(T + p+ 1)1/2
+

3(p+ 1)3σR

(T + p+ 1)1/2
+

p∑
i=3

2(p+ 1)2i−1δiR
i

i!(T + p+ 1)i
+

(p+ 1)2(p+1)

(p+ 1)!

MRp+1

(T + p+ 1)p+1
.

Again, the case of stochastic Hessian (Theorem 5.6 under Assumption 5.3) can be obtained in the
same way by taking expectation in Lemma F.3.

G RESTARTS FOR STRONGLY-CONVEX FUNCTION

Theorem 6.2. Let Assumption 6.1 hold and let parameters of Algorithm 1 be chosen as in (17). Let
{zs}s≥0 be generated by Algorithm 3 and R > 0 be such that ∥z0 − x∗∥ ≤ R. Then for any s ≥ 0
we have

E∥zs − x∗∥2 ≤ 4−sR2, (74)

Ef(zs)− f(x∗) ≤ 2−2s−1µR2. (75)
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Moreover, the total number of iterations to reach desired accuracy ε : f(zs) − f(x∗) ≤ ε in
expectation is

O

(
(τ+σ1)

2

µε +
(√

σ2

µ + 1
)
log f(z0)−f(x∗)

ε +

p∑
i=3

(
σiR

i−2

µ

) 1
i

+
(

LpR
p−1

µ

) 1
p+1

)
. (76)

Proof. We prove by induction that E∥zs − x∗∥2 ≤ 4−s∥z0 − x∗∥2 = 4−sR2
0. For s = 0 this

obviously holds. By strong convexity and convergence of Algorithm 2

E [f(xT )− f(x∗)] ≤ CττR√
T

+
C1σ1R√

T
+

p∑
i=2

CiσiR
i

T i
+
Cp+1LpR

p+1

T p+1

we get

E[zs+1|zs,zs−1,...,z0]∥zs+1 − x∗∥2 ≤ 2

µ
E[zs+1|zs,...,z0](f(xts+1)− f(x∗))

≤ 2

µ

(
CττR√

T
+
C1σ1R√

T
+

p∑
i=2

CiσiR
i

T i
+
Cp+1LpR

p+1

T p+1
.

)

≤ 2

µ

(
µCτσ∥zs − x∗∥

8(p+ 2)Cτσ∥zs − x∗∥
+

µC1σ∥zs − x∗∥
8(p+ 2)C1σ∥zs − x∗∥

+

p∑
i=2

µCiδi∥zs − x∗∥i

8(p+ 2)Ciδi∥zs − x∗∥i
+

µCp+1Lp∥zs − x∗∥p+1

8(p+ 2)Cp+1Lp∥zs − x∗∥p+1

)
≤ p

4(p+ 2)
∥zs − x∗∥2 + 2

4(p+ 2)
rs∥zs − x∗∥.

Then by taking full expectation we obtain

E∥zs+1 − x∗∥2 ≤ p

4(p+ 1)
E∥zs − x∗∥2 + 2

4(p+ 2)
rsE∥zs − x∗∥ ≤ 1

4s+1
R2

0

Thus, by induction, we obtain that (74), (75) hold.

Next we provide the corresponding complexity bounds. From the above induction bounds, we obtain
that after S restarts the total number of iterations of Algorithm 2

ET = E
S∑

s=1

ts ≤
S∑

s=1

max

{
1,
(

8(p+2)Cττ
µrs−1

)2
,
(

8(p+2)C1σ1

µrs−1

)2
, max
i=1,...,p

(
8(p+2)CiδiR

i−2
s−1

µ

) 1
i

,

(
8(p+2)Cp+1LpR

p−1
s−1

µ

) 1
p+1

}

≤
S∑

s=1

(
1 +

(
8(p+2)Cττ

µrs−1

)2
+
(

8(p+2)C1σ1

µrs−1

)2
+

p∑
i=2

(
8(p+2)CiδiR

i−2
s−1

µ

) 1
i

+

(
8(p+2)Cp+1LpR

p−1
s−1

µ

) 1
p+1

)

≤ S +
(

8(p+2)Cττ
µR0

)2
4S +

(
8(p+2)C1σ1

µR0

)2
4S +

(
8(p+2)C2δ2

µ

) 1
2

S +
p∑

i=3

(
8(p+2)CiδiR

i−2
0

µ

) 1
i

+
(

8(p+2)Cp+1LpR
p−1
0

µ

) 1
p+1

≤ log
f(z0)− f(x∗)

ε
+
(

8(p+2)τ
µR0

)2
f(z0)−f(x∗)

ε +
(

8(p+2)C1σ1

µR0

)2
f(z0)−f(x∗)

ε

+
(

8(p+2)C2δ2
µ

) 1
2

log f(z0)−f(x∗)
ε +

p∑
i=3

(
8(p+2)CiδiR

i−2
0

µ

) 1
i

+
(

8(p+2)LpCp+1R
p−1
0

µ

) 1
p+1

.

Therefore, the total oracle complexities are given by (76).

For the case of stochastic high-order derivative the proof remains same w.r.t. change δi to σi.

H ON THE SOLUTION OF SUBPROBLEM (9) IN ALGORITHM 1

The subproblem (9) admits a closed form solution, which we will derive in the following steps. First,
note that the problem (9) is convex. Let us write optimality condition

0 = ∇ψt(yt) = (λt + κ̄t2 + κ̄t3∥yt − x0∥)(yt − x0) +

t−1∑
j=0

αj

Aj
g(xj+1).
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Thus,

(λt + κ̄t2 + κ̄t3∥yt − x0∥)∥(yt − x0)∥ = ∥
t−1∑
j=0

αj

Aj
g(xj+1)∥.

Let us denote rt = ∥(yt − x0)∥ and St = ∥
t−1∑
j=0

αj

Aj
g(xj+1)∥. Then, we get

κ̄t3r
2
t + (λt + κ̄t2)rt − St = 0.

Next, we get the solution of quadratic equation

rt =

√
(λt + κ̄t2)

2 + 4κ̄t3St − (λt+1 + κ̄t2)

2κ̄t3
.

Finally, we get explicit solution

yt = x0 −

t−1∑
j=0

αj

Aj
g(xj+1)

λt + κ̄t2 + κ̄t3rt
.

We use the explicit solution in our implementation of the Algorithm 1.
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