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A Figures and Notations
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Figure A.1: The Lambert𝑊 function. The upper branch (in blue) is the graph of principal branch𝑊0.
The lower branch (in orange) is the graph of𝑊−1.
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Figure A.2: Values of supremum of KL divergence shown on a logarithmic scale.

Notations. Table A.1 shows a full list of the notations used in this paper.

Table A.1: Notations.

𝑓 (𝑥) 𝑥 − log 𝑥 (𝑥 ∈ R++)
𝑊 (𝑥) the Lambert𝑊 function
𝑊0 (𝑥) the principal branch (branch 0) of𝑊 (𝑥)
𝑊−1 (𝑥) the branch −1 of𝑊 (𝑥)
𝑤1 (𝑡) the smaller solution of 𝑓 (𝑥) = 1 + 𝑡 (𝑡 ≥ 0)
𝑤2 (𝑡) the larger solution of 𝑓 (𝑥) = 1 + 𝑡 (𝑡 ≥ 0)

f̄ (𝑥1, . . . , 𝑥𝑛)
∑𝑛
𝑖=1 𝑓 (𝑥𝑖)

𝜆 the eigenvalue of matrix
𝜆∗ the largest eigenvalue of matrix
𝜆∗ the least eigenvalue of matrix
𝑓𝑙 (𝑥) 𝑓 (1 − 𝑥) − 1 (0 ≤ 𝑥 < 1)
𝑓𝑟 (𝑥) 𝑓 (𝑥 + 1) − 1 (𝑥 ≥ 0)
𝑔𝑙 (𝜀) 𝑓 −1

𝑙
(𝜀), the inverse function of 𝑓𝑙

𝑔𝑟 (𝜀) 𝑓 −1
𝑟 (𝜀), the inverse function of 𝑓𝑟

N(0, 𝐼) standard Gaussian distribution, dimension 𝑛 is eliminated for brevity

B Lemmas Related to 𝑓 (𝑥)

The following Lemma B.1 will be used in all other parts of this paper. Lemma B.1 uses the Lambert
𝑊 function frequently, which has the following derivative.

𝑊 ′ (𝑥) = 1
𝑥 + 𝑒𝑊 (𝑥 ) =

𝑊 (𝑥)
𝑥(1 +𝑊 (𝑥)) (𝑥 ≠ 0,−𝑒−1) (B.1)

Lemma B.1 Given function 𝑓 (𝑥) = 𝑥 − log 𝑥 (𝑥 ∈ R++) (R++ is the set of positive real numbers), the
following propositions hold.

(a) 𝑓 (𝑥) is strictly convex and takes the minimum value 1 at 𝑥 = 1.
(b) 𝑓 (𝑥) > 𝑓 (1/𝑥) for 𝑥 > 1 and 𝑓 (𝑥) < 𝑓 (1/𝑥) for 0 < 𝑥 < 1.
(c) The inverse function of 𝑓 is 𝑓 −1 (𝑥) = −𝑊 (−𝑒−𝑥) (𝑥 ≥ 1).
(d) The solutions of equation 𝑥 − log 𝑥 = 1 + 𝑡 (𝑡 ≥ 0) are 𝑤1 (𝑡) = −𝑊0 (−𝑒−(1+𝑡 ) ) ∈ (0, 1]

and 𝑤2 (𝑡) = −𝑊−1 (−𝑒−(1+𝑡 ) ) ∈ [1, +∞). It is easy to know 𝑤1 (0) = 𝑤2 (0) = 1. We treat
𝑤1 (𝑡), 𝑤2 (𝑡) as functions of 𝑡.
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(e) The derivatives of 𝑤1 (𝑡) and 𝑤2 (𝑡) are

𝑤′
1 (𝑡) =

−𝑤1 (𝑡)
1 − 𝑤1 (𝑡)

=
𝑊0 (−𝑒−(1+𝑡 ) )

𝑊0 (−𝑒−(1+𝑡 ) ) + 1
< 0 (B.2)

𝑤′
2 (𝑡) =

−𝑤2 (𝑡)
1 − 𝑤2 (𝑡)

=
𝑊1 (−𝑒−(1+𝑡 ) )

𝑊1 (−𝑒−(1+𝑡 ) ) + 1
> 0 (B.3)

(f) For 𝑡 > 0, 𝑓 (𝑤1 (𝑡)) < 𝑓 ( 1
𝑤1 (𝑡 ) ), 𝑓 (

1
𝑤2 (𝑡 ) ) < 𝑓 (𝑤2 (𝑡)).

(g) If 𝑓 (𝑥) ≤ 1 + 𝑡 (𝑡 ≥ 0), then 𝑤1 (𝑡) ≤ 𝑥 ≤ 𝑤2 (𝑡) and

𝑆(𝑡) = sup
𝑡≥0

𝑓 (𝑥) ≤1+𝑡

𝑓
(1
𝑥

)
= 𝑓 ( 1

𝑤1 (𝑡)
) (B.4)

(h) If 𝑓 (𝑥) ≥ 1 + 𝑡 (𝑡 ≥ 0), then 0 < 𝑥 ≤ 𝑤1 (𝑡) ∨ 𝑥 ≥ 𝑤2 (𝑡) and

𝐼 (𝑡) = inf
𝑡≥0

𝑓 (𝑥) ≥1+𝑡

𝑓 ( 1
𝑥
) = 𝑓 ( 1

𝑤2 (𝑡)
) (B.5)

(i) For 𝑡 ≥ 0, 𝑓 ′ (𝑤2 (𝑡)) ≤ − 𝑓 ′ ( 1
𝑤2 (𝑡 ) ).

(j) For 𝑡1, 𝑡2 ≥ 0,

𝑓 (𝑤1 (𝑡1)𝑤2 (𝑡2)) = 𝑡1 + 𝑡2 + 2 + 𝑤1 (𝑡1)𝑤1 (𝑡2) − 𝑤1 (𝑡1) − 𝑤1 (𝑡2) (B.6)
𝑓 (𝑤2 (𝑡1)𝑤2 (𝑡2)) = 𝑡1 + 𝑡2 + 2 + 𝑤2 (𝑡1)𝑤2 (𝑡2) − 𝑤2 (𝑡1) − 𝑤2 (𝑡2) (B.7)

Proof 1 (a) This is because 𝑓 ′ (𝑥) = 1 − 1
𝑥
, 𝑓 ′′ (𝑥) = 1

𝑥2 > 0
(b) We note Δ(𝑥) = 𝑓 ( 1

𝑥
) − 𝑓 (𝑥) = 1

𝑥
− 𝑥 + 2 log 𝑥. Then Δ′ (𝑥) = −( 1

𝑥
− 1)2 ≤ 0 and Δ(1) = 0

So it is easy to know Lemma B.1b holds.
(c) We can verify this by definition.

𝑦 − log 𝑦 = 𝑥 ⇐⇒ 𝑒𝑦−𝑥 = 𝑦 ⇐⇒ (−𝑦)𝑒−𝑦 = −𝑒−𝑥 ⇐⇒ 𝑦 = −𝑊 (−𝑒−𝑥)

(d) We can get Lemma B.1d from B.1c immediately.
(e) According to Equation (B.1), we can have

d𝑤1 (𝑡)
d𝑡

= − d(𝑊0 (−𝑒−(1+𝑡 ) ))
d𝑡

=
−𝑊0 (−𝑒−(1+𝑡 ) )

−𝑒−(1+𝑡 ) (1 +𝑊0 (−𝑒−(1+𝑡 ) ))
× d(−𝑒−(1+𝑡 ) )

d𝑡

=
𝑊0 (−𝑒−(1+𝑡 ) )

𝑊0 (−𝑒−(1+𝑡 ) ) + 1
=

−𝑤1 (𝑡)
1 − 𝑤1 (𝑡)

The derivative of 𝑤2 (𝑡) can be computed in a similar way.
(f) From Lemma B.1b, we can know Lemma B.1f.
(g) This is because

𝑓 (𝑥) ≤ 1 + 𝑡 =⇒ 𝑤1 (𝑡) < 𝑥 < 𝑤2 (𝑡) =⇒
1

𝑤2 (𝑡)
<

1
𝑥
<

1
𝑤1 (𝑡)

Combining Lemma B.1b, we have

𝑓 ( 1
𝑤2 (𝑡)

) < 𝑓 (𝑤2 (𝑡)) = 1 + 𝑡 = 𝑓 (𝑤1 (𝑡)) < 𝑓 ( 1
𝑤1 (𝑡)

)

Thus Equation (B.4) holds. It is also easy to know that 𝑆(𝑡) = 𝑓 ( 1
𝑤1 (𝑡 ) ) is continuous and

strictly increasing with 𝑡.
(h) We have

𝑓 (𝑥) ≥ 1 + 𝑡 =⇒ 𝑥 ≤ 𝑤1 (𝑡) ∨ 𝑥 ≥ 𝑤2 (𝑡) =⇒ 1
𝑥
≤ 1
𝑤2 (𝑡)

∨ 1
𝑥
≥ 1
𝑤1 (𝑡)

(B.8)

Combining Lemma B.1b, we have 𝑓 ( 1
𝑤2 (𝑡 ) ) < 𝑓 ( 1

𝑤1 (𝑡 ) ), so we have Lemma B.1h.
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(i) Since 𝑓 ′ (𝑥) = 1 − 1
𝑥

and 𝑤2 (𝑡) ≥ 1 for 𝑡 ≥ 0, we have

𝑓 ′ (𝑤2 (𝑡)) = 1 − 1
𝑤2 (𝑡)

=
𝑤2 (𝑡) − 1
𝑤2 (𝑡)

≤ 𝑤2 (𝑡) − 1 = −
©­­­«1 − 1

1
𝑤2 (𝑡)

ª®®®¬ = − 𝑓 ′ ( 1
𝑤2 (𝑡)

) (B.9)

(j)

𝑓 (𝑤1 (𝑡1)𝑤1 (𝑡2))
=𝑤1 (𝑡1)𝑤1 (𝑡2) − log𝑤1 (𝑡1)𝑤1 (𝑡2)
=𝑤1 (𝑡1)𝑤1 (𝑡2) + (𝑤1 (𝑡1) − log𝑤1 (𝑡1)) + (𝑤1 (𝑡2) − log𝑤1 (𝑡2)) − 𝑤1 (𝑡1) − 𝑤1 (𝑡2)
=𝑤1 (𝑡1)𝑤1 (𝑡2) + 1 + 𝑡1 + 1 + 𝑡2 − 𝑤1 (𝑡1) − 𝑤1 (𝑡2)
=𝑡1 + 𝑡2 + 2 + 𝑤1 (𝑡1)𝑤1 (𝑡2) − 𝑤1 (𝑡1) − 𝑤1 (𝑡2) (B.10)

where the third equation follows from Lemma B.1d. Equation (B.7) can be proved in a
similar way.

□

C Proof of Lemma 1

To prove Lemma 1 (Section 4.1 in the main context), we need to prove the following Lemma C.2 in
Subsection C.1 first. Then we prove Lemma 1a and 1b in Subsection C.2 and C.3, respectively.

C.1 Lemma

Lemma C.2 Given 𝑛-ary function f̄ (x) = f̄ (𝑥1, . . . , 𝑥𝑛) =
∑𝑛

𝑖=1 𝑥𝑖 − log 𝑥𝑖 (𝑥𝑖 ∈ R++), if
f̄ (𝑥1, . . . , 𝑥𝑛) ≤ 𝑛 + 𝜀(𝜀 > 0), then

sup f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) = 1
−𝑊0 (−𝑒−(1+𝜀) )

− log
1

−𝑊0 (−𝑒−(1+𝜀) )
+ 𝑛 − 1 (C.11)

The supremum is attained when there exists only one 𝑗 such that 𝑓 (𝑥 𝑗 ) = 1 + 𝜀 and 𝑓 (𝑥𝑖) = 1 for
𝑖 ≠ 𝑗 .

Proof 2 We want to solve the following optimization problem analytically.

maximize f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) (C.12)

s.t. f̄ (𝑥1, . . . , 𝑥𝑛) ≤ 𝑛 + 𝜀 (C.13)

Since 𝑓 (𝑥) ≥ 1, the constraint f̄ (𝑥1, . . . , 𝑥𝑛) =
∑𝑛

𝑖=1 𝑓 (𝑥𝑖) =
∑𝑛

𝑖=1 𝑥𝑖 − log 𝑥𝑖 ≤ 𝑛+𝜀 can be replaced
by the following constraints(

𝑛∧
𝑖=1

𝑓 (𝑥𝑖) = 𝑥𝑖 − log 𝑥𝑖 ≤ 1 + 𝜀𝑖

)
∧

(
𝑛∧
𝑖=1
𝜀𝑖 ≥ 0

)
∧

𝑛∑︁
𝑖=1

𝜀𝑖 ≤ 𝜀 (C.14)

Given fixed 𝜀1, . . . , 𝜀𝑛 such that
∧𝑛

𝑖=1 𝜀𝑖 ≥ 0 ∧ ∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝜀, we define

S̄ (𝜀1, . . . , 𝜀𝑛) = sup∧𝑛
𝑖=1 𝑓 (𝑥𝑖 )≤1+𝜀𝑖

f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) =
𝑛∑︁
𝑖=1

sup
𝑓 (𝑥𝑖 )≤1+𝜀𝑖

𝑓 ( 1
𝑥𝑖
) =

𝑛∑︁
𝑖=1

𝑆(𝜀𝑖) (C.15)

So we have

sup f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) = sup∧𝑛
𝑖=1 𝜀𝑖 ≥0∑𝑛
𝑖=1 𝜀𝑖 ≤𝜀

S̄ (𝜀1, . . . , 𝜀𝑛) (C.16)

It is easy to know that S̄ (𝜀1, . . . , 𝜀𝑛) is continuous and strictly increasing with 𝜀1, . . . , 𝜀𝑛. So the
condition

∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝜀 in Equation (C.16) can be changed to

∑𝑛
𝑖=1 𝜀𝑖 = 𝜀.
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The remaining proof consists of two steps. In step 1, we find S̄ (𝜀1, . . . , 𝜀𝑛) for fixed 𝜀1, . . . , 𝜀𝑛. In
step 2, we find sup S̄ (𝜀1, . . . , 𝜀𝑛) for any 𝜀1, . . . , 𝜀𝑛 satisfying

∧𝑛
𝑖=1 𝜀𝑖 ≥ 0 ∧ ∑𝑛

𝑖=1 𝜀𝑖 = 𝜀.

Step 1: According to Lemma B.1g, for fixed 𝜀𝑖 we get

𝑆(𝜀𝑖) = sup
𝑓 (𝑥 )≤1+𝜀𝑖

𝑓 ( 1
𝑥
) = 𝑓 ( 1

𝑤1 (𝜀𝑖)
) (C.17)

Plugging Equation (C.17) into Equation (C.15), we get

S̄ (𝜀1, . . . , 𝜀𝑛) =
𝑛∑︁
𝑖=1

𝑓 ( 1
𝑤1 (𝜀𝑖)

) (C.18)

Step 2: We define function

Δ(𝜀) = 𝑓 ( 1
𝑤1 (𝜀)

) − 𝑓 (𝑤1 (𝜀)) =
1

𝑤1 (𝜀)
− 𝑤1 (𝜀) + 2 log𝑤1 (𝜀) (C.19)

Now we prove

Δ(𝑡𝜀) ≤ 𝑡Δ(𝜀) (0 ≤ 𝑡 < 1) (C.20)

When 𝜀 = 0, it is trivial to verify that Δ(0) = 0. In the following we show that Δ(𝜀) is strictly
increasing and strictly convex. It is easy to know dΔ(𝜀)

d𝑤1
= − 1

𝑤2
1
+ 2

𝑤1
− 1. Combining Lemma B.1e, the

derivative of Δ(𝜀) is

dΔ(𝜀)
d𝜀

=
dΔ(𝜀)
d𝑤1

× d𝑤1 (𝜀)
d𝜀

=

(
− 1
𝑤1 (𝜀)2 + 2

𝑤1 (𝜀)
− 1

)
× −𝑤1 (𝜀)

1 − 𝑤1 (𝜀)
=

1
𝑤1 (𝜀)

− 1

The second order derivative of Δ(𝜀) is

d2Δ(𝜀)
d𝜀2 = − 1

𝑤1 (𝜀)2
−𝑤1 (𝜀)

1 − 𝑤1 (𝜀)
=

1
𝑤1 (𝜀) (1 − 𝑤1 (𝜀))

Since 𝑤1 (𝜀) ∈ (0, 1) for 𝜀 > 0, it is easy to know dΔ(𝜀)
d𝜀 > 0, d2Δ(𝜀)

d𝜀2 > 0 for 𝜀 > 0. This indicates
that Δ(𝜀) is strictly increasing and strictly convex on (0, +∞). Thus, for any 𝜀′, 𝜀′′ > 0, we have
Δ((1 − 𝑡)𝜀′ + 𝑡𝜀′′) < (1 − 𝑡)Δ(𝜀′) + 𝑡Δ(𝜀′′) for any 0 < 𝑡 < 1. Remember that we have known
Δ(0) = 0. Since Δ(𝜀) is continuous, it is easy to know

Δ(𝑡𝜀′′) = lim
𝜀′→0

Δ((1 − 𝑡)𝜀′ + 𝑡𝜀′′) ≤ lim
𝜀′→0

(1 − 𝑡)Δ(𝜀′) + 𝑡Δ(𝜀′′) = 𝑡Δ(𝜀′′) (C.21)

Thus, we can obtain Equation (C.20).

Therefore, for any 𝜀1, . . . , 𝜀𝑛 satisfying
∧𝑛

𝑖=1 𝜀𝑖 ≥ 0 ∧ ∑𝑛
𝑖=1 𝜀𝑖 = 𝜀, we have

𝚫̄(𝜀1, . . . , 𝜀𝑛) =
𝑛∑︁
𝑖=1

𝑓 ( 1
𝑤1 (𝜀𝑖)

) − 𝑓 (𝑤1 (𝜀𝑖)) =
𝑛∑︁
𝑖=1

Δ(𝜀𝑖) =
𝑛∑︁
𝑖=1

Δ( 𝜀𝑖
𝜀
𝜀) ≤

𝑛∑︁
𝑖=1

𝜀𝑖

𝜀
Δ(𝜀) = Δ(𝜀)

(C.22)

Inequality (C.22) is tight when there exists only one 𝑗 such that 𝜀 𝑗 = 𝜀 and 𝜀𝑖 = 0 for all 𝑖 ≠ 𝑗 . This
means that for any 𝜀1, . . . , 𝜀𝑛 satisfying

∧𝑛
𝑖=1 𝜀𝑖 ≥ 0 ∧ ∑𝑛

𝑖=1 𝜀𝑖 = 𝜀, the following inequality holds.

S̄ (𝜀1, . . . , 𝜀𝑛)

=
∑𝑛

𝑖=1 𝑓 (
1

𝑤1 (𝜀𝑖)
)

≤Δ(𝜀) + ∑𝑛
𝑖=1 𝑓 (𝑤1 (𝜀𝑖))

=
1

𝑤1 (𝜀)
− log

1
𝑤1 (𝜀)

− (𝑤1 (𝜀) − log𝑤1 (𝜀)) +
∑𝑛

𝑖=1 (1 + 𝜀𝑖)

=
1

𝑤1 (𝜀)
− log

1
𝑤1 (𝜀)

− (1 + 𝜀) + 𝑛 + 𝜀

=
1

𝑤1 (𝜀)
− log

1
𝑤1 (𝜀)

+ 𝑛 − 1

=
1

−𝑊0 (−𝑒−(1+𝜀) )
− log

1
−𝑊0 (−𝑒−(1+𝜀) )

+ 𝑛 − 1 (C.23)

(C.18)

(C.22)

Lemma B.1d
(C.19)
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Finally, we have

sup f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) = sup∧𝑛
𝑖=1 𝜀𝑖 ≥0∑𝑛
𝑖=1 𝜀𝑖 ≤𝜀

S̄ (𝜀1, . . . , 𝜀𝑛) =
1

−𝑊0 (−𝑒−(1+𝜀) )
− log

1
−𝑊0 (−𝑒−(1+𝜀) )

+ 𝑛 − 1

(C.24)

f̄ (1/𝑥1, . . . , 1/𝑥𝑛) reaches its supremum when there exists only one 𝑗 such that 𝑓 (𝑥 𝑗 ) = 1 + 𝜀 and
𝑓 (𝑥𝑖) = 1 for 𝑖 ≠ 𝑗 .

□

C.2 Proof of Lemma 1a

Proof 3 According to the definition of KL divergence, we have

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) =1
2

(
− log |𝚺 | + Tr(𝚺) + µ⊤µ − 𝑛

)
𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) =1

2

(
log |𝚺 | + Tr(𝚺−1) + µ⊤𝚺−1µ − 𝑛

)
where 𝑛 is the dimension of the distribution. The positive definite matrix 𝚺 has factorization
𝚺 = 𝑃𝐷𝑃⊤ where 𝑃 is an orthogonal matrix whose columns are the eigenvectors of 𝚺, 𝐷 =

𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛) (𝜆𝑖 > 0) whose diagonal elements are the corresponding eigenvalues. We also have

|𝚺 | = |𝑃 | |𝐷 | |𝑃⊤ | = |𝐷 | =
𝑛∏
𝑖=1

𝜆𝑖 (C.25)

log |𝚺 | =
𝑛∑︁
𝑖=1

log𝜆𝑖 ,− log |𝚺 | =
𝑛∑︁
𝑖=1

log
1
𝜆𝑖

(C.26)

Tr(𝚺) = Tr(𝑃𝐷𝑃⊤) = Tr(𝑃⊤𝑃𝐷) = Tr(𝐷) =
𝑛∑︁
𝑖=1

𝜆𝑖 (C.27)

Tr(𝚺−1) =
𝑛∑︁
𝑖=1

𝜆′𝑖 =
𝑛∑︁
𝑖=1

1
𝜆𝑖

(C.28)

where 𝜆′
𝑖
= 1/𝜆𝑖 are eigenvalues of 𝚺−1.

If 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≤ 𝜀, we have − log |𝚺 | + Tr(𝚺) + µ⊤µ − 𝑛 ≤ 2𝜀. This condition is equal
to the following conditions

− log |𝚺 | + Tr(𝚺) =
𝑛∑︁
𝑖=1

𝜆𝑖 − log𝜆𝑖 ≤ 𝑛 + 𝜀1 (C.29)

µ⊤µ ≤ 2𝜀 − 𝜀1 (C.30)
0 ≤ 𝜀1 ≤ 2𝜀 (C.31)

In the following, we find the maximum of log |𝚺 | +Tr(𝚺−1) and µ⊤𝚺−1µ, respectively. From Equation
(C.29), we have

𝑛∑︁
𝑖=1

𝜆𝑖 − log𝜆𝑖 ≤ 𝑛 + 𝜀1 (C.32)

Applying Lemma C.2 on Inequality (C.32), we can obtain
𝑛∑︁
𝑖=1

1
𝜆𝑖

− log
1
𝜆𝑖

= log |𝚺 | + Tr(𝚺−1) ≤ 1
−𝑊0 (−𝑒−(1+𝜀1 ) )

− log
1

−𝑊0 (−𝑒−(1+𝜀1 ) )
+ 𝑛 − 1 (C.33)

Moreover, since 𝑓 (𝑥) = 𝑥 − log 𝑥 takes the minimum value 𝑓 (1) = 1 at 𝑥 = 1, it is easy to know
𝜆𝑖 − log𝜆𝑖 ≤ 1 + 𝜀1 from Inequality (C.32). According to Lemma B.1g, we know

𝑤1 (𝜀1) ≤ 𝜆𝑖 ≤ 𝑤2 (𝜀1),
1

𝑤2 (𝜀1)
≤ 𝜆′𝑖 =

1
𝜆𝑖

≤ 1
𝑤1 (𝜀1)

(C.34)
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We also have µ⊤𝚺−1µ ≤ 𝜆′∗µ⊤µ where 𝜆′∗ is the maximum eigenvalue of 𝚺−1. Combining Equation
(C.30) and (C.34), we can know

µ⊤𝚺−1µ ≤ 𝜆′∗ (2𝜀 − 𝜀1) ≤
2𝜀 − 𝜀1
𝑤1 (𝜀1)

(C.35)

Now note that Inequalities (C.33) and (C.35) are tight simultaneously when there exists one 𝜆 𝑗 =

𝑤1 (𝜀1) and all other 𝜆𝑖 = 1 for 𝑖 ≠ 𝑗 . Thus, we can add the two sides of Inequalities (C.33) and
(C.35) and get

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺))

=
1
2

(
log |𝚺 | + Tr(𝚺−1) + µ⊤𝚺−1µ − 𝑛

)
≤1

2

(
1

−𝑊0 (−𝑒−(1+𝜀1 ) )
− log

1
−𝑊0 (−𝑒−(1+𝜀1 ) )

+ 𝑛 − 1 +2𝜀 − 𝜀1
𝑤1 (𝜀1)

− 𝑛
)

=
1
2

(
1 + 2𝜀 − 𝜀1
𝑤1 (𝜀1)

− log
1

𝑤1 (𝜀1)
− 1

)
(C.36)

=𝑈 (𝜀1) (0 ≤ 𝜀1 ≤ 2𝜀)

Notice that the derivative of𝑈 (𝜀1) is

𝑈′ (𝜀1) =
1
2

(
𝑤1 (𝜀1) + 2𝜀 − 𝜀1
𝑤1 (𝜀1) (1 − 𝑤1 (𝜀1))

− 1
1 − 𝑤1 (𝜀1)

)
=

1
2

2𝜀 − 𝜀1
𝑤1 (𝜀1) (1 − 𝑤1 (𝜀1))

(C.37)

Since 𝑤1 (𝜀1) ∈ (0, 1) for 𝜀1 > 0 and 0 ≤ 𝜀1 ≤ 2𝜀, we can know𝑈′ (𝜀1) ≥ 0 for 𝜀1 > 0. Thus,𝑈 (𝜀1)
takes the maximum value at 𝜀1 = 2𝜀. Finally, we have

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≤ 𝑈 (2𝜀) = 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

(C.38)

Inequality (C.38) is tight only when there exists one 𝜆 𝑗 = −𝑊0 (−𝑒−(1+2𝜀) ) and all other 𝜆𝑖 = 1 for
𝑖 ≠ 𝑗 , and |µ| = 0.

We can see that when 𝜀 is small, the right hand side (RHS) of Equation (C.38) is also small.

□

C.3 Proof of Lemma 1b

Proof 4 The proof of Lemma 1b is similar as that for Lemma 1a. We list it here for clarity.

The condition 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≤ 𝜀 is equal to the following conditions

log |𝚺 | + Tr(𝚺−1) ≤ 𝑛 + 𝜀1 (C.39)

µ⊤𝚺−1µ ≤ 2𝜀 − 𝜀1 (C.40)
0 ≤ 𝜀1 ≤ 2𝜀 (C.41)

We can apply Lemma C.2 on Equation (C.39) and get

− log |𝚺 | + Tr(𝚺) ≤ 1
−𝑊0 (−𝑒−(1+𝜀1 ) )

− log
1

−𝑊0 (−𝑒−(1+𝜀1 ) )
+ 𝑛 − 1 (C.42)

Applying Lemma B.1g on Equation (C.39), we get

𝑤1 (𝜀1) < 𝜆′ < 𝑤2 (𝜀1) (C.43)

From Equation (C.40) we know µ⊤𝚺−1µ ≤ 2𝜀 − 𝜀1. Since µ⊤𝚺−1µ ≥ 𝜆′∗µ
⊤µ where 𝜆′∗ is the

minimum eigenvalue of 𝚺−1, combining Equation (C.43), we can know

µ⊤µ ≤ 2𝜀 − 𝜀1
𝜆′∗

≤ 2𝜀 − 𝜀1
𝑤1 (𝜀1)

(C.44)
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Adding the two sides of Inequalities (C.42), and (C.44), we get the same result as Equation (C.36).
Therefore, we can get the same supremum as follows.

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

(C.45)

Inequality (C.45) is tight only when there exists one 𝜆′
𝑗
= −𝑊0 (−𝑒−(1+2𝜀) ) and all other 𝜆′

𝑖
= 1 for

𝑖 ≠ 𝑗 , and |µ| = 0.

□

D Proof of Theorem 1

Before our proof, we recall the following proposition which states that diffeomorphism preserves KL
divergence ( 𝑓 -divergence) [14].

Proposition D.1 (See [14]) Let z = 𝑓 (x) be a diffeomorphism, 𝑋1 ∼ 𝑝𝑋 and 𝑋2 ∼ 𝑞𝑋 be two
random variables and 𝑍1 = 𝑓 (𝑋1) ∼ 𝑝𝑍 , 𝑍2 = 𝑓 (𝑋2) ∼ 𝑞𝑍 . Then 𝐾𝐿 (𝑝𝑋 | |𝑞𝑋) = 𝐾𝐿 (𝑝𝑍 | |𝑞𝑍 ).

Proof 5 For 𝑋 ∼ N(µ,𝚺), there exists an invertible matrix 𝐵 such that 𝑋 ′ = 𝐵−1 (𝑋 −µ) ∼ N (0, 𝐼)
[4]. Here 𝐵 = 𝑃𝐷1/2, 𝑃 is an orthogonal matrix whose columns are the eigenvectors of 𝚺, 𝐷 =

𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛) whose diagonal elements are the corresponding eigenvalues. For 𝑋1 ∼ N(µ1,𝚺1)
and 𝑋2 ∼ N(µ2,𝚺2), we define the following linear transformations 𝑇1, 𝑇2

𝑋1
1 = 𝑇1 (𝑋1) = 𝐵−1

1 (𝑋1 − µ1) such that 𝑋1
1 ∼ N(0, 𝐼) (D.46)

𝑋2
2 = 𝑇2 (𝑋2) = 𝐵−1

2 (𝑋2 − µ2) such that 𝑋2
2 ∼ N(0, 𝐼) (D.47)

and the reverse transformations 𝑇−1
1 , 𝑇−1

2 such that 𝑋1 = 𝑇−1
1 (𝑋1

1 ) = 𝐵1𝑋
1
1 +µ1 and 𝑋2 = 𝑇−1

2 (𝑋2
2 ) =

𝐵2𝑋
2
1 + µ2, where 𝑝𝑋1

1
= 𝑝𝑋2

2
= N(0, 𝐼). Besides, it is easy to know 𝑋2

1 = 𝑇2 (𝑋1) = 𝐵−1
2 (𝑋1 − µ2)

and 𝑋1
2 = 𝑇1 (𝑋2) = 𝐵−1

1 (𝑋2 − µ1) are both Gaussian variables. We also have

𝑋2
1 ∼ N(𝐵−1

2 (µ1 − µ2), 𝐵−1
2 𝚺1 (𝐵−1

2 )⊤), 𝑋1
2 ∼ N(𝐵−1

1 (µ2 − µ1), 𝐵−1
1 𝚺2 (𝐵−1

1 )⊤) (D.48)

With the help of invertible linear transformations, we can convert the KL divergence between two
arbitrary Gaussians into that between one Gaussian and standard Gaussian. According to Proposition
D.1, diffeomorphisms preserve KL divergence. If we apply 𝑇2 simultaneously on 𝑋1, 𝑋2, we can have

𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) = 𝐾𝐿 (𝑝𝑋2
1
| |𝑝𝑋2

2
) = 𝐾𝐿 (𝑝𝑋2

1
| |N (0, 𝐼)) (D.49)

Then we can apply 𝑇−1
2 on 𝑋2

1 , 𝑋2
2 and also have

𝐾𝐿 (N (0, 𝐼) | |𝑝𝑋2
1
) = 𝐾𝐿 (𝑝𝑋2

2
| |𝑝𝑋2

1
) = 𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) (D.50)

According to precondition, it is easy to know 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) = 𝐾𝐿 (𝑝𝑋2
1
| |N (0, 𝐼)).

Applying Theorem 1a on 𝐾𝐿 (𝑝𝑋2
1
| |N (0, 𝐼)), we can prove

𝐾𝐿 (N (0, 𝐼) | |𝑝𝑋2
1
) = 𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) ≤

1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

(D.51)
Similarly, if we use 𝑇1 simultaneously on 𝑋1 and 𝑋2, we can get the same result.

Inequality (D.51) is tight when there exists only one eigenvalue 𝜆 𝑗 of 𝐵−1
2 𝚺1 (𝐵−1

2 )⊤ or 𝐵−1
1 𝚺2 (𝐵−1

1 )⊤
is equal to −𝑊0 (−𝑒−(1+2𝜀) ) and all other eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are equal to 1, and µ1 = µ2.

□

E Proof of Theorem 2

Proof 6 When 𝜀 is small, we can use the series expanding𝑊0 (see Section III.17 in [7]) to simplify
the bound in Theorem 1.
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Notice that when 𝜀 is small, −𝑊0 (−𝑒−(1+2𝜀) ) is close to 1. According to the series expanding𝑊0 (see
Section III.17 in [7]), we have

𝑊0 (−𝑒−(1+2𝜀) ) = −1 + 2
√
𝜀 − 4

3
𝜀 + 2

9
𝜀1.5 +𝑂 (𝜀2) (E.52)

Now expand the log term around −𝑊0 (−𝑒−(1+2𝜀) ) = 1 using Taylor series for small 𝜀.

log(−𝑊0 (−𝑒−(1+2𝜀) ))
= log(1 −𝑊0 (−𝑒−(1+2𝜀) ) − 1)

= −𝑊0 (−𝑒−(1+2𝜀) ) − 1 − 1
2

(
−𝑊0 (−𝑒−(1+2𝜀) ) − 1

)2

+ 1
3

(
−𝑊0 (−𝑒−(1+2𝜀) ) − 1

)3
+𝑂

(
(−𝑊0 (−𝑒−(1+2𝜀) ) − 1)4

)
= − 2

√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2) − 1

2

(
−2

√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

)2

+ 1
3

(
−2

√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

)3
+𝑂 (𝜀2)

= − 2
√
𝜀 − 2

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2) (E.53)

Plugging Equation (E.52) and (E.53) into the bound in Theorem 1, we can have

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1))

≤1
2

©­­«
1

1 − 2
√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

+
(
−2

√
𝜀 − 2

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

)
− 1

ª®®¬
=

1
2

2𝜀 − 4
3
𝜀1.5 +𝑂 (𝜀2)

1 − 2
√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

=𝜀 + 2𝜀1.5 +𝑂 (𝜀2)

1 − 2
√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

=𝜀 + 2𝜀1.5 +𝑂 (𝜀2) (E.54)

□

F Proofs of Theorem 3

F.1 The First Proof of Theorem 3

Theorem 3 can be proved using the similar method as that of Theorem 1, except that the proof uses
𝑊−1. We put the key steps of the proof of Theorem 3 in Lemma F.3 and Lemma F.4.

Lemma F.3 Given 𝑛-ary function f̄ (x) = f̄ (𝑥1, . . . , 𝑥𝑛) =
∑𝑛

𝑖=1 𝑥𝑖 − log 𝑥𝑖 (𝑥𝑖 ∈ R++), if
f̄ (𝑥1, . . . , 𝑥𝑛) ≥ 𝑛 + 𝑀 (𝑀 > 0), then

inf f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
=

1
−𝑊−1 (−𝑒−(1+𝑀 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀 ) )
+ 𝑛 − 1
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Proof 7 The structure of proof of Lemma F.3 is similar to that of Lemma C.2. The constraint in the
following optimization problem

minimize f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
(F.55)

s.t.
𝑛∑︁
𝑖=1

𝑥𝑖 − log 𝑥𝑖 ≥ 𝑛 + 𝑀 (F.56)

can be replaced by the following constraints
𝑛∧
𝑖=1

𝑓 (𝑥𝑖) = 𝑥𝑖 − log 𝑥𝑖 ≥ 1 + 𝑀𝑖 ∧
𝑛∧
𝑖=1

𝑀𝑖 ≥ 0 ∧
𝑛∑︁
𝑖=1

𝑀𝑖 ≥ 𝑀 (F.57)

Given fixed 𝑀1, . . . , 𝑀𝑛 such that
∧𝑛

𝑖=1 𝑀𝑖 ≥ 0 ∧ ∑𝑛
𝑖=1 𝑀𝑖 ≥ 𝑀 , we define

Ī (𝑀1, . . . , 𝑀𝑛) = inf∧𝑛
𝑖=1 𝑓 (𝑥𝑖 )≥1+𝑀𝑖

f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
=

𝑛∑︁
𝑖=1

inf
𝑓 (𝑥𝑖 )≥1+𝑀𝑖

𝑓
( 1
𝑥𝑖

)
=

𝑛∑︁
𝑖=1

𝐼 (𝑀𝑖) (F.58)

So we have

inf f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
= inf∧𝑛

𝑖=1 𝑀𝑖 ≥0∑𝑛
𝑖=1 𝑀𝑖 ≥𝑀

Ī (𝑀1, . . . , 𝑀𝑛) (F.59)

It is easy to know that Ī (𝑀1, . . . , 𝑀𝑛) is continuous and strictly increasing with 𝑀1, . . . , 𝑀𝑛. So the
condition

∑𝑛
𝑖=1 𝑀𝑖 ≥ 𝑀 in Equation (F.59) can be changed to

∑𝑛
𝑖=1 𝑀𝑖 = 𝑀 .

The remaining proof consists of two steps. We find Ī (𝑀1, . . . , 𝑀𝑛) for fixed 𝑀1, . . . , 𝑀𝑛 in the first
step, and then find inf Ī (𝑀1, . . . , 𝑀𝑛) for any 𝑀1, . . . , 𝑀𝑛 satisfying

∧𝑛
𝑖=1 𝑀𝑖 ≥ 0 ∧ ∑𝑛

𝑖=1 𝑀𝑖 = 𝑀
in the second step.

Step 1: According to Lemma B.1h, for fixed 𝑀𝑖 , we get

𝐼 (𝑀𝑖) = inf
𝑓 (𝑥 )≥1+𝑀𝑖

𝑓
(1
𝑥

)
= 𝑓

( 1
𝑤2 (𝑀𝑖)

)
(F.60)

Combining Equation (F.58), we know

Ī (𝑀1, . . . , 𝑀𝑛) =
𝑛∑︁
𝑖=1

𝑓
( 1
𝑤2 (𝑀𝑖)

)
(F.61)

Step 2: We define function

Δ(𝑀) = 𝑓 (𝑤2 (𝑀)) − 𝑓
( 1
𝑤2 (𝑀)

)
= 𝑤2 (𝑀) − 1

𝑤2 (𝑀) − 2 log𝑤2 (𝑀) (F.62)

Similarly, we can prove Δ(𝑡𝑀) ≤ 𝑡Δ(𝑀) (0 ≤ 𝑡 < 1) by showing Δ(0) = 0 (apparently) and Δ(𝑀)
is strictly increasing and strictly convex. Combining Lemma B.1e, we get the derivative of Δ(𝑀) as

dΔ(𝑀)
d𝑀

=

(
1 + 1

𝑤2 (𝑀)2 − 2
𝑤2 (𝑀)

)
× d𝑤2 (𝑀)

d𝑀
= 1 − 1

𝑤2 (𝑀) (F.63)

The second order derivative of Δ(𝑀) is

d2Δ(𝑀)
d𝑀2 =

1
𝑤2 (𝑀)2 × 𝑤2 (𝑀)

𝑤2 (𝑀) − 1
=

1
𝑤2 (𝑀) (𝑤2 (𝑀) − 1) (F.64)

Since 𝑤2 (𝑀) ∈ (1, +∞) for 𝑀 > 0, so it is easy to know dΔ(𝑀 )
d𝑀 > 0, d2Δ(𝑀 )

d𝑀2 > 0 for 𝑀 > 0. This
implies that Δ(𝑀) is strictly increasing and strictly convex. We can use the similar deduction as
Lemma C.2 to prove Δ(𝑡𝑀) ≤ 𝑡Δ(𝑀). Thus, we have

𝚫̄(𝑀1, . . . , 𝑀𝑛) =
𝑛∑︁
𝑖=1

𝑓 (𝑤2 (𝑀𝑖)) − 𝑓
( 1
𝑤2 (𝑀𝑖)

)
=

𝑛∑︁
𝑖=1

Δ(𝑀𝑖) =
𝑛∑︁
𝑖=1

Δ(𝑀𝑖

𝑀
𝑀) ≤

𝑛∑︁
𝑖=1

𝑀𝑖

𝑀
Δ(𝑀) = Δ(𝑀)

(F.65)
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Inequality (F.65) is tight when there exists only one 𝑀 𝑗 = 𝑀 and all other 𝑀𝑖 = 0 for 𝑖 ≠ 𝑗 . Therefore,
from Inequality (F.65), we can obtain

Ī (𝑀1, . . . , 𝑀𝑛)

=
∑𝑛

𝑖=1 𝑓
( 1
𝑤2 (𝑀𝑖)

)
≥∑𝑛

𝑖=1 𝑓 (𝑤2 (𝑀𝑖)) − Δ(𝑀)

=
∑𝑛

𝑖=1 (1 + 𝑀𝑖) −
(
𝑓 (𝑤2 (𝑀)) − 𝑓

( 1
𝑤2 (𝑀)

) )
=𝑛 + 𝑀 − (1 + 𝑀) + 𝑓

( 1
𝑤2 (𝑀)

)
=

1
−𝑊−1 (−𝑒−(1+𝑀 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀 ) )
+ 𝑛 − 1 (F.66)

(F.61)

(F.65)

Lemma B.1d
(F.62)

Finally, we can conclude that

inf f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
= inf∧𝑛

𝑖=1 𝑀𝑖 ≥0∑𝑛
𝑖=1 𝑀𝑖=𝑀

Ī (𝑀1, . . . , 𝑀𝑛) =
1

−𝑊−1 (−𝑒−(1+𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+𝑀 ) )

+ 𝑛 − 1

(F.67)

Similarly, f̄ (1/𝑥1, . . . , 1/𝑥𝑛) reaches its infimum when there exists only one 𝑗 such that 𝑥 𝑗 =

−𝑊−1 (−𝑒−(1+𝑀 ) ) and 𝑓 (𝑥𝑖) = 1 for 𝑖 ≠ 𝑗 . □

The following Lemma F.4 gives the infimum of KL divergence when one Gaussian is standard.

Lemma F.4 For any 𝑛-dimensional Gaussian distribution N(µ,𝚺),
(a) If 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 (𝑀 > 0), then

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≥ 1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(F.68)

(b) If 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≥ 𝑀 , then

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(F.69)

Proof 8 (a) We first consider the case when 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) = 𝑀. At the end of the proof,
we deal with the case when 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 .

The condition − log |𝚺 | + Tr(𝚺) + µ⊤µ − 𝑛 = 2𝑀 is equal to

− log |𝚺 | + Tr(𝚺) =
𝑛∑︁
𝑖=1

𝜆𝑖 − log𝜆𝑖 = 𝑛 + 𝑀1 (F.70)

µ⊤µ = 2𝑀 − 𝑀1 (F.71)

where 0 ≤ 𝑀1 ≤ 2𝑀 .

Applying Lemma F.3 on Equation (F.70), we can get

log |𝚺 | + Tr(𝚺−1) =
𝑛∑︁
𝑖=1

1
𝜆𝑖

− log
1
𝜆𝑖

≥ 1
−𝑊−1 (−𝑒−(1+𝑀1 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
+ 𝑛 − 1

(F.72)
Inequality (F.72) is tight when all eigenvalues 𝜆𝑖 of 𝚺 are equal to 1 except for one 𝜆 𝑗 =

−𝑊−1 (−𝑒−(1+𝑀1 ) ).
From Equation (F.71), we know µ⊤𝚺−1µ ≥ 𝜆′∗µ

⊤µ = 𝜆′∗ (2𝑀 − 𝑀1) where 𝜆′∗ is the smallest
eigenvalue of 𝚺−1. Here 𝜆∗ = 1/𝜆′∗ is the largest eigenvalue of 𝚺. From Equation (F.70), Lemma
B.1a and B.1g, we know 𝜆∗ ≤ −𝑊−1 (−𝑒−(1+𝑀1 ) ). So we obtain

µ⊤𝚺−1µ ≥ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
(F.73)
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Note that, inequalities (F.73) and (F.72) become tight simultanously when the same condition holds.
Now combining Equation (F.72) and (F.73), we obtain

log |𝚺 | + Tr(𝚺−1) + µ⊤𝚺−1µ − 𝑛

≥ 1
−𝑊−1 (−𝑒−(1+𝑀1 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
+ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
− 1

=
1 + 2𝑀 − 𝑀1
𝑤2 (𝑀1)

− log
1

𝑤2 (𝑀1)
− 1

=𝐿 (𝑀1) (0 ≤ 𝑀1 ≤ 2𝑀) (F.74)

It is easy to know that 𝐿′ (𝑀1) = 𝑀1−2𝑀
𝑤2 (𝑀1 ) (𝑤2 (𝑀1 )−1) . Since 𝑀1 ≤ 2𝑀 and 𝑤2 (𝑀1) > 1 for 𝑀1 > 0,

so 𝐿′ (𝑀1) < 0 (𝑀1 > 0). This indicates that 𝐿 (𝑀1) > 𝐿(2𝑀) for 0 < 𝑀1 < 2𝑀. Thus, we can
conclude

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≥ 1
2
𝐿 (2𝑀) = 1

2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(F.75)

Inequality (F.75) is tight when there exist only one eigenvalue 𝜆 𝑗 of 𝚺 equal to −𝑊−1 (−𝑒−(1+2𝑀 ) )
and all other eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are equal to 1, and µ = 0.

Finally, we can consider the case when 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 . The bound in Equation (F.75)
is strictly increasing with 𝑀. Therefore, the precondition 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) = 𝑀 can be
changed to 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 .

(b) The proof of Lemma 1b is the similar to that of Lemma 1a. We list it here for clarity.

The condition 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) = 𝑀 is equal to

log |𝚺 | + Tr(𝚺−1) = 𝑛 + 𝑀1 (F.76)

µ⊤𝚺−1µ = 2𝑀 − 𝑀1 (F.77)

where 0 ≤ 𝑀1 ≤ 2𝑀 . Applying Lemma F.3 on Equation (F.76), we can obtain

− log |𝚺 | + Tr(𝚺) ≥ 1
−𝑊−1 (−𝑒−(1+𝑀1 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
+ 𝑛 − 1 (F.78)

From Equation (F.76) and Lemma B.1a and B.1g, we have 𝜆′ ≤ −𝑊−1 (−𝑒−(1+𝑀1 ) ) where 𝜆′ is the
eigenvalue of 𝚺−1. Now let 𝜆′∗ be the largest eigenvalues of 𝚺−1. It is easy to know

𝜆′∗µ⊤µ ≥ µ⊤𝚺−1µ = 2𝑀 − 𝑀1 =⇒ µ⊤µ ≥ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
(F.79)

Inequalities (F.78) and (F.79) are tight simutanously when there exist only one eigenvalue 𝜆′
𝑗
=

−𝑊−1 (−𝑒−(1+𝑀1 ) ) and all other eigenvalues are equal to 1, and |µ| = 0. Therefore, combining
Equation (F.78) and (F.79), we obtain

− log |𝚺 | + Tr(𝚺) + µ⊤µ − 𝑛 ≥ 1
−𝑊−1 (−𝑒−(1+𝑀1 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
+ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1 ) )
− 1

(F.80)

Finally, using the similar analysis as Equation (F.75), we can conclude that

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(F.81)

Similarly, the precondition 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) = 𝑀 can be changed to
𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≥ 𝑀 because the bound in Equation (F.81) is strictly increasing
with 𝑀 .

Notes. It needs strict conditions to reach the infimum in Lemma F.4.

Now we can also obtain Theorem 3 on two general Gaussians. We can use linear transformation on
Gaussians and apply Lemma F.4 on them as what we do in the main proof of Theorem 1. The key
steps have been proven in Lemma F.3 and F.4. More details are ommited.

□
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F.2 The Second Proof of Theorem 3

Proof 9 In the following, we give the second proof which is drawn from Theorem 1.

Suppose 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝑡 (𝑡 > 0), according to Theorem 1, we know

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1))

≤1
2

(
1

−𝑊0 (−𝑒−(1+2𝑡 ) )
− log

1
−𝑊0 (−𝑒−(1+2𝑡 ) )

− 1
)

(F.82)

=
1
2

(
1

𝑤1 (2𝑡)
− log

1
𝑤1 (2𝑡)

− 1
)

(F.83)

=𝑆(𝑡) (F.84)

Since
1

𝑤1 (2𝑡)
is strictly increasing with 𝑡, 𝑆(𝑡) is continuous and strictly increasing with 𝑡. Besides,

the range of function 𝑆(𝑡) for (𝑡 > 0) is (0, +∞).
Given positive number 𝑀 , according to Theorem 1, there exists N(µ1,𝚺1), N(µ2,𝚺2) and 𝑚 such
that

𝑆(𝑚) =𝑀 (F.85)
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) =𝑀 (F.86)
𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) =𝑚 (F.87)

Thus, given the precondition 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 , we can know that

inf 𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) ≤ 𝑚 (F.88)

In the following, we show

inf 𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) = 𝑚 (F.89)

holds. Otherwise, there exists an 𝑚′ < 𝑚 and N(µ1,𝚺1), N(µ2,𝚺2) such that

𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 (F.90)
𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) = 𝑚′ (F.91)

Applying Theorem 1 on Equation (F.91), it is easy to know

sup𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) = 𝑆(𝑚′) (F.92)

This contradicts with the precondition 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 because 𝑆(𝑚′) < 𝑆(𝑚) =
𝑀 . Thus, Equation (F.89) holds.

Now we can solve 𝑚 from 𝑆(𝑚) = 𝑀 as follows.

1
2

(
1

−𝑊0 (−𝑒−(1+2𝑚) )
− log

1
−𝑊0 (−𝑒−(1+2𝑚) )

− 1
)
= 𝑀

⇔ 1
−𝑊0 (−𝑒−(1+2𝑚) )

− log
1

−𝑊0 (−𝑒−(1+2𝑚) )
= 1 + 2𝑀

⇔ 1
−𝑊0 (−𝑒−(1+2𝑚) )

= −𝑊−1 (−𝑒−(1+2𝑀 ) )

⇔ 1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

= −𝑊0 (−𝑒−(1+2𝑚) )

⇔ 1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− log
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
= 1 + 2𝑚

⇔𝑚 =
1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(F.93)

where the third and fifth equations follow from Lemma B.1d. Plugging Equation (F.93) into (F.89),
we can prove Theorem 3.

□
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G Key Lemma G.5 and Its Proof

Lemma G.5 Given 𝑓 (𝑥) = 𝑥−log 𝑥 (𝑥 ∈ R++), let 𝜀𝑥,1, 𝜀𝑥,2, 𝜀𝑦,1, 𝜀𝑦,2 be four non-negative numbers
such that 𝜀𝑥,1 ≥ 𝜀𝑥,2, 𝜀𝑦,1 ≥ 𝜀𝑦,2. Then

𝑓 (𝑤2 (𝜀𝑥,1)𝑤2 (𝜀𝑦,1)) + 𝑓 (𝑤2 (𝜀𝑥,2)𝑤2 (𝜀𝑦,2)) ≤ 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 (G.94)

Lemma G.5 deals with 2-dimensional case of the core problem of the Theorem on relaxed triangle
inequality. The proof of Lemma G.5 is the most technical part in this paper.

In the following, we give the overview of the proof. In Appendix G.1 we give some notations and
Lemmas for preparation. In Appendix G.2 we give the main proof of Lemma G.5.

Overview of proof of Lemma G.5
In the LHS (resp. RHS) of Inequality (G.94), 𝜀𝑥,2 and 𝜀𝑦,2 stay in the second (resp. first) term.
Intuitively, we use Inequality (G.94) to move 𝜀𝑥,2, 𝜀𝑦,2 into the first item such that 𝜀𝑥,1, 𝜀𝑥,2 and
𝜀𝑦,1, 𝜀𝑦,2 are allocated in only one dimension.

We construct a function

𝑆(𝜃𝑥 , 𝜃𝑦) = 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2)) + 𝑓 (𝑤2 (𝜀𝑥,2 − 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2))

for − 𝜀𝑥,1
𝜀𝑥,2

≤ 𝜃𝑥 ≤ 1,− 𝜀𝑦,1
𝜀𝑦,2

≤ 𝜃𝑦 ≤ 1 (see Equation (G.112)). When 𝜃𝑥 = 𝜃𝑦 = 0, 𝑆(𝜃𝑥 , 𝜃𝑦) = 𝑆(0, 0)
equals the LHS of Inequality (G.94). Recall that 𝑤2 (0) = 1 and 𝑓 (1) = 1. So when 𝜃𝑥 = 𝜃𝑦 = 1,
𝑆(𝜃𝑥 , 𝜃𝑦) = 𝑆(1, 1) equals the RHS of Inequality (G.94). When increasing 𝜃𝑥 and 𝜃𝑦 from 0 to 1,
𝜀𝑥,2, 𝜀𝑦,2 are moved to the first item gradually and the LHS approaches the RHS of Inequality (G.94)
gradually. So the values of 𝜃𝑥 , 𝜃𝑦 control how 𝜀𝑥,2 and 𝜀𝑦,2 are allocated among the two terms. We call
(𝜃𝑥 , 𝜃𝑦) and the corresponding pairs (𝜀𝑥,1 + 𝜃𝑥𝜀𝑥,2, 𝜀𝑥,2 − 𝜃𝑥𝜀𝑥,2) and (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2, 𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)
indiscriminately as allocations. When 𝜃𝑥 = 𝜃𝑦 = 1, we call it an extreme allocation. To prove
Inequality (G.94), it suffices to show 𝑆(0, 0) ≤ 𝑆(1, 1).
However, it is hard to prove 𝑆(0, 0) ≤ 𝑆(1, 1) directly due to the lack of conclusions relating to
Lambert 𝑊 function. We treat the problem as an optimization problem where 𝑆(𝜃𝑥 , 𝜃𝑦) is the
objective function. We use an analytical and variation version of coordinate ascent to solve the
optimization problem. In the beginning, we start from a well-chosen point (see Equation (G.113))
that can be arbitrarily close to point (𝜃𝑥 = 0, 𝜃𝑦 = 0). In each iteration, we fix one of 𝜃𝑥 and 𝜃𝑦 and
make another vary. In this way, we will construct an infinite sequence of allocations and finally reach
the supremum of 𝑆(𝜃𝑥 , 𝜃𝑦).
The proof mainly consists of the following four aspects, which are much more complex than a simple
coordinate ascent algorithm.

A1 We start optimization from a well-chosen point close to (𝜃𝑥 = 0, 𝜃𝑦 = 0). In each
iteration, once we fix one of 𝜃𝑥 and 𝜃𝑦 and make another one vary, we prove that there
exists one and only one supremum. For example, once we fix 𝜃𝑥 = 𝜃𝑥,0 > 0 where 𝜃𝑥,0
can be arbitrarily small, we prove that there exists one and only one − 𝜀𝑦,1

𝜀𝑦,2
< 𝜃𝑦,1 < 1

that maximizes 𝑆(𝜃𝑥,0, 𝜃𝑦) (see Proposition G.2). In the next step, we fix 𝜃𝑦 = 𝜃𝑦,1 and
find 𝜃𝑥,2 to lift 𝑆(𝜃𝑥 , 𝜃𝑦,1) further. In this way, we find an infinite sequence of allocations
(𝜃𝑥,0, 𝜃𝑦,0), (𝜃𝑥,0, 𝜃𝑦,1), (𝜃𝑥,2, 𝜃𝑦,1), (𝜃𝑥,2, 𝜃𝑦,3), · · · . In the end, we will show that in these
iterations, the allocations corresponding to these local maximums are more and more extreme
ones.

A2 However, the condition describing the local maximum (e.g., 𝜃𝑦,1) is complicated. For
example, Equation (G.119) expresses the condition that 𝜃𝑦,1 should satisfy. We cannot solve
the Equation analytically. Luckily, we turn to analyze the condition to study the property of
these local maximums. We use a crucial transformation (in Equations (G.120) ∼ (G.124))
to obtain key Equations (G.124), (G.138), (G.142) which express the property of these local
maximums (corresponding to allocations) implicitly. Equations (G.124), (G.138), (G.142)
also express the relation between local maximums obtained in neighboring iterations.

A3 In the above iterations, we are lifting the objective function gradually. Furthermore, we
show that these allocations are increasingly extreme ones. There are two problems we need
to tackle. First, how to measure the extremeness of one allocation. We find a formula (see
Equation (G.148) and (G.149)) to measure the extremeness of allocations indirectly. Second,
how to compare the extremeness of two allocations. The Equations used to characterize
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the property of local maximums obtained in Aspect A2 are also used to prove that these
allocations obtained in a sequence of iterations are more and more extreme.

A4 We prove that the limit of the allocation sequence can maximize the objective function.

G.1 Notations and Lemmas for Lemma G.5

Notations. We define the following helper functions based on 𝑓 (𝑥) = 𝑥 − log 𝑥.

𝑓𝑙 (𝑥) = 𝑓 (1 − 𝑥) − 1 (0 ≤ 𝑥 < 1), 𝑓𝑟 (𝑥) = 𝑓 (𝑥 + 1) − 1 (𝑥 ≥ 0) (G.95)

The derivatives of 𝑓𝑙 (𝑥), 𝑓𝑟 (𝑥) are

𝑓 ′𝑙 (𝑥) = − 𝑓 ′ (1 − 𝑥) = 1
1 − 𝑥 − 1, 𝑓 ′𝑟 (𝑥) = 𝑓 ′ (1 + 𝑥) = 1 − 1

𝑥 + 1
(G.96)

So both 𝑓𝑙 (𝑥) and 𝑓𝑟 (𝑥) are strictly increasing. We note the inverse functions of 𝑓𝑙 , 𝑓𝑟 as 𝑔𝑙 , 𝑔𝑟 ,
respectively. Combining Lemma B.1c, it is not hard to verify that 𝑔𝑙 , 𝑔𝑟 are

𝑔𝑙 (𝜀) = 𝑓 −1
𝑙 (𝜀) = 1 − 𝑤1 (𝜀) = 1 +𝑊0 (−𝑒−(1+𝜀) ) (𝜀 ≥ 0) (G.97)

𝑔𝑟 (𝜀) = 𝑓 −1
𝑟 (𝜀) = 𝑤2 (𝜀) − 1 = −𝑊−1 (−𝑒−(1+𝜀) ) − 1 (𝜀 ≥ 0) (G.98)

According to Lemma B.1e, the derivatives of 𝑔𝑙 , 𝑔𝑟 are

𝑔′𝑙 (𝜀) = 𝑓 −1′
𝑙 (𝜀) = 𝑤1 (𝜀)

1 − 𝑤1 (𝜀)
=

1 − 𝑓 −1
𝑙

(𝜀)
𝑓 −1
𝑙

(𝜀)
=

1
1 − 𝑤1 (𝜀)

− 1 (G.99)

𝑔′𝑟 (𝜀) = 𝑓 −1′
𝑟 (𝜀) = 𝑤2 (𝜀)

𝑤2 (𝜀) − 1
=
𝑓 −1
𝑟 (𝜀) + 1
𝑓 −1
𝑟 (𝜀)

= 1 + 1
𝑤2 (𝜀) − 1

(G.100)

Specially, since lim
𝜀→0

𝑤2 (𝜀) = 𝑤2 (0) = 1, it is easy to know

lim
𝜀→0

𝑔′𝑟 (𝜀) = +∞ (G.101)

In the following, we note 𝑔′𝑟 (0) = +∞ for convenience.

Lemma G.6 gives two useful conclusions for subsequent analysis. They hold apparently.

Lemma G.6 Let 𝑎, 𝑏, 𝑎+, 𝑏− be positive real numbers.

(a) if 𝑎 > 𝑏, 𝑎 < 𝑎+, 𝑏 > 𝑏− , then 𝑎+1
𝑏+1 <

𝑎++1
𝑏−+1 .

(b) if 𝑎 ≤ 𝑏, then 𝑎 (𝑏+1)
𝑏 (𝑎+1) ≤ 1.

Lemma G.7 Given 𝑓 (𝑥) = 𝑥 − log 𝑥 and 𝜀 ≥ 0, then 𝑤2 (𝜀) − 1 ≥ 1 − 𝑤1 (𝜀) where the inequality is
tight when 𝜀 = 0;

Proof 10 With the helper functions 𝑓𝑙 , 𝑓𝑟 (Equation (G.95)), we define function

Δ𝑤 (𝜀) = 𝑔𝑟 (𝜀) − 𝑔𝑙 (𝜀) = (𝑤2 (𝜀) − 1) − (1 − 𝑤1 (𝜀)) (G.102)

It is straightforward to know

Δ𝑤 (0) = 𝑤2 (0) − 1 − (1 − 𝑤1 (0)) = 0 (G.103)

In the following, we prove Δ𝑤
′ (𝜀) > 0 for 𝜀 > 0. Plugging Equation (G.96), we have

𝑔′𝑟 (𝜀) = 𝑓 −1
𝑟

′ (𝜀) = 1
𝑓 ′𝑟 ( 𝑓 −1

𝑟 (𝜀))
=

1
𝑓 ′𝑟 (𝑤2 (𝜀) − 1) =

1

1 − 1
𝑤2 (𝜀)

=
1

𝑓 ′ (𝑤2 (𝜀))
(G.104)

𝑔′𝑙 (𝜀) = 𝑓
−1
𝑙

′ (𝜀) = 1
𝑓 ′
𝑙
( 𝑓 −1

𝑙
(𝜀))

=
1

𝑓 ′
𝑙
(1 − 𝑤1 (𝜀))

=
1

1
𝑤1 (𝜀)

− 1
=

1
− 𝑓 ′ (𝑤1 (𝜀))

(G.105)

According to Lemma B.1 and Lemma B.1f, 𝑓 (𝑥) is strictly decreasing in (0, 1) and 𝑓 (𝑤1 (𝜀)) >
𝑓 ( 1

𝑤2 (𝜀) ). So we can know 𝑤1 (𝜀) < 1
𝑤2 (𝜀) . Since 𝑓 (𝑥) is convex and 𝑓 ′ (𝑥) < 0 in (0, 1), we
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can know 𝑓 ′ (𝑤1 (𝜀)) < 𝑓 ′ ( 1
𝑤2 (𝜀) ). Now combining Lemma B.1i, we can obtain 0 < 𝑓 ′ (𝑤2 (𝜀)) ≤

− 𝑓 ′ ( 1
𝑤2 (𝜀) ) < − 𝑓 ′ (𝑤1 (𝜀)) (𝜀 > 0). This leads to

𝑔′𝑟 (𝜀) =
1

𝑓 ′ (𝑤2 (𝜀))
>

1
− 𝑓 ′ (𝑤1 (𝜀))

= 𝑔′𝑙 (𝜀) (G.106)

for 𝜀 > 0, which means Δ𝑤
′ (𝜀) = 𝑔′𝑟 (𝜀) − 𝑔′𝑙 (𝜀) > 0 (𝜀 > 0). Now combining Equation (G.103), we

can conclude

Δ𝑤 (𝜀) = 𝑔𝑟 (𝜀) − 𝑔𝑙 (𝜀) = (𝑤2 (𝜀) − 1) − (1 − 𝑤1 (𝜀)) ≥ 0 (G.107)

□

Lemma G.8 Given 𝑓 (𝑥) = 𝑥 − log 𝑥 and 𝜀𝑥 , 𝜀𝑦 ≥ 0, if 𝑓 (𝑥) ≤ 1 + 𝜀𝑥 and 𝑓 (𝑦) ≤ 1 + 𝜀𝑦 , then

𝑓 (𝑥𝑦) ≤ 𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)) (G.108)

Proof 11 From Lemma B.1g, we know 𝑤1 (𝜀𝑥) ≤ 𝑥 ≤ 𝑤2 (𝜀𝑥) and 𝑤1 (𝜀𝑦) ≤ 𝑦 ≤ 𝑤2 (𝜀𝑦). So
we have 𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑥) ≤ 𝑥𝑦 ≤ 𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦). According to Lemma B.1a, it suffices to show
𝑓 (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦)) ≤ 𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)). By the definition of 𝑓 (𝑥), we have

𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)) − 𝑓 (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦))
=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − log(𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)) − (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − log(𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦)))
=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − log𝑤2 (𝜀𝑥) − log𝑤2 (𝜀𝑦) − (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − log𝑤1 (𝜀𝑥) − log𝑤1 (𝜀𝑦))
=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) + 𝑤2 (𝜀𝑥) − log𝑤2 (𝜀𝑥) − 𝑤2 (𝜀𝑦) + 𝑤2 (𝜀𝑦) − log𝑤2 (𝜀𝑦)
− (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) + 𝑤1 (𝜀𝑥) − log𝑤1 (𝜀𝑥) − 𝑤1 (𝜀𝑦) + 𝑤1 (𝜀𝑦) − log𝑤1 (𝜀𝑦))

=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) + 𝜀𝑥 − 𝑤2 (𝜀𝑦) + 𝜀𝑦 − (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) + 𝜀𝑥 − 𝑤1 (𝜀𝑦) + 𝜀𝑦)
=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) − 𝑤2 (𝜀𝑦) − (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) − 𝑤1 (𝜀𝑦))
=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) − 𝑤2 (𝜀𝑦) + 1 − (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) − 𝑤1 (𝜀𝑦) + 1)
=(𝑤2 (𝜀𝑥) − 1) (𝑤2 (𝜀𝑦) − 1) − (𝑤1 (𝜀𝑥) − 1) (𝑤1 (𝜀𝑦) − 1) (G.109)

From Lemma G.7, it is easy to know 𝑤2 (𝜀𝑥) − 1 ≥ 1 − 𝑤1 (𝜀𝑥) and 𝑤2 (𝜀𝑦) − 1 ≥ 1 − 𝑤1 (𝜀𝑦). Thus
we can conclude

𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)) − 𝑓 (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦)) ≥ 0 (G.110)

□

G.2 The Main Proof of Key Lemma G.5

Proof 12 Inequality (G.94) is equal to

𝑓 (𝑤2 (𝜀𝑥,1)𝑤2 (𝜀𝑦,1)) + 𝑓 (𝑤2 (𝜀𝑥,2)𝑤2 (𝜀𝑦,2))
≤ 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 𝑓 (𝑤2 (0)𝑤2 (0)) (G.111)

by Lemma B.1d.

We define function

𝑆(𝜃𝑥 , 𝜃𝑦) = 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2)) + 𝑓 (𝑤2 (𝜀𝑥,2 − 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2))
(G.112)

for − 𝜀𝑥,1
𝜀𝑥,2

≤ 𝜃𝑥 ≤ 1,− 𝜀𝑦,1
𝜀𝑦,2

≤ 𝜃𝑦 ≤ 1. Here the domains of 𝜃𝑥 , 𝜃𝑦 are restricted to make 𝑤2 (·) in the
definition of 𝑆(𝜃𝑥 , 𝜃𝑦) meaningful. Inequation (G.94) states that 𝑆(0, 0) ≤ 𝑆(1, 1).
If we note 𝜀𝑥 = 𝜀𝑥,1 + 𝜀𝑥,2 and 𝜀𝑦 = 𝜀𝑦,1 + 𝜀𝑦,2, 𝜃𝑥 , 𝜃𝑦 control how 𝜀𝑥 and 𝜀𝑦 are allocated between
two dimensions, respectively.

We can prove 𝑆(0, 0) ≤ 𝑆(1, 1) in the following three cases.

Case 1 𝜀𝑥,2 = 𝜀𝑦,2 = 0.
Case 2 𝜀𝑥,2 > 0, 𝜀𝑦,2 > 0. In this case, we have 𝜀𝑥,1 ≥ 𝜀𝑥,2 > 0, 𝜀𝑦,1 ≥ 𝜀𝑦,2 > 0.
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Case 3 only one of 𝜀𝑥,2 and 𝜀𝑦,2 equals to 0.

It is easy to verify that 𝑆(0, 0) = 𝑆(1, 1) for Case 1. In the following, we discuss Case 2 first and deal
with Case 3 at the end of the proof.

Case 2:

In 𝑆(𝜃𝑥 , 𝜃𝑦), 𝜃𝑥 , 𝜃𝑦 are symmetric. Without loss of generality, we choose any 0 < 𝜃𝑥,0 < 1 at
the beginning. The following proof consists of two steps. In Step 1, we prove that for any fixed
0 < 𝜃𝑥,0 < 1, there exists one and only one − 𝜀𝑦,1

𝜀𝑦,2
< 𝜃𝑦,1 < 1 such that 𝑆(𝜃𝑥,0, 𝜃𝑦) takes its maximum.

This accomplishes aspects A1 and A2 in the first iteration. In Step 2, we prove 𝑆(1, 1) ≥ 𝑆(0, 0). The
key idea is finding a strictly increasing sequence {𝑆[𝑖]} such that 𝑆[0] can be arbitrarily close to
𝑆(0, 0) and lim

𝑖→∞
𝑆[𝑖] = 𝑆(1, 1). Step 2 will accomplish aspects A1 ∼ A4 in all iterations.

Step 1. At the beginning, we select any 2 0 < 𝜃𝑥,0 < 1. For brevity, we note

𝜀𝑥,1 [0] = 𝜀𝑥,1 + 𝜃𝑥,0𝜀𝑥,2, 𝜀𝑥,2 [0] = 𝜀𝑥,2 − 𝜃𝑥,0𝜀𝑥,2 (G.113)
𝜀𝑦,1 = 𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2, 𝜀𝑦,2 = 𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2 (G.114)

where we use 𝜀𝑥, ( ·) [0] to denote the variable is computed with 𝜃𝑥,0.

Note that 𝑔𝑟 (𝜀) (defined in Equation (G.98)) is strictly increasing with 𝜀. Combining the precondition
𝜀𝑥,1 ≥ 𝜀𝑥,2, we can know

𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=
𝑔𝑟 (𝜀𝑥,1 + 𝜃𝑥,0𝜀𝑥,2)
𝑔𝑟 (𝜀𝑥,2 − 𝜃𝑥,0𝜀𝑥,2)

>
𝑔𝑟 (𝜀𝑥,1)
𝑔𝑟 (𝜀𝑥,2)

≥ 1 (G.115)

We note this condition as C1 [0] as follows.

C1 [0] :
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

> 1 (G.116)

Now given the fixed 𝜃𝑥,0, the derivative of 𝑆(𝜃𝑥,0, 𝜃𝑦) is

d𝑆(𝜃𝑥,0, 𝜃𝑦)
d𝜃𝑦

=𝜀𝑦,2

(
𝑤2 (𝜀𝑥,1 [0])

𝑤2 (𝜀𝑦,1)
𝑤2 (𝜀𝑦,1) − 1

− 1
𝑤2 (𝜀𝑦,1)

𝑤2 (𝜀𝑦,1)
𝑤2 (𝜀𝑦,1) − 1

)
− 𝜀𝑦,2

(
𝑤2 (𝜀𝑥,2 [0])

𝑤2 (𝜀𝑦,2)
𝑤2 (𝜀𝑦,2) − 1

− 1
𝑤2 (𝜀𝑦,2)

𝑤2 (𝜀𝑦,2)
𝑤2 (𝜀𝑦,2) − 1

)
=𝜀𝑦,2

(
𝑤2 (𝜀𝑥,1 [0])𝑤2 (𝜀𝑦,1) − 1

𝑤2 (𝜀𝑦,1) − 1
−
𝑤2 (𝜀𝑥,2 [0])𝑤2 (𝜀𝑦,2) − 1

𝑤2 (𝜀𝑦,2) − 1

)
=𝜀𝑦,2

(
𝑤2 (𝜀𝑥,1 [0])𝑤2 (𝜀𝑦,1) − 𝑤2 (𝜀𝑥,1 [0]) + 𝑤2 (𝜀𝑥,1 [0]) − 1

𝑤2 (𝜀𝑦,1) − 1

−
𝑤2 (𝜀𝑥,2 [0])𝑤2 (𝜀𝑦,2) − 𝑤2 (𝜀𝑥,2 [0]) + 𝑤2 (𝜀𝑥,2 [0]) − 1

𝑤2 (𝜀𝑦,2) − 1

)
=𝜀𝑦,2

((
𝑤2 (𝜀𝑥,1 [0]) +

𝑤2 (𝜀𝑥,1 [0]) − 1
𝑤2 (𝜀𝑦,1) − 1

)
−

(
𝑤2 (𝜀𝑥,2 [0]) +

𝑤2 (𝜀𝑥,2 [0]) − 1
𝑤2 (𝜀𝑦,2) − 1

))
(G.117)

The second order derivative is

d2𝑆(𝜃𝑥,0, 𝜃𝑦)
d𝜃2

𝑦

=
−(𝑤2 (𝜀𝑥,1 [0]) − 1)
(𝑤2 (𝜀𝑦,1) − 1)2

𝑤2 (𝜀𝑦,1)
𝑤2 (𝜀𝑦,1) − 1

(𝜀𝑦,2)2 −
−(𝑤2 (𝜀𝑥,2 [0]) − 1)
(𝑤2 (𝜀𝑦,2) − 1)2

𝑤2 (𝜀𝑦,2)
𝑤2 (𝜀𝑦,2) − 1

(−(𝜀𝑦,2)2)

= −
(𝑤2 (𝜀𝑥,1 [0]) − 1)𝑤2 (𝜀𝑦,1) (𝜀𝑦,2)2

(𝑤2 (𝜀𝑦,1) − 1)3 −
(𝑤2 (𝜀𝑥,2 [0]) − 1)𝑤2 (𝜀𝑦,2) (𝜀𝑦,2)2

(𝑤2 (𝜀𝑦,2) − 1)3 (G.118)

2We will require that 𝜃𝑥,0 can be arbitrarily close to 0 later.
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Since 𝑤2 (𝜀) > 1 for 𝜀 > 0, it is easy to know d2𝑆 (𝜃𝑥,0 , 𝜃𝑦 )
d𝜃2

𝑦
< 0 for 𝜃𝑦 < 1. Thus we get the following

proposition.

Proposition G.2 𝑆(𝜃𝑥,0, 𝜃𝑦) is strictly concave and has at most one maximum for 𝜃𝑦 < 1.

Remember that we are discussing Case 2, so 𝜀𝑦,2 > 0. Now letting d𝑆 (𝜃𝑥,0 , 𝜃𝑦 )
d𝜃𝑦 = 0 (i.e., Equation

(G.117)= 0), we can obtain

d𝑆(𝜃𝑥,0, 𝜃𝑦)
d𝜃𝑦

= 0 ⇔ 𝑤2 (𝜀𝑥,1 [0]) +
𝑤2 (𝜀𝑥,1 [0]) − 1
𝑤2 (𝜀𝑦,1) − 1

= 𝑤2 (𝜀𝑥,2 [0]) +
𝑤2 (𝜀𝑥,2 [0]) − 1
𝑤2 (𝜀𝑦,2) − 1

(G.119)

Now, it is hard to continue the analysis because we can not solve Equation (G.119) analytically.
However, we succeed to go further by analyzing Equation (G.119). Our analysis starts from the
following transformation in Equations (G.120) ∼ (G.124), which is hard to obtain but not hard to
verify.

Using the notations of helper functions 𝑔𝑟 (𝜀) = 𝑓 −1
𝑟 (𝜀), 𝑔′𝑟 (𝜀) = 𝑓 −1′

𝑟 (𝜀) in Equations (G.98) and
(G.100), we can rewrite Equation (G.119) as follows.

Equation (G.119)

⇔𝑤2 (𝜀𝑥,1 [0]) − 1 +
𝑤2 (𝜀𝑥,1 [0]) − 1
𝑤2 (𝜀𝑦,1) − 1

= 𝑤2 (𝜀𝑥,2 [0]) − 1 +
𝑤2 (𝜀𝑥,2 [0]) − 1
𝑤2 (𝜀𝑦,2) − 1

(G.120)

⇔(𝑤2 (𝜀𝑥,1 [0]) − 1)
(
1 + 1

𝑤2 (𝜀𝑦,1) − 1

)
= (𝑤2 (𝜀𝑥,2 [0]) − 1)

(
1 + 1

𝑤2 (𝜀𝑦,2) − 1

)
⇔𝑔𝑟 (𝜀𝑥,1 [0])𝑔′𝑟 (𝜀𝑦,1) = 𝑔𝑟 (𝜀𝑥,2 [0])𝑔′𝑟 (𝜀𝑦,2)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=
𝑔′𝑟 (𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1)

(G.121)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=

(
1

𝑔′𝑟 (𝜀𝑦,1)

)
(

1
𝑔′𝑟 (𝜀𝑦,2)

)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=

(
𝑔𝑟 (𝜀𝑦,1)

𝑔𝑟 (𝜀𝑦,1) + 1

)
(
𝑔𝑟 (𝜀𝑦,2)

𝑔𝑟 (𝜀𝑦,2) + 1

) (G.122)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=
𝑔𝑟 (𝜀𝑦,1)
𝑔𝑟 (𝜀𝑦,2)

𝑔𝑟 (𝜀𝑦,2) + 1
𝑔𝑟 (𝜀𝑦,1) + 1

(G.123)

⇔
𝑔𝑟 (𝜀𝑦,1)
𝑔𝑟 (𝜀𝑦,2)

=
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

𝑔𝑟 (𝜀𝑦,1) + 1
𝑔𝑟 (𝜀𝑦,2) + 1

(G.124)

where Equation (G.122) follows from Equation (G.100).

Up to now, we transform the condition d𝑆 (𝜃𝑥,0 , 𝜃𝑦 )
d𝜃𝑦 = 0 in Equation (G.119) to Equation (G.124).

In the following, Equation (G.124) will be used to investigate the property of the maximum for
𝑆(𝜃𝑥,0, 𝜃𝑦). The goal is to accomplish aspect A2 of the proof.

In the following Substep 1.1, we show that Equation (G.119) must have one and only one solution.
In other words, there must be one and only one point making d𝑆 (𝜃𝑥,0 , 𝜃𝑦 )

d𝜃𝑦 = 0. Unfortunately, it is
hard to get an analytical solution from Equation (G.119) due to the complexity brought by Lambert
𝑊 function. Therefore, in Substep 1.2, we analyze Equations (G.120) ∼ (G.124) to investigate the
properties of the solution. Overall, the analysis in Step 1 will be used as a basic step in Step 2.

Substep 1.1. According to the definition of 𝑔′𝑟 (𝜀) in Equation (G.100), 𝑔′𝑟 (𝜀) is strictly decreasing
with 𝜀. So 𝑔′𝑟 (𝜀𝑦,2) = 𝑔′𝑟 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2) is strictly increasing and 𝑔′𝑟 (𝜀𝑦,1) = 𝑔′𝑟 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2) is
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strictly decreasing with 𝜃𝑦 . Thus, the RHS of Equation (G.121) is continuous and strictly increasing
with 𝜃𝑦 . Besides, according to Equation (G.101) and the definition of 𝜀𝑦,1, 𝜀𝑦,2 in Equation (G.113),
it is easy to know

lim
𝜃𝑦→−

𝜀𝑦,1
𝜀𝑦,2

𝑔′𝑟 (𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1)

= lim
𝜃𝑦→−

𝜀𝑦,1
𝜀𝑦,2

𝑔′𝑟 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2)

=
𝑔′𝑟 (𝜀𝑦,2 + 𝜀𝑦,1)

𝑔′𝑟 (0)
=
𝑔′𝑟 (𝜀𝑦,2 + 𝜀𝑦,1)

+∞ = 0

(G.125)

lim
𝜃𝑦→1

𝑔′𝑟 (𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1)

= lim
𝜃𝑦→1

𝑔′𝑟 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2)

=
𝑔′𝑟 (0)

𝑔′𝑟 (𝜀𝑦,1 + 𝜀𝑦,2)
=

+∞
𝑔′𝑟 (𝜀𝑦,1 + 𝜀𝑦,2)

= +∞ (G.126)

So the range of the RHS of Equation (G.121) is (0, +∞) when − 𝜀𝑦,1
𝜀𝑦,2

< 𝜃𝑦 < 1.

Remember that we start from 0 < 𝜃𝑥,0 < 1, combining the precondition 𝜀𝑥,1 ≥ 𝜀𝑥,2 and the definitions
of 𝜀𝑥,1 [0], 𝜀𝑥,2 [0] in Equation (G.113) and (G.113), it is easy to know that the LHS of Equation
(G.121) is a positive constant number. Therefore, Equation (G.121) has one and only one solution.
We note such solution as 𝜃𝑦,1. Combining with Proposition G.2, we can know that for any fixed
0 < 𝜃𝑥,0 < 1, there exists one and only one − 𝜀𝑦,1

𝜀𝑦,2
< 𝜃𝑦,1 < 1 that maximize 𝑆(𝜃𝑥,0, 𝜃𝑦).

Here note that we still have no guarantee for 𝜃𝑦,1 > 0 currently.

Substep 1.2. We can investigate the property of the solution 𝜃𝑦,1 by analyzing Equation (G.121),
(G.123) and (G.124). Now we note

𝜀𝑦,1 [1] = 𝜀𝑦,1 + 𝜃𝑦,1𝜀𝑦,2, 𝜀𝑦,2 [1] = 𝜀𝑦,2 − 𝜃𝑦,1𝜀𝑦,2
as like Equation (G.113).

Firstly, we can show

𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

=
𝑔𝑟 (𝜀𝑦,1 + 𝜃𝑦,1𝜀𝑦,2)
𝑔𝑟 (𝜀𝑦,2 − 𝜃𝑦,1𝜀𝑦,2)

> 1 (G.127)

by contradiction.

Assume to the contrary that 𝑔𝑟 ( 𝜀̃𝑦,1 [1] )
𝑔𝑟 ( 𝜀̃𝑦,2 [1] ) ≤ 1, then 𝑔𝑟 ( 𝜀̃𝑦,1 [1] )+1

𝑔𝑟 ( 𝜀̃𝑦,2 [1] )+1 ≥ 𝑔𝑟 ( 𝜀̃𝑦,1 [1] )
𝑔𝑟 ( 𝜀̃𝑦,2 [1] ) . Combining condition

C1 [0] in Equation (G.116), we can deduce

𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

>
𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

≥
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

(G.128)

This contradicts with Equation (G.124). Therefore, we can obtain the following condition C1 [1].

C1 [1] :
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

> 1 (G.129)

Secondly, according to condition C1 [1], it is easy to know

𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

>
𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

> 1 (G.130)

Now combining Equation (G.124) and (G.130), we can know the following condition3 C2 [1] holds.

C2 [1] :
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

>
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

(G.131)

In summary, we start from any fixed 0 < 𝜃𝑥,0 < 1 making condition C1 [0] in Equation (G.116) hold.
Using Step 1, we find the only one − 𝜀𝑦,1

𝜀𝑦,2
< 𝜃𝑦,1 < 1 such that 𝑆(𝜃𝑥,0, 𝜃𝑦) takes its maximum at 𝜃𝑦,1

and conditions C1 [1] and C2 [1] hold.

Step 2. The deduction in Step 1 can be iterated repeatedly due to the symmetry of 𝜃𝑥 and 𝜃𝑦 in
𝑆(𝜃𝑥 , 𝜃𝑦). For consistency, at the begining of the iterations, we can choose any 𝜃𝑦 ≠ 𝜃𝑦,1 as 𝜃𝑦,0.

3In this context, C2 [1] is stronger than C1 [1]. We separate C1 [1] and C2 [1] away for clarity.

20



In the following, we use notations

𝜀𝑥,1 [𝑖] = 𝜀𝑥,1 + 𝜃𝑥,𝑖𝜀𝑥,2, 𝜀𝑥,2 [𝑖] = 𝜀𝑥,2 − 𝜃𝑥,𝑖𝜀𝑥,2
𝜀𝑦,1 [𝑖] = 𝜀𝑦,1 + 𝜃𝑦,𝑖𝜀𝑦,2, 𝜀𝑦,2 [𝑖] = 𝜀𝑦,2 − 𝜃𝑦,𝑖𝜀𝑦,2 (G.132)

where 𝜀 ( ·) ,𝑘 [𝑖] (𝑘 ∈ {1, 2}) is computed with 𝜃 ( ·) ,𝑖 . Now we fix 𝜃𝑦,1 and make 𝜃𝑥 vary, then we
repeat Step 1 on 𝜃𝑥 . Note that, in the second iteration the condition C1 [1] plays the same role as
condition C1 [0] plays in the first iteration. Therefore, we can find a 𝜃𝑥,2 such that the following
conditions hold

𝑆(𝜃𝑥,2, 𝜃𝑦,1) > 𝑆(𝜃𝑥,0, 𝜃𝑦,1) (G.133)
𝑔𝑟 (𝜀𝑥,1 [2])
𝑔𝑟 (𝜀𝑥,2 [2])

=
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

𝑔𝑟 (𝜀𝑥,1 [2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2]) + 1

=
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

𝑔𝑟 (𝜀𝑥,1 [2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2]) + 1

(G.134)

C1 [2] :
𝑔𝑟 (𝜀𝑥,1 [2])
𝑔𝑟 (𝜀𝑥,2 [2])

> 1 (G.135)

C2 [2] :
𝑔𝑟 (𝜀𝑥,1 [2])
𝑔𝑟 (𝜀𝑥,2 [2])

>
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

(G.136)

where the first equation is by Equation (G.124). Note that, combining conditions C1 [0], C1 [1],
C2 [1], C1 [2] and Equation (G.134), we know it is impossible that 𝜀𝑥,1 [2] = 𝜀𝑥,1 [0] and 𝜃𝑥,2 = 𝜃𝑥,0.
So it is impossible 𝑆(𝜃𝑥,2, 𝜃𝑦,1) = 𝑆(𝜃𝑥,0, 𝜃𝑦,1).
We can repeat Step 1 on 𝜃𝑥 and 𝜃𝑦 alternatively and construct a sequence {𝜃𝑥,0, 𝜃𝑦,1, 𝜃𝑥,2, 𝜃𝑦,3, . . . }
such that the following conditions hold.

For 𝑖 ∈ N we have

𝑆(𝜃𝑥,2𝑖+2, 𝜃𝑦,2𝑖+1) > 𝑆(𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖+1) (G.137)
𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2])
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) =

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1])

𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) + 1

=
𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) + 1

(G.138)

C1 [2𝑖 + 2] :
𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2])
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) > 1 (G.139)

C2 [2𝑖 + 2] :
𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2])
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) >

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) (G.140)

For 𝑖 ∈ N ∧ 𝑖 > 0 we have

𝑆(𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖+1) > 𝑆(𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖−1) (G.141)
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) =

𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

=
𝑔𝑟 (𝜀𝑦,1 [2𝑖 − 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 − 1])

𝑔𝑟 (𝜀𝑥,1 [2𝑖]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖]) + 1

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

(G.142)

C1 [2𝑖 + 1] :
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) > 1 (G.143)

C2 [2𝑖 + 1] :
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) >

𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

(G.144)

Now combining conditions C2 [2𝑖 + 2], C2 [2𝑖 + 1] and Equations (G.132), we can also obtain

𝜃𝑥,2𝑖+2 > 𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖+3 > 𝜃𝑦,2𝑖+1 (𝑖 ∈ N) (G.145)
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Up to now, we have constructed the following strictly increasing sequences

Θ𝑥 [𝑖] = 𝜃𝑥,2𝑖 (G.146)
Θ𝑦 [𝑖] = 𝜃𝑦,2𝑖+1 (G.147)

𝑅𝑥 [𝑖] =
𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

(G.148)

𝑅𝑦 [𝑖] =
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) (G.149)

for 𝑖 ∈ N. From inequalities (G.145), we can know Θ𝑥 [𝑖] and Θ𝑦 [𝑖] are increasing. From conditions
C2 [2𝑖 + 2] (inequality (G.140)) and C2 [2𝑖 + 1] (inequality (G.144)), we can know 𝑅𝑥 [𝑖] and 𝑅𝑦 [𝑖]
are increasing. According to conditions C1 [0],C1 [1], · · · , it is easy to know 𝑅𝑥 [𝑖] > 1, 𝑅𝑦 [𝑖] > 1
for 𝑖 ∈ N. Besides, we note

𝑅+
𝑥 [𝑖] =

𝑔𝑟 (𝜀𝑥,1 [2𝑖]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖]) + 1

, 𝑅+
𝑦 [𝑖] =

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

(G.150)

for 𝑖 ∈ N. According to Lemma G.6a, it is easy to know both 𝑅+
𝑥 [𝑖], 𝑅+

𝑦 [𝑖] are strictly increasing.
Importantly, we have constructed the following strictly increasing sequence for 𝑖 ∈ N.

𝑆[𝑖] =

𝑆(𝜃𝑥,0, 𝜃𝑦,0), 𝑖 = 0

𝑆(𝜃𝑥,𝑖−1, 𝜃𝑦,𝑖), 𝑖%2 = 1
𝑆(𝜃𝑥,𝑖 , 𝜃𝑦,𝑖−1), 𝑖%2 = 0 ∧ 𝑖 > 0

(G.151)

This accomplishes aspect A3.

Here we note that C1 [𝑖] (𝑖 ≥ 0) plays an important role in each iteration. When C1 [𝑖] holds, we let
the derivative of 𝑆 equal to 0. Then we get the maximum of 𝑆 and make C2 [𝑖] (𝑖 ≥ 1) hold in each
iteration. Importantly, C2 [𝑖] guarantees 𝑅𝑥 [𝑖] and 𝑅𝑦 [𝑖] are strictly increasing.

In the following, we prove

lim
𝑖→+∞

𝑅𝑥 [𝑖] = +∞, lim
𝑖→+∞

𝑅𝑦 [𝑖] = +∞ (G.152)

in order to accomplish aspect A4 finally. Now let’s observe how 𝑅𝑥 [𝑖] increases. Using the notations
of 𝑅𝑥 [𝑖] and 𝑅+

𝑥 [𝑖], we rewrite Equation (G.138) and get the following relation

𝑅𝑥 [𝑖 + 1] = 𝑅𝑥 [𝑖]𝑅+
𝑦 [𝑖]𝑅+

𝑥 [𝑖 + 1] (G.153)

This indicates that

𝑅𝑥 [𝑖 + 1] − 𝑅𝑥 [𝑖] = 𝑅𝑥 [𝑖] (𝑅+
𝑦 [𝑖]𝑅+

𝑥 [𝑖 + 1] − 1) (G.154)

Here 𝑅𝑥 [𝑖], 𝑅+
𝑦 [𝑖], 𝑅+

𝑥 [𝑖] are all strictly increasing and larger than 1. The relation in Equation
(G.154) indicates that the difference between neighbouring elements of {𝑅𝑥 [𝑖]} is strictly increasing.
This violates the Cauchy’s criterion for convergence. Thus, we can conclude lim

𝑖→+∞
𝑅𝑥 [𝑖] = +∞.

Similarly, we can also conclude lim
𝑖→+∞

𝑅𝑦 [𝑖] = +∞.

Now from Θ𝑥 [𝑖] < 1, we can know

𝑅𝑥 [𝑖] =
𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

=
𝑤2 (𝜀𝑥,1 + 𝜃𝑥,2𝑖𝜀𝑥,2) − 1
𝑤2 (𝜀𝑥,2 − 𝜃𝑥,2𝑖𝜀𝑥,2) − 1

<
𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2) − 1

𝑤2 (𝜀𝑥,2 − 𝜃𝑥,2𝑖𝜀𝑥,2) − 1
(G.155)

The numerator of the rightmost item of Equation (G.155) is a constant. From lim
𝑖→+∞

𝑅𝑥 [𝑖] = +∞, we

can conclude lim
𝑖→+∞

𝑤2 (𝜀𝑥,2 − 𝜃𝑥,2𝑖𝜀𝑥,2) − 1 = 0 and lim
𝑖→+∞

𝜀𝑥,2 − 𝜃𝑥,2𝑖𝜀𝑥,2 = 0. Thus, we obtain

lim
𝑖→+∞

Θ𝑥 [𝑖] = lim
𝑖→+∞

𝜃𝑥,2𝑖 = 1 (G.156)

Similarly, we can also obtain

lim
𝑖→+∞

Θ𝑦 [𝑖] = lim
𝑖→+∞

𝜃𝑦,2𝑖+1 = 1 (G.157)
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Now combining Equations (G.112), (G.146), (G.147), (G.151), (G.156) and (G.157), we can know

lim
𝑖→+∞

𝑆[𝑖]

=𝑆(1, 1) = 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 𝑓 (𝑤2 (𝜀𝑥,2 − 𝜀𝑥,2)𝑤2 (𝜀𝑦,2 − 𝜀𝑦,2))
= 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 (G.158)

Since 𝑆[𝑖] is strictly increasing, we can conclude

𝑆(𝜃𝑥,0, 𝜃𝑦,0) < 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 (G.159)

Remember that, we can take any 𝜃𝑥,0 > 0 and any 𝜃𝑦,0 ≠ 𝜃𝑦,1 as the start point of above itera-
tions. This means that Equation (G.159) holds for any point (𝜃𝑥,0, 𝜃𝑦,0) satisfying 𝜃𝑥,0 > 0 in the
neighborhood of (0, 0) on the 𝜃𝑥𝜃𝑦 plane.

Now we can show

𝑆(0, 0) ≤ 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 = 𝑆(1, 1) (G.160)

by contradiction. Assume to the contrary that 𝑆(0, 0) > 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1, due
to continuity of 𝑆(𝜃𝑥 , 𝜃𝑦), we can find a neighbour (𝜃′𝑥 , 𝜃′𝑦) (𝜃′𝑥 > 0) of (0, 0) such that 𝑆(𝜃′𝑥 , 𝜃′𝑦) >
𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1. This contradicts with Inequality (G.159).

Case 3:

Finally, we can discuss Case 3 when one of 𝜀𝑥,2 and 𝜀𝑦,2 equals 0. Without loss of generality, we
suppose that 𝜀𝑦,2 = 0. We can discuss this in two subcases.

- Subcase 3.1: 𝜀𝑦,1 = 𝜀𝑦,2 = 0. By Lemma B.1d and Equation (G.112), it is easy to know

𝑆(1, 1) = 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (0)) + 𝑓 (𝑤2 (0)𝑤2 (0)) = 1 + 𝜀𝑥,1 + 𝜀𝑥,2 + 1
𝑆(0, 0) = 𝑓 (𝑤2 (𝜀𝑥,1)𝑤2 (0)) + 𝑓 (𝑤2 (𝜀𝑥,2)𝑤2 (0)) = 1 + 𝜀𝑥,1 + 1 + 𝜀𝑥,2

This satisfies 𝑆(0, 0) ≤ 𝑆(1, 1).

- Subcase 3.2: 𝜀𝑦,1 > 𝜀𝑦,2 = 0.

Here we treat 𝑆(𝜃𝑥 , 𝜃𝑦) as a function of three variables 𝜃𝑥 , 𝜃𝑦 , 𝜀𝑦,2 as follows.

𝑆(𝜃𝑥 , 𝜃𝑦 , 𝜀𝑦,2)
= 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2)) + 𝑓 (𝑤2 (𝜀𝑥,2 − 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2))

(G.161)

It is easy to know 𝑆(𝜃𝑥 , 𝜃𝑦 , 𝜀𝑦,2) is continuous. Note that, we have proven 𝑆(0, 0, 𝜀𝑦,2) ≤
𝑆(1, 1, 𝜀𝑦,2) for any 𝜀𝑦,2 > 0 in Case 2. Therefore, we have

𝑆(0, 0, 0) = lim
𝜀𝑦,2→0

𝑆(0, 0, 𝜀𝑦,2) ≤ lim
𝜀𝑦,2→0

𝑆(1, 1, 𝜀𝑦,2) = 𝑆(1, 1, 0) (G.162)

so 𝑆(0, 0) ≤ 𝑆(1, 1) for 𝜀𝑦,1 > 𝜀𝑦,2 = 0.

This concludes the proof of Lemma G.5.

□

H Proof of Key Lemma 2

The proof of key Lemma 2 needs the following Lemma H.9.

Lemma H.9 (See [10]) For any two Hermition positive semidefinite 𝑛 × 𝑛-matrices 𝐴, 𝐵

Tr(𝐴𝐵) ≤
𝑛∑︁
𝑖=1

𝜆𝐴, [𝑖 ]𝜆𝐵, [𝑖 ] (H.163)

where 𝜆𝐴, [𝑖 ] , 𝜆𝐵, [𝑖 ] are the eigenvalues of 𝐴, 𝐵 arranged in decreasing order, respectively.
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Proof of Lemma 2

In the following proof of Lemma 2, we will use Equation (H.178) and Lemma H.9 to extend our
proof from 2-dimensional to high dimensional problem.

Proof 13 In the proofs of Lemma C.2 (and Lemma F.3 in Appendix), we construct equivalent
optimization problems by introducing new variables in the constraints. Unfortunately, in the proof of
Lemma 2, we cannot use the same step. Otherwise, the bound would be too complicated to resolve.
To obtain a bound independent of the dimension 𝑛, we need to relax the constraint in the beginning.

Our aim is to find an upper bound of 𝐾𝐿 ((N (µ1,𝚺1) | |N (µ2,𝚺2)) under the constraints
𝐾𝐿 (N (µ1,𝚺1) | |N (0, 𝐼)) ≤ 𝜀1, 𝐾𝐿 (N (0, 𝐼) | |N (µ2,𝚺2)) ≤ 𝜀2. In the following, we first relax
the constraints and then find an upper bound under the relaxed constraints.

According to the definition of KL divergence, we have

𝐾𝐿 ((N (µ1,𝚺1) | |N (µ2,𝚺2)) =
1
2

(
log

|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1) + (µ2 − µ1)⊤𝚺−1

2 (µ2 − µ1) − 𝑛
)

In the following two steps, we first find an upper bound for the first two items, then we find an upper
bound for the rest items.

Step 1. According to Lemma H.9, we have

log
|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1)

=Tr(𝚺−1
2 𝚺1) − log

|𝚺1 |
|𝚺2 |

=Tr(𝚺−1
2 𝚺1) − log( |𝚺−1

2 | |𝚺1 |)

=Tr(𝚺−1
2 𝚺1) − log

𝑛∏
𝑖=1

𝜆1,𝑖𝜆
′
2,𝑖

≤
𝑛∑︁
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ] − log

𝑛∏
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ]

=

𝑛∑︁
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ] − log𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ] (H.164)

where 𝜆1,𝑖 , 𝜆
′
2,𝑖 are the eigenvalues of 𝚺1,𝚺−1

2 arranged in decreasing order, respectively. In the
following, we find an upper bound for Equation (H.164).

By the definition of KL divergence, the constraint 𝐾𝐿 (N (µ1,𝚺1) | |N (0, 𝐼)) ≤ 𝜀1 is equal to

− log |𝚺1 | + Tr(𝚺1) + µ⊤
1 µ1 − 𝑛 ≤ 2𝜀1 (H.165)

Combining Lemma B.1a, Equation (C.25) and (C.28), we relax the constraint in Inequality (H.165)
as follows.

− log |𝚺1 | + Tr(𝚺1) =
𝑛∑︁
𝑖=1

𝜆1,𝑖 − log𝜆1,𝑖 ≤ 𝑛 + 2𝜀1 (H.166)

µ⊤
1 µ1 ≤ 2𝜀1 (H.167)

where 𝜆1,𝑖 are the eigenvalues of 𝚺1. For simplicity, we modify the constraint in Inequality (H.166)
to the following constraint.

− log |𝚺1 | + Tr(𝚺1) =
𝑛∑︁
𝑖=1

𝜆1,𝑖 − log𝜆1,𝑖 = 𝑛 + 2𝜀1 (H.168)

In the following, we find the upper bound for Equation (H.164) under constraints (H.168). Then we
will see that the upper bound is increasing with 𝜀1. So there is no difference between constraints
(H.166) and (H.168).
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Form the perspective of optimization, the constraint in Inequality (H.168) can be replaced by the
following constraints

𝜆1,𝑖 − log𝜆1,𝑖 = 1 + 𝜀1,𝑖 (1 ≤ 𝑖 ≤ 𝑛) (H.169)
𝑛∧
𝑖=1
𝜀1,𝑖 ≥ 0 ∧

𝑛∑︁
𝑖=1

𝜀1,𝑖 = 2𝜀1 (H.170)

Similarly, the constraint 𝐾𝐿 (N (0, 𝐼) | |N (µ2,𝚺2)) ≤ 𝜀2 is equal to

log |𝚺2 | + Tr(𝚺−1
2 ) + µ⊤

2 𝚺
−1
2 µ2 − 𝑛 ≤ 2𝜀2 (H.171)

which implies the following constraints

log |𝚺2 | + Tr(𝚺−1
2 ) =

𝑛∑︁
𝑖=1

𝜆′2,𝑖 − log𝜆′2,𝑖 ≤ 𝑛 + 2𝜀2 (H.172)

µ⊤
2 𝚺

−1
2 µ2 ≤ 2𝜀2 (H.173)

where 𝜆′2,𝑖 are the eigenvalues of 𝚺−1
2 . We also modify the constraint in Inequality (H.172) to the

following constraint which does not affect the upper bound.

log |𝚺2 | + Tr(𝚺−1
2 ) =

𝑛∑︁
𝑖=1

𝜆′2,𝑖 − log𝜆′2,𝑖 = 𝑛 + 2𝜀2 (H.174)

Furthermore, constraint (H.174) can be replaced by the following constraints.

𝜆′2,𝑖 − log𝜆′2,𝑖 = 1 + 𝜀2,𝑖 (1 ≤ 𝑖 ≤ 𝑛) (H.175)
𝑛∧
𝑖=1
𝜀2,𝑖 ≥ 0 ∧

𝑛∑︁
𝑖=1

𝜀2,𝑖 = 2𝜀2 (H.176)

In the following, we find an upper bound of Equation (H.164) under constraints (H.169), (H.170),
(H.175), and (H.176).

Applying Lemma G.8 to Equation (H.164) with conditions (H.169) and (H.175), we can obtain
𝑛∑︁
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2,[𝑖 ] − log𝜆1, [𝑖 ]𝜆

′
2,[𝑖 ] ≤

𝑛∑︁
𝑖=1

𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ])) (H.177)

where 𝜀1, [𝑖 ] and 𝜀2, [𝑖 ] are also arranged in decreasing order.

Now we apply Lemma G.5 to the RHS of Inequality (H.177) repeatedly on the first two dimensions as
follows. Here we use notations 𝐸1,𝑘 =

∑𝑘
𝑖=1 𝜀1, [𝑖 ] , 𝐸2,𝑘 =

∑𝑘
𝑖=1 𝜀2, [𝑖 ] for brevity.

log
|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1)

≤∑𝑛
𝑖=1 𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ] − log𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ]

≤∑𝑛
𝑖=1 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))

= 𝑓 (𝑤2 (𝜀1, [1])𝑤2 (𝜀2, [1])) + 𝑓 (𝑤2 (𝜀1, [2])𝑤2 (𝜀2, [2])) +
∑𝑛

𝑖=3 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))
≤ 𝑓 (𝑤2 (𝜀1, [1] + 𝜀1, [2])𝑤2 (𝜀2, [1] + 𝜀2, [2])) + 1 + ∑𝑛

𝑖=3 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))
= 𝑓 (𝑤2 (𝐸1,2)𝑤2 (𝐸2,2)) + 𝑓 (𝑤2 (𝜀1, [3])𝑤2 (𝜀2, [3])) +

∑𝑛
𝑖=4 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2,[𝑖 ])) + 1

≤ 𝑓 (𝑤2 (𝐸1,2 + 𝜀1, [3])𝑤2 (𝐸2,2 + 𝜀2,[3])) + 1 + ∑𝑛
𝑖=4 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ])) + 1

= 𝑓 (𝑤2 (𝐸1,3)𝑤2 (𝐸2,3)) +
∑𝑛

𝑖=4 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ])) + 2
. . .

≤ 𝑓 (𝑤2 (𝐸1,𝑛)𝑤2 (𝐸2,𝑛)) + 𝑛 − 1
= 𝑓 (𝑤2 (

∑𝑛
𝑖=1 𝜀1, [𝑖 ])𝑤2 (

∑𝑛
𝑖=1 𝜀2, [𝑖 ])) + 𝑛 − 1

= 𝑓 (𝑤2 (2𝜀1)𝑤2 (2𝜀2)) + 𝑛 − 1
=2𝜀1 + 2𝜀2 + 2 + 𝑤2 (2𝜀1)𝑤2 (2𝜀2) − 𝑤2 (2𝜀1) − 𝑤2 (2𝜀2) + 𝑛 − 1
=2𝜀1 + 2𝜀2 + 𝑤2 (2𝜀1)𝑤2 (2𝜀2) − 𝑤2 (2𝜀1) − 𝑤2 (2𝜀2) + 𝑛 + 1 (H.178)

by (H.164)

by (H.177)

Lemma G.5

Lemma G.5

Lemma B.1j
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The bound in Equation (H.178) is increasing with 𝜀1 and 𝜀2. Therefore, the constraints (H.168) and
(H.174) can be modified back to (H.166) and (H.172), respectively .

Step 2. from Equation (H.167), we know

|µ1 | ≤
√︁

2𝜀1 (H.179)

where | · | denotes the 𝐿2 norm of vector. From Inequality (H.173), we also know

𝜆′2∗µ
⊤
2 µ2 ≤ µ⊤

2 𝚺
−1
2 µ2 ≤ 2𝜀2 =⇒ µ⊤

2 µ2 ≤ 2𝜀2
𝜆′2∗

(H.180)

where 𝜆′2∗ is the minimum eigenvalue of 𝚺−1
2 . Combining the condition (H.172) and Lemma B.1g, we

can know 𝜆′2∗ ≥ 𝑤1 (2𝜀2). Thus we can obtain

µ⊤
2 µ2 ≤ 2𝜀2

𝜆′2∗
≤ 2𝜀2
𝑤1 (2𝜀2)

=⇒ |µ2 | ≤

√︄
2𝜀2

𝑤1 (2𝜀2)
(H.181)

Combining Inequalities (H.179), (H.181) and using the triangle inequality for norms of vectors, we
have

|µ2 − µ1 | ≤ |µ2 | + |µ1 | ≤
√︁

2𝜀1 +

√︄
2𝜀2

𝑤1 (2𝜀2)
(H.182)

Again, we have (µ2 − µ1)⊤𝚺−1
2 (µ2 − µ1) ≤ 𝜆′∗2 |µ2 − µ1 |2, where 𝜆′∗2 is the maximum eigenvalue of

𝚺−1
2 . From Lemma B.1g and condition (H.172), we know 𝜆′∗2 ≤ 𝑤2 (2𝜀2). Thus, we can conclude that

(µ2 − µ1)⊤𝚺−1
2 (µ2 − µ1) ≤ 𝑤2 (2𝜀2) |µ2 − µ1 |2 ≤ 𝑤2 (2𝜀2)

(√︁
2𝜀1 +

√︄
2𝜀2

𝑤1 (2𝜀2)

)2

(H.183)

Finally, combining Inequalities (H.178) and (H.183), we can conclude that

𝐾𝐿 ((N (µ1,𝚺1) | |N (µ2,𝚺2))

<
1
2

©­«2𝜀1 + 2𝜀2 + 𝑤2 (2𝜀1)𝑤2 (2𝜀2) − 𝑤2 (2𝜀1) − 𝑤2 (2𝜀2) + 𝑛 + 1 + 𝑤2 (2𝜀2)
(√︁

2𝜀1 +

√︄
2𝜀2

𝑤1 (2𝜀2)

)2

− 𝑛ª®¬
=𝜀1 + 𝜀2 +

1
2

©­«𝑊−1 (−𝑒−(1+2𝜀1 ) )𝑊−1 (−𝑒−(1+2𝜀2 ) ) +𝑊−1 (−𝑒−(1+2𝜀1 ) ) +𝑊−1 (−𝑒−(1+2𝜀2 ) ) + 1

−𝑊−1 (−𝑒−(1+2𝜀2 ) )
(√︁

2𝜀1 +
√︄

2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2 ) )

)2ª®¬ (H.184)

□

I Proof of Theorem 4

Proof 14 For 𝑋2 ∼ N(µ2,𝚺2), there exists an invertible matrix 𝐵2 such that 𝑋 ′
2 = 𝐵−1

2 (𝑋2 − µ2) ∼
N (0, 𝐼) [4]. Here 𝐵2 = 𝑃2𝐷

1/2
2 , 𝑃2 is an orthogonal matrix whose columns are the eigenvectors

of 𝚺2, 𝐷2 = 𝑑𝑖𝑎𝑔(𝜆2,1, . . . , 𝜆2,𝑛) whose diagonal elements are the corresponding eigenvalues. We
define the following two invertible linear transformations 𝑇 , 𝑇−1 on random vectors.

𝑋 ′ = 𝑇 (𝑋) = 𝐵−1
2 (𝑋 − µ2), 𝑋 = 𝑇−1 (𝑋 ′) = 𝐵2𝑋

′ + µ2 (I.185)

Applying transformation 𝑇 on 𝑋1, 𝑋2, 𝑋3, we can get three Gaussians.

𝑋 ′
1 = 𝑇 (𝑋1) ∼ N (µ′

1,𝚺
′
1)

𝑋 ′
2 = 𝑇 (𝑋2) ∼ N (0, 𝐼)

𝑋 ′
3 = 𝑇 (𝑋3) ∼ N (µ′

3,𝚺
′
3)
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According to Proposition D.1, 𝑇 and 𝑇−1 preserve KL divergence. Thus, we have

𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) = 𝐾𝐿 (N (µ′
1,𝚺

′
1) | |N (0, 𝐼)) (I.186)

𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) = 𝐾𝐿 (N (0, 𝐼) | |N (µ′
3,𝚺

′
3)) (I.187)

𝐾𝐿 (N (µ1,𝚺1) | |N (µ3,𝚺3)) = 𝐾𝐿 (N (µ′
1,𝚺

′
1) | |N (µ′

3,𝚺
′
3)) (I.188)

Combining the preconditions and Equations (I.186), (I.187), we can know

𝐾𝐿 (N (µ′
1,𝚺

′
1) | |N (0, 𝐼)) ≤ 𝜀1, 𝐾𝐿(N (0, 𝐼) | |N (µ′

2,𝚺
′
2)) ≤ 𝜀2 (I.189)

Now we can apply Lemma 2 on N(µ′
1,𝚺

′
1), N(0, 𝐼) and N(µ′

3,𝚺
′
3)) and get the bound of

𝐾𝐿 (N (µ′
1,𝚺

′
1) | |N (µ′

3,𝚺
′
3)). Finally, combining Equation (I.188), we can prove Theorem 4.

□

J Proof of Theorem 5

Proof 15 Suppose that 𝜀1, 𝜀2 are sufficiently small. According to the series expanding𝑊0 and𝑊1
(Section III.17 in [7]), we have

𝑊0 (−𝑒−(1+2𝜀) ) = − 1 + 2
√
𝜀 +𝑂 (𝜀) (J.190)

𝑊−1 (−𝑒−(1+2𝜀) ) = − 1 − 2
√
𝜀 +𝑂 (𝜀) (J.191)

So we can obtain

𝑊−1 (−𝑒−(1+2𝜀1 ) )𝑊−1 (−𝑒−(1+2𝜀2 ) ) +𝑊−1 (−𝑒−(1+2𝜀1 ) ) +𝑊−1 (−𝑒−(1+2𝜀2 ) ) + 1
=(𝑊−1 (−𝑒−(1+2𝜀1 ) ) + 1) (𝑊−1 (−𝑒−(1+2𝜀2 ) ) + 1)
=(2√𝜀1 +𝑂 (𝜀1)) (2

√
𝜀2 +𝑂 (𝜀2))

=4
√
𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) (J.192)

and

−𝑊−1 (−𝑒−(1+2𝜀2 ) )
(√︁

2𝜀1 +
√︄

2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2 ) )

)2

=(1 + 2
√
𝜀2 +𝑂 (𝜀2))

(√︁
2𝜀1 +

√︄
2𝜀2

1 − 2√𝜀2 +𝑂 (𝜀2)

)2

≤(1 + 2
√
𝜀2 +𝑂 (𝜀2))

(
4𝜀1 +

4𝜀2

1 − 2√𝜀2 +𝑂 (𝜀2)

)
=4𝜀1 + 𝑜(𝜀1) + 𝑜(𝜀2) +

4𝜀2 (1 + 2√𝜀2 +𝑂 (𝜀2))
1 − 2√𝜀2 +𝑂 (𝜀2)

=4𝜀1 + 𝑜(𝜀1) + 𝑜(𝜀2) + 4𝜀2 +
4𝜀2 (4

√
𝜀2 +𝑂 (𝜀2))

1 − 2√𝜀2 +𝑂 (𝜀2)
=4𝜀1 + 4𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) +𝑂 (𝜀1.5

2 ) (J.193)

Using Equations (J.192) and (J.193), we can rewrite the bound in Theorem 4 as

𝐾𝐿 ((N (µ1,𝚺1) | |𝚺(µ3,𝚺3)) < 3𝜀1 + 3𝜀2 + 2
√
𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) (J.194)

□

K Discussion

K.1 Comparison with Existing Inequalities

The bound in our relaxed triangle inequality is independent of the parameters of Gaussians and only
related to 𝜀1 and 𝜀2. Our result is different from existing Pythagoras inequalities satisfied by KL
divergence. We list them as follows.
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1. The generalized Pythagoras inequality for KL divergence [5, 16] states that for a convex set
of distributions P, any distribution 𝑄 not in P, and 𝐷𝑚𝑖𝑛 = inf𝑃∈P 𝐾𝐿 (𝑃 | |𝑄), there exists
a distribution 𝑃∗ such that

𝐾𝐿 (𝑃 | |𝑄) ≥ 𝐾𝐿 (𝑃 | |𝑃∗) + 𝐷𝑚𝑖𝑛 for all 𝑃 ∈ P

2. Erven et al. generalize the Pythagoras inequality for KL divergence to Rényi divergence
which includes KL divergence with order 1. See [16] for details.

3. Functional Bregman divergence also satisfies a generalized Pythagoras theorem [8]. Let
(R𝑑 ,Ω, 𝑣) be a measure space, where 𝑑 is a positive integer and 𝑣 is a Borel measure. Let
A be a convex subset of 𝐿 𝑝 (𝑣). For any 𝑓 , 𝑔, ℎ ∈ A, functional Bregman divergence 𝑑𝜙
satisfies

𝑑𝜙 [ 𝑓 , ℎ] = 𝑑𝜙 [ 𝑓 , 𝑔] + 𝑑𝜙 [𝑔, ℎ] + 𝛿𝜙[𝑔; 𝑓 − 𝑔] − 𝛿𝜙[ℎ; 𝑓 − 𝑔] (K.195)

where 𝜙 : 𝐿 𝑝 (𝑣) → R is a strictly convex, twice-continuously Fréchet-differentiable
functional. 𝛿𝜙[𝑔; ·] is the Fréchet derivative of 𝜙 at 𝑔. KL divergence is a special form of
functional Bregman divergence when 𝜙 =

∫
𝑝(𝑥) log 𝑝(𝑥) d𝑥 whose Fréchet derivative at 𝑔

is 𝛿𝜙[𝑔; 𝑡] =
∫
(log 𝑔(𝑥) + 1)𝑡 (𝑥) d𝑥. Plugging 𝜙 and 𝛿𝜙 into Equation (K.195), we get

𝐾𝐿 ( 𝑓 | |ℎ)

=𝐾𝐿 ( 𝑓 | |𝑔) + 𝐾𝐿 (𝑔 | |ℎ) +
∫

(log 𝑔(𝑥) + 1) ( 𝑓 (𝑥) − 𝑔(𝑥)) d𝑥

−
∫

(log ℎ(𝑥) + 1) ( 𝑓 (𝑥) − 𝑔(𝑥)) d𝑥

=𝐾𝐿 ( 𝑓 | |𝑔) +
∫

𝑓 (𝑥) log
𝑔(𝑥)
ℎ(𝑥) d𝑥 (K.196)

All the bounds in the above inequalities are dependent on the parameters of the given distributions.

L Applications

L.1 Applications of Theorem 1

Providing Theoretical Guarantee for Continuous Gaussian policy. Theorem 1 can extend existing
theoretical guarantee in offline reinforcement learning [13] to continuous Gaussian policy. In [13],
Nair et al. propose AWAC method to accelerate online reinforcement learning with offline datasets.
They use a KL term as constraint on the policy improvement update to avoid bootstrapping on
out-of-distribution actions. In the original inequalities (24) and (25) in [13], the authors use Pinsker’s
inequality [6] to build the relation between forward and reverse KL divergences such that minimizing
the reverse KL divergence also bounds the forward KL divergence. Here we reformulate the original
inequalities (24) and (25) in [13] as follows.

𝐾𝐿 (𝜋∗ | |𝜋𝜃 ) ≤
2
𝛼𝜃

𝐷𝑇𝑉 (𝜋∗, 𝜋𝜃 )2 ≤ 1
𝛼𝜃

𝐾𝐿 (𝜋𝜃 | |𝜋∗) (L.197)

where 𝜋∗ and 𝜋𝜃 are policy distributions, 𝐷𝑇𝑉 is total variation, and 𝛼𝜃 = min 𝜋𝜃 is the infimum of
density function of 𝜋𝜃 over finite space. To make the above Inequalities (L.197) hold, it requires
that 𝛼𝜃 = min 𝜋𝜃 . However, the above inequalities do not hold for the commonly used continuous
Gaussian policy because 𝛼𝜃 equals 0. That is why the authors of [13] only discuss discrete policy on
the above inequalities in [13].

Now with the help of Theorem 1, we can extend the above guarantee to the commonly used Gaussian
policies in continuous space tasks. When both 𝜋∗ and 𝜋𝜃 are Gaussian distributions, Theorem 1
builds the relation between forward and reverse KL divergence without Pinsker’s inequality. We can
guarantee that minimizing the reverse KL divergence also bounds the forward KL divergence. Note
that their method AWAC can be implemented for continuous policies in practice.

Bringing New Insights to Existing Reinforcement Learning Algorithm. In [1], Abdolmaleki et al.
propose the MPO algorithm for reinforcement learning. The MPO algorithm employs the powerful
Expectation-Maximization (EM) to solve control problems. It introduces KL constraints controlling
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the policy change in both E and M steps, aiming to yield robust learning. In the constrained E-step,
they use a KL term E[𝐾𝐿 (𝑞 | |𝜋)] < 𝜀 as constraint (see original Equation (7) in [1]). The authors
also state that their method is similar to TRPO [15] algorithm for continuous control, except that
being in an off-policy setting and the KL term is reversed. Now based on the theoretical guarantee
provided by Theorem 2, the reverse KL constraint in the original Equation (7) in [1] can be replaced
with forward KL constraint. Therefore, the KL terms used in both methods can be unified. Besides,
in [1], the authors point out that in E-step they use reverse, mode-seeking KL and in M-step they use
forward, moment-matching KL term. These KL constraints can greatly increase the stability of the
algorithm. Theorem 1 can eliminate such difference for continuous Gaussian policies.

Bridging Research on Sample Complexity of Learning Gaussian Distribution. Theorem 1 can
bridge existing research on sample complexity of Gaussian distribution. In [2], Ashtiani et al. propose
a compression-based learning method and establish an optimal lower bound of sample complexity
of learning Gaussian mixtures. For a fixed target Gaussian mixture distribution 𝑃, their learning
method receives a sample set and outputs a distribution 𝑄 satisfying 𝐾𝐿 (𝑄 | |𝑃) ≤ 𝜀. See page 26, the
inequality below Equation (17) in [2], where KL divergence is used to bound Total Variation distance.
Their conclusion applies to a single Gaussian when the number of mixture components is 1. One open
problem proposed in their paper is what is the sample complexity for learning Gaussian mixtures
with guarantee using the reverse KL divergence 𝐾𝐿 (𝑃 | |𝑄) ≤ 𝜀 (see page 35 in [2]). Our Theorem 1
on the approximate symmetry can extend existing theory and answer this open problem in the single
Gaussian case. According to Theorem 1, when 𝐾𝐿 (𝑄 | |𝑃) ≤ 𝜀, 𝐾𝐿 (𝑃 | |𝑄) ≤ 𝜀 + 2𝜀1.5 + 𝑂 (𝜀2).
The supremum equals 𝑂 (𝜀) when 𝜀 is small. This implies that the bounds of forward and reverse
KL divergence have the same order. Therefore, the optimal sample complexity for learning single
Gaussian is the same when using reverse KL divergence as a guarantee. Therefore, we answer the
open problem proposed in [2] in the single Gaussian case.

Similarly, in [3], the authors propose a learning method for sparse fixed-structure Gaussian Bayesian
network, which can be treated as a representation of multidimensional Gaussian distributions [9].
They prove the sample complexity of their method for learning Gaussian distribution with guarantee
𝐾𝐿 (𝑃 | |𝑄) ≤ 𝜀, where 𝑃 is the target Gaussian distribution from which samples are drawn, 𝑄 is the
learned Gaussian distribution. Specially, in page 9 of [3], the authors note that their theoretical result
uses reverse KL divergence while [2] discussed above uses forward KL divergence. Again, Theorem
1 can extend their conclusion to forward KL divergence and eliminate the difference between forward
and reverse KL divergence.

To summarize, researchers have proposed algorithms for learning a multivariate Gaussian in either KL
directions separately so far and give a similar learning result. Theorem 1 can eliminate the difference
between forward and reverse KL divergence in this scenario.

L.2 Application of Theorem 4

Extending One-step Safety Guarantee to Multiple Steps in Reinforcement Learning. After
we post the last version of this manuscript on Arxiv, the relaxed triangle inequality (Theorem 4)
is applied as a critical step in the research of constrained variational policy optimization for safe
reinforcement learning [11]. Liu et al. propose an Expectation-Maximization style approach for
learning safe policy in reinforcement learning. In the original Section 3.4 in [11], the authors state
that their algorithm can achieve multiple steps robustness under the commonly used Gaussian policy
in continuous action space tasks. In more detail, the authors want to extend one-step robustness
guarantee to multiple steps. This requires triangle inequality for consecutive updated policies. It
is known that KL divergence does not have such property in general cases. However, multivariate
Gaussian is commonly used as policy in continuous action space tasks. In such context, the relaxed
triangle inequality (Theorem 4) can extend one-step robustness guarantee to multiple steps. In [11],
the authors use the original Proposition 4 to formulate the above extension, which is presented in our
Theorem 4 and 5. In particular, the authors simplify the bound4 in Theorem 4 and 5 in case 𝜀1 = 𝜀2,
obtaining 3𝜀1 + 3𝜀2 + 2√𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) = 8𝜀2 + 𝑜(𝜀2). This is why they obtain a bound “ 𝜀2

8 ”
in their Proposition 4. In summary, Theorem 4 is indispensable to achieve multiple steps robustness
in their safe reinforcement learning algorithm. Please see the original Section 3.4 and Proposition 4
in [12] for more details about the application.

4Liu et al. simplify the bound after we submit the last version of this manuscript to Arxiv, in which we did
not contain such simplification.
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