Explanation Of Revisions PDF

Review #1
W1: What is novel beyond CAESURA / Toolformer—DAG, re-planning, or
domain adaptation?

Our work does not build on CAESURA, though both share the concept of multi-modal exploration. We
propose a more advanced architecture using the LLM-Compiler, a successor to CAESURA's RaACT,
offering improved agent capabilities. Compared to Toolformer, our system introduces key elements such
as a DAG-based work plan and dynamic re-planning, which are absent in both Toolformer and
CAESURA.

We rephrased our contributions as:

The main contributions of our paper are as follows:

i.Unified DAG—first planning: The planner compiles a natural-language query directly into an
execution directed-acyclic graph (DAG); independent subtasks therefore run in parallel without a
second “physical-plan” stage.

ii. Self-debug & selective re-planning for speed: Each expert tool validates its own output
once; if a fault persists, the agent rewires only the affected sub-graph. This cuts end-to-end
latency by up to 51% and reduces token usage by 18 % on the ArtWork benchmark.

iii . Zero-shot cross-domain generalisation: With a single prompt set and no in-context
examples, M2EX attains up to 42 % higher answer accuracy than CAESURA and NeuralSQL
on ArtWork, RotoWire, and EHRXQA.

W4: Figure 1 needs more descriptive labels.

We provide Figure 1 to show the big picture of our proposed system architecture and provide a
detailed explanation and visualization in Section §3. We note that Figure 2 and Appendix A,
Figure 3 already contain a step-by-step visualization of the same pipeline applied to a real EHR
and ArtWork query, including labeled data-flow arrows and a walk-through of every DAG node.
To avoid redundancy while improving clarity,

We inserted a forward reference in Section §3: “A fully annotated DAG and end-to-end use-case
example appear in Figures 2 and 3”

Reviewer #2
W1: The paper lacks formal definitions, algorithmic descriptions, and
theoretical guarantees.



Section 3 contains Algorithm 1 (M?EX), which specifies every stage—planning, execution,
self-debug, and re-planning—in 26 numbered steps, including the data structures (S, G, R) and
control-flow conditions.

We revided as follow:

e Add a formal problem statement at the start of §3:
Given a multi-modal query q, a data lake D, a tool catalogue T with metadata T_meta,
our goal is to produce a directed acyclic task graph G = (V, E) and a final answer a such
that each node v € V is a (tool, args) pair, edges E encode data dependencies, the
execution of G is valid w.r.t. Tmeta, and maximises task-level answer accuracy.

e Add a complexity analysis.
Planning inspects |S| subtasks and calls ® once, costing O(|S| C_LLM) tokens (C_LLM
= context length processed by the language model). With unlimited workers, execution
latency is O(depth(G)); with p workers, it is bounded by depth(G) as well. Re-planning
only touches the affected sub-DAG, so its worst-case cost is strictly < the first planning
pass.

W3: No quantitative error analysis or discussion of failure cases.

A full error analysis across three datasets is already presented in Appendix D, Figure 6,
and accompanying text (pp. 16—18). This includes per-step failure localisation (planning vs.
text-to-SQL vs. VQA, etc.) and modality/output-type breakdowns.

We revised as follows:

Add a short table summarising the top three error sources.

Dataset System  Tasks Errors Dominant Error Source

ArtWork  CAESURA 30 20 Faulty plans; VOQA errors

MZEX 30 11 VQA errors only
RotoWire CAESURA 12 9 Text analysis; SQL faults
M7EX 12 4 Text analysis

EHRX(QA NeuralSQL 100 67  MN/A- no plan output
MZEX 100 49  VQA errors only

Table 3: Top-level error breakdown. See App. D for
details.

W4: Experimental comparison is limited; missing recent agent frameworks
and strong V-L models.



To ensure a fair comparison with previous works on the benchmark datasets, we used the same
V-L models to show the advantages of our proposed framework. We already applied a recent
agent framework, known as LLM-compiler [1], which outperforms the previous frameworks
such as ReACT [2] and ReWoo [3].

We added:

Recent multi-modal systems such as MAGMA (Doe et al., 2025), and LLaVA-Next (Li et al.,
2024a) extend vision-language reasoning via unified interfaces or tool-augmented agents. While
effective in visual grounding and tool invocation, these models primarily operate within
vision-only pipelines and lack support for structured reasoning over diverse data modalities. In
contrast, M2EX generalizes to a broader tool spectrum—including SQL, Python plotting, and
image-VQA—through explicit DAG planning and partial re-planning, enabling scalable,
interpretable execution across complex multi-modal queries. Closest to our work are CAESURA
(Urban and Binnig, 2024), PALIMPZEST (Liu et al., 2024a), and MAT (Gao et al., 2025), which
address multi-modal querying and Al workload optimization. In contrast, M2EX focuses on
efficient orchestration of model calls and dependencies, reducing latency and cost while
improving accuracy by minimizing interference from intermediate outputs (Schick et al., 2023)°.

3 CAESURA and MAT employ the ReAct agent framework, which leads to extended context
tokens and increased latency.

Reviewer #3

W1: No codebase or data is provided; this limits reproducibility.

We provide a link to our code and dataset in the paper, including:

The full M?EX planner + toolkit under MIT license (CLI and Python API);

all prompt templates and the auto-tool-metadata script (App. B);

cleaned excerpts of ArtWork, RotoWire, and the 100-question EHRXQA split
used in the paper (Sec. 4.1), together with instruction on how to get SQL dumps
and image assets.

The need for smaller EHRXQA splits and cost constraints is already discussed in
§4.1, lines 464-483.

Data and code repository are available at:
https://anonymous.4open.science/r/M2EX-paper-87C0/ README.md.

W2: No evaluation of the task-decomposition step.

We added this to the caption of Table 1 and 2:



https://anonymous.4open.science/r/M2EX-paper-87C0/

e Planner coverage (Gen.\ Plan) is 100% on ArtWork and RotoWire, indicating
reliable task decomposition across domains.

e Planner coverage (Generated Plan) is 98% on EHRXQA, indicating reliable task
decomposition across domains.

We annotated all queries with gold sub-task sets for error analysis and will release this dataset
alongside our code.

W3: Missing recent multi-modal LLM-agent work.
We added:

Recent multi-modal systems such as MAGMA (Doe et al., 2025), and LLaVA-Next (Li et al.,
2024a) extend vision-language reasoning via unified interfaces or tool-augmented agents. While
effective in visual grounding and tool invocation, these models primarily operate within
vision-only pipelines and lack support for structured reasoning over diverse data modalities. In
contrast, M2EX generalizes to a broader tool spectrum—including SQL, Python plotting, and
image-VQA—through explicit DAG planning and partial re-planning, enabling scalable,
interpretable execution across complex multi-modal queries. Closest to our work are CAESURA
(Urban and Binnig, 2024), PALIMPZEST (Liu et al., 2024a), and MAT (Gao et al., 2025), which
address multi-modal querying and Al workload optimization. In contrast, M2EX focuses on
efficient orchestration of model calls and dependencies, reducing latency and cost while
improving accuracy by minimizing interference from intermediate outputs (Schick et al., 2023)3.

3 CAESURA and MAT employ the ReAct agent framework, which leads to extended context
tokens and increased latency.

W5: Which methods execute the sub-tasks (text-to-SQL, image analysis)?

We provided the following table, and refer to it in the text:

A complete mapping of subtasks to expert models/tools and prompt types is provided in Table 4
(Appendix C).

C Tools, Models, and Prompts by Subtask

Task Tool / Model Prompt Type

Text-to-SQL translation GPT-40 text2SQL prompt

Text analysis GPT-40 text_analysis prompt

ArtWork VQA BLIP-2 no prompt

Medical image (EHRXQA) VQA M3AE no prompt

Data preparation GPT-40 and Python (Pandas) data_preparation pormpt and Code via LLM output
Plot generation GPT-40 and Matplotlib + Pandas  data_plotting prompt and Chart Code via LLM output
DAG construction (planning/replannig)  GPT-4o (Planner loop) planner Prompt / replanning prompt

Decision Making GPT-40 decision making prompt

Table 4: Subtasks, their associated tools/models, and prompt styles used in M2EX. Most tool invocations are
zern-shot or temnlate-hased.







