
A ARTIFACT APPENDIX

A.1 Abstract

We provide an artifact to demonstrate that representative KV
cache compression methods can reduce memory consump-
tion. Current implementations (e.g., FlashAttention, Page-
dAttention) do not optimize for production-level LLM serv-
ing, resulting in suboptimal throughput performance. We
also provide our tools to facilitate future LLM KV cache
compression studies.

A.2 Description and Requirements

Github Repository. The codes are available in the
following Github repository https://github.com/
LLMkvsys/rethink-kv-compression.

Hardware dependencies. Experiments are conducted on
one NVIDIA A6000 GPU.

Software dependencies. We provide a Docker image with
NVIDIA GPU support for this artifact. We use CUDA
12.1, torch 2.1.2, transformers 4.43.1, and LMDeploy v6.0.1
(modified).

A.3 Setup

To install the artifact, users should clone the repository.

1 git clone git@github.com:LLMkvsys/
rethink-kv-compression.git

2 cd rethink-kv-compression/
3 conda env create -f mlsys_environment.

yml
4 conda activate lmdeploy
5 conda clean -a
6 cd benchmark_thr/src/
7 pip install -e .

We also provide a Dockerfile to help you build a docker
image.

A.4 Evaluation workflow

Given the significant time and resource costs associated with
length and negative sample analysis, we do not recommend
executing these scripts during artifact evaluation. Instead,
we suggest focusing on throughput analysis (Figure 1). We
have provided scripts to facilitate the reproduction of Figure
1 using a single GPU. However, the first row in Figure 1
involves running models with HF transformers, which can
be notably slow in this context. As a result, we have not
included corresponding scripts for this specific part. We
recommend users follow the README as it provides
more detailed explanations.

A.5 Major Claims

The KV cache compression methods show negative com-
putational efficiency in certain scenarios of batch size, se-
quence length. Most KV cache compression methods except
Gear show advantages when serving requests with a heavy
KV cache.

A.6 Experiments

It might take one hour to finish the following experiments.
We provide scripts to measure the prefill and decoding
throughput of quantization-based approaches across var-
ious sequences with a fixed batch size. The benchmark-
ing logs are stored in folders 0 quant normal logs and
0 quant long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_quant_normal_logs/

batch_eval_quant_normal_fixbsz.sh
3 bash 0_quant_long_logs/

batch_eval_quant_long_fixbsz.sh

The following scripts are to measure the prefill and decod-
ing throughput of sparsity-based approaches across vari-
ous sequences with a fixed batch size. The benchmark-
ing logs are stored in folders 0 sparse normal logs and
0 sparse long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_sparse_normal_logs/

batch_eval_sparse_normal_fixbsz.sh
3 bash 0_sparse_long_logs/

batch_eval_sparse_long_fixbsz.sh

We provide scripts to measure the prefill and decoding
throughput of quantization-based approaches across var-
ious batch sizes with a fixed sequence length. The bench-
marking logs are stored in folders 0 quant normal logs and
0 quant long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_quant_normal_logs/

batch_eval_quant_normal_fixlen.sh
3 bash 0_quant_long_logs/

batch_eval_quant_long_fixbsz.sh

We provide scripts to measure the prefill and decoding
throughput of quantization-based approaches across var-
ious batch sizes with a fixed sequence length. The bench-
marking logs are stored in folders 0 sparse normal logs and
0 sparse long logs, respectively.

1 cd benchmark_thr/src
2 bash 0_sparse_normal_logs/

batch_eval_sparse_normal_fixlen.sh
3 bash 0_sparse_long_logs/

batch_eval_sparse_long_fixbsz.sh

https://github.com/LLMkvsys/rethink-kv-compression
https://github.com/LLMkvsys/rethink-kv-compression


A.7 Experiments Results

We provide the following plotting scripts to generate Fig-
ures 1 (e)–(i), respectively. The resulting figures are saved
in the folder demo figs/. To account for system noise, we
recommend that users verify the presence of two key find-
ings: (1) certain KV cache compression methods fail to
outperform FP16 baselines; (2) the decoding throughput
advantages of KV cache compression techniques become
more pronounced in scenarios with heavy KV cache usage.

1 cd benchmark_thr/src
2 # Figure 1 (e) & (i)
3 python 0_plot/plot_normal_fixbsz.py
4 # Figure 1 (f) & (j)
5 python 0_plot/plot_normal_fixseqlen.py
6 # Figure 1 (g) & (k)
7 python 0_plot/plot_long_fixbsz.py
8 # Figure 1 (h) & (i)
9 python 0_plot/plot_long_fixseqlen.py

A.8 Additional Experiments

We conduct length analysis and negative analysis and pro-
vide our tools for your reference. Since this process requires
substantial GPU resources, we offer precomputed, cached
results within our prepared environment. The cached results
comprise the generated responses and associated length and
evaluation metric score.

First, we provide cached results to reproduce Figure 3.

1 cd benchmark_len/
2 python -u plot_kde_shift_dist.py

This script yields the distribution of response length differ-
ence across various compression algorithms. The results are
saved in the current directory. The users can observe that
with the increase of the compression ratio, the distribution of
response difference flattens, and more samples experience
verbose response.

Second, we provide cached results to reproduce Figure 5.

1 cd benchmark_neg/
2 python -u 0_ratio_vs_no_negative.py

This script outputs the figures in which the number of neg-
ative samples changes with the threshold. The results are
saved in the current directory. The users can find that there
are many negative samples even with a threshold of 10%,
indicating the fragility of compression algorithms.

B EVALUATION DETAILS

B.1 Dataset

ShareGPT. We select a subset of requests from
ShareGPT (Anon, 2024) to conduct the experiments of re-
sponse length difference distribution. We refer to the bench-
mark code in vLLM3 to sample 1, 000 requests. Due to
time and resource constraints, we set the maximum number
of generation tokens as 1024 in the evaluation. We also
truncate contexts for input prompts that exceed the model’s
maximum length allowance to ensure they fit within the
model’s capacity.

LongBench. LongBench (Bai et al., 2023) is a task for long
context understanding that covers key long-text application
scenarios, including multi-document QA, single-document
QA, summarization, few-shot learning, code completion,
and synthetic tasks. We keep strictly the evaluation met-
rics and settings in their released codebase 4 to ensure fair
assessments.

B.2 Models

LLaMA Family. The LLaMA family, developed by Meta
using a high-quality corpus, is widely favored by researchers
working on KV cache compression algorithms. Many
choose LLaMA models to evaluate the effectiveness of their
methods. In our performance evaluation, we cover LLaMA-
2-7B, LLaMA-2-13B, and LLaMA-2-70B to emphasize
the advantages of KV cache due to their exorbitant GPU
memory consumption of KV cache. Additionally, LLaMA-
3.1-8B, known for generating high-quality responses and
excelling in long-context tasks, is used in our length distri-
bution and negative sample analysis.

Mistral Family. Similarly to the LLaMA family, many
models from the Mistral family are used to demonstrate the
benefits of KV cache algorithms. Mistral models incor-
porate grouped-query attention (GQA) for faster inference
and are renowned for their exceptional performance. In our
length difference and negative sample analysis, we utilize
Mistral-7B-v0.1 to obtain relevant experimental results.

B.3 Algorithms

KIVI. KIVI (Liu et al., 2024e) is a notable quantization
algorithm for KV cache compression, specializing in per-
channel quantization for key tensors and per-token quanti-
zation for value tensors. We utilize their official implemen-
tation 5. The critical hyperparameters in KIVI are group
size G and the residual length R. G refers to the number of

3https://github.com/vllm-project/vllm/
blob/main/benchmarks/benchmark_serving.py

4https://github.com/THUDM/LongBench
5https://github.com/jy-yuan/KIVI

https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_serving.py
https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_serving.py
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channels that are grouped for quantization in the key cache,
while R controls the number of most recent tokens that are
kept in full precision. Following the paper’s recommenda-
tions for achieving optimal performance, we have set them
to G = 32, R = 128.

GEAR. GEAR (Kang et al., 2024) is a typical quantiza-
tion error mitigation algorithm. We took their open-source
code6. The key parameters of GEAR are sparsity ratio s
and rank r. Specifically, s specifies the number of retained
full-precision outlier values. r controls the richness of the
low-rank approximation matrix, which recovers the model’s
ability from quantization errors. In line with the default
settings in the official codebase, we set s = 2%, r = 2%.

StreamingLLM. StreamingLLM (Xiao et al., 2023) is an
attention sparsity-based cache eviction algorithm. It retains
only a limited number of initial and most recent tokens. The
key parameters for controlling the sizes of the initial and
recent tokens are set to 64 and 448, respectively, resulting
in a total cache size of 512.

H2O. H2O (Zhang et al., 2024f) is another widely-used
cache eviction algorithm that dynamically calculates and
refreshes the KV cache. The parameters for the heavy
hitter oracle token size and the recent size are configured to
64 and 448, respectively, with a total cache size of 512.

B.4 LLM Serving Engine.

Transformers Library. We directly use Torch 2.1.2 and
Transformers 4.43.1 to measure the throughput perfor-
mance.

FlashAttention. FlashAttention7 can fully exploit the GPU
resources to realize fast and memory-efficient attention oper-
ation. In our throughput evaluation, we measure the through-
put performance of TRL+FA by enabling FlashAttention
2.5.6 in the transformers library.

LMDeploy. LMDeploy8 allows LLM developers to com-
press, deploy, and serve various LLMs. It naturally supports
the functionality of PagedAttention and FlashAttention. We
implement various KV cache algorithms based on LMDe-
ploy v6.0.1. We chose LMDeploy for three reasons.

First, LMDeploy stands out by implementing more efficient
quantization kernels than vLLM. This results in superior
performance in KV cache compression approaches com-
pared to vLLM, despite the significant attention vLLM has
garnered. Note that the primary focus of our paper is on KV
cache compression approaches, with a particular emphasis

6https://github.com/opengear-project/GEAR
7https://github.com/Dao-AILab/

flash-attention
8https://github.com/InternLM/lmdeploy/

tree/main

on quantization. A prior benchmark study conducted by
BentoML (BentoML) uncovers that LMDeploy obtains the
best throughput performance with 4-bit quantization.

Second, LMDeploy offers a better way for faster develop-
ment of KV cache compression algorithms than vLLM. The
author of KVI has stated the challenges of integrating the
KIVI algorithm into vLLM as early as April 2024 (kiv). As
of now, there has been no significant progress on this front.

Third, our conclusions, except for Observation 2, do not
pertain to any specific serving features of the inference en-
gines. Consequently, they remain independent of the LLM
inference engine used. For Observation 2, our objective is
to explore the impact of KV cache compression methods
like sparsity and quantization on popular serving features
(e.g., Page Attention, Flash Attention) rather than focusing
on any particular serving engine. As long as the selected in-
ference engines support the efficient implementation of the
necessary serving features (Page Attention, FlashAttention),
it will not affect Observation 2.

B.5 Hardware Environment.

Our evaluation experiments are conducted on a GPU node
with four NVIDIA A6000 GPUs interconnected via NVLink
and powered by an Intel Xeon Gold 6326 CPU at 2.90 GHz.

C MORE RESULTS OF THROUGHPUT
ANALYSIS

We evaluate throughput performance on a GPU node with
four NVIDIA A6000 GPUs interconnected via NVLink and
powered by an Intel Xeon Gold 6326 CPU at 2.90 GHz. We
exclude the initialization overhead and average the through-
put performance over three times for fair comparison. We
add more experiments to demonstrate the generality of our
statement in the throughput analysis as follows.

First, we measure the prefill and decoding throughput on
TRL, TRL+FA, and LMD using Mistral-7B and LLaMA-
13B, depicted in Figure 8 (a-b) and Figure 10 (a-b), respec-
tively. The relative speedup of the StreamingLLM algorithm
in the decoding throughput varies across LLMs and serving
techniques, as shown in Figure 8 (c-d) and Figure 10 (c-d).
The high speedup from TRL does not mean the significant
speedup benefits.

Second, we measure the prefill and decoding throughput on
LMD with various batch and prompt lengths in Figure 8
(e-h) and Figure 10 (e-l). We have observed that these Large
Language Models (LLMs) show negative speedup in certain
prompt lengths and batch sizes, which is consistent with
the statement mentioned in Section 4. However, the prompt
lengths and batch sizes that lead to this disadvantage vary
among different LLMs. Worth noticing that in Figure 10, we

https://github.com/opengear-project/GEAR
https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention
https://github.com/InternLM/lmdeploy/tree/main
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Figure 8. Throughput analysis of Mistral-7B (a-b) The FP16 decoding throughput on TRL (with and without FlashAttention) and
LMDeploy (LMD). (c-d) The speedup of the KIVI-4bit algorithm on TRL and LMD. (e-h) The prefill and decoding throughput for inputs
of moderate size.
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Figure 9. Throughput analysis of LLaMA-7B, with KV cache compression algorithm SnapKV (Li et al., 2024b) integrated.

omit the throughput information for the KIVI-4 algorithm
due to the out-of-memory issue when evaluating on LLaMA-
13B with a single A6000 GPU.

Third, we present additional findings on tensor parallelism in
Figures 11, 12, 13, and 14. Performance improvements with
larger tensor parallelism (TP) are notably evident during the
prefill stage for various compression methods. However,
larger TP does not confer significant benefits in the decod-
ing stage when the batch size is small. Our observations
indicate that the throughput advantages derived from KV
cache compression typically become more pronounced
under heavy evaluation settings (e.g., batch size, KV length,
and model size).

D MORE RESULTS OF LENGTH ANALYSIS

First, we outline the configurations of the compression al-
gorithms in Section 4.3. For text generation, we fix the
temperature as 1 for the FP16 baseline and compression
methods. We also vary T to assess the impact of length
differences from the hyperparameter T in Table 5. For
quantization-based methods, we only vary the quantization

bits for KIVI and GEAR. For sparsity-based methods, we
only vary the KV cache length for StreamingLLM and
H2O. All other compression-related configurations remain
consistent with those detailed in Appendix B.3.

Second, we supply more experimental results on Mistral-7B
to demonstrate the generality of our statement in Obser-
vations 3 and 4, respectively. Particularly, we perform a
similar experimental analysis as Table 5 on Mistral-7B and
show the ratio (%) of samples experiencing response length
variations induced by temperature and KV cache compres-
sion in Table 9. Similar to the LLaMA model, KV cache
compression shows a clear tendency to produce verbose
responses in Mistral-7B. We also repeat the experiments in
Figure 4 and show the results of Mistral-7B in Figure 15.
The impact of the compression ratio on the response length
remains consistent between the LLaMA and Mistral. We
also measure the end-to-end latency for various compres-
sion algorithms on Mistral-7B, as shown in Figure 16. Our
observation is that the latency benefits of KV cache com-
pression are not prominent, and the verbose response length
should be accounted for performance measurement of vari-
ous KV cache compression.
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Figure 10. Throughput analysis of LLaMA-13B: (a-b) The FP16 decoding throughput on TRL (with and without FlashAttention) and
LMDeploy (LMD). (c-d) The speedup of the StreamingLLM algorithm on TRL and LMD. (e-h) The prefill throughput for various sizes
of inputs. (i-l) The decoding throughput for various sizes of inputs.
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Figure 11. Throughput analysis of LLaMA-7B, with different tensor parallelism configurations. (a-d) The throughput of quantization-
based methods. (e-h) The throughput of sparsity-based methods.

Third,
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Figure 12. Tensor parallelism analysis of LLaMA-13B. (a-d) The throughput of quantization-based methods. (e-h) The throughput of
sparsity-based methods.
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Figure 13. Tensor parallelism analysis of Mistral-7B. (a-d) The throughput of quantization-based methods. (e-h) The throughput of
sparsity-based methods.

Table 9. The results of length analysis similar to Table 5, but mea-
sured on Mistral-7B.

Metric T=0.9 T=1.1 KIVI GEAR H2O Stream

% of samples D of which ≥ 50% 45.1% 45.9 & 2.8% 0.8% 11.0% 17.3%
% of samples D of which ≤ −50% 17.7% 20.0 % 44.9% 49.4% 14.3% 16.3%

E MORE RESULTS OF NEGATIVE SAMPLE
ANALYSIS

First, the detailed task description of the Long-
Bench used in the negative sample analysis can be

found in https://huggingface.co/datasets/
THUDM/LongBench#task-description. It con-
tains the detailed task description of the LongBench dataset,
including the task name, task type, evaluation metric, and av-
erage length. We use the corresponding task type to collect
the number of negative samples.

Section 3.2 suggests that compression algorithms excel in
proceeding short prompt lengths with no accuracy loss.
Thus, we use LongBench and Llama-3.1-8B-instruct to con-

https://huggingface.co/datasets/THUDM/LongBench#task-description
https://huggingface.co/datasets/THUDM/LongBench#task-description
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Figure 14. Tensor parallelism analysis of LLaMA-70B. (a-d) The throughput of quantization-based methods. (e-h) The throughput of
sparsity-based methods.
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Figure 15. The Mistral-7B’s distribution of response length difference across different compression algorithms.
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Figure 16. The Mistral-7B’s CDF of the end-to-end latency (sec-
onds) of various algorithms.
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Figure 17. The threshold (x-axis) versus the number of negative
samples (y-axis) for quantization-based (a) and sparsity-based (b)
methods. The experimental results are measured on Mistral-7B.
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Figure 18. The pie chart details the proportion of negative samples
over task types across varying compression algorithms on Mistral.

duct negative sample analysis. We assess the average scores
of LLaMA-3.1-8B-instruct for baseline, KIVI, GEAR, H2O,
and StreamingLLM on the LongBench test dataset are 41.2,
41.3, 40.9, 39.1, and 38.9, respectively. We also cover
more experimental results about negative sample analysis
on Mistral-7B in Section 3.2. In Mistral-7B, the average
scores for baseline, KIVI, GEAR, H2O, and StreamingLLM
on the LongBench test dataset are 33.3, 33.4, 33.4, 31.8,
and 30.4, respectively. First, we vary the threshold in Algo-
rithm 1 to uncover the relationship between the threshold
and the number of negative samples on Mistral-7B, as shown
in Figure 15. We conclude that the minor accuracy loss from
compression algorithms does not indicate that each sample



experiences a minor performance loss. It is not easy to
eliminate the existence of negative samples. Second, we
present the sensitivity of task types to KV cache compres-
sion in Figure 18 on Mistral. Similar to LLaMA, performing
KV cache compression on Mistral-7B considerably affects
the accuracy performance on summarization and QA tasks.
Overall, the experimental results further reinforce our state-
ment in Section 4.4.

Table 10. The accuracy of the length predictor for Mistral-7B.
Tools FP16 KIVI GEAR H2O Stream

Length Predictor 92.6% 92.3% 88.8% 92.8% 89.5%

F THROUGHPUT PREDICTOR

We use Vidur’s released code9 to realize the throughput
predictor. The runtime time information of each oper-
ator in LLMs is profiled on A6000 NVIDIA RTX. The
key difference between different compression algorithms
and the FP16 baseline hinges upon the attention operation.
Hence, apart from attention operators, all other operators
are reused among different KV cache compression algo-
rithms. We enumerate various combinations of batch sizes,
sequence lengths, and stages to attain ample profiled runtime
speed information for LLaMA-7B and Mistral-7B. Vidur
provides the implementation code to construct and opti-
mize the throughput predictor. We define the accuracy as
(1− |T pred−T gt|

T gt )× 100%.

G LENGTH PREDICTOR

We collect the response length information from ShareGPT
to synthesize the response length dataset. To account for
the long-context prompt, we choose LongFormer with a
maximum sequence size of 4096. We set the input of the
length predictor as the input response and the target of the
length predictor as the ratio between the response length
and the prompt length. We define the accuracy as (1 −
|Lpred−Lgt|

Lgt ) × 100%. Table 6 has reported the prediction
results on LLaMA3-8B. We include the prediction results
on Mistral-7B in the second row of Table 10. Overall, the
bert-based length predictor can deliver accurate response
length prediction for LLaMA and Mistral models.

Table 11. The measured score of various algorithms evaluated on
the negative sample benchmark dataset and Mistral-7B using Long-
Bench’s provided metric.

Task Type Baseline KIVI GEAR H2O Stream

Summarization 27.2 15.2 16.6 15 11.1
Question Answering 26.8 17.6 16.4 18.0 15.4
Code 90.8 47.5 47.5 64.7 59.6

9https://github.com/microsoft/vidur

H PERFORMANCE ON NEGATIVE
BENCHMARK

We use the Mistral-7B and report the corresponding mea-
sured score on the negative sample benchmark dataset in
Table 11.

https://github.com/microsoft/vidur



