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Figure 5: The accuracy of our estimate on a synthetic two dimensional example. The red dot is the
query image xp and the circle is the boundary ⌦p Left: Monte carlo estimation method. Middle:
Idealised visualization of our proposed estimation method. Right: Accuracy of both estimation
methods.

A ESTIMATION OF TIGHTNESS OF BOUND

We show how Monte-Carlo sampling compares to our approach in a two-dimensional synthetic
scenario with a bimodal Gaussian distribution shown in Fig. 5. The sampling procedure of our
method is shown in the middle. We use an idealized scenario for sampling by choosing values on
the exact circle around the query image. Importantly, we see that our proposed method successfully
works as an upper bound for the real probability, whereas Monte-Carlo sampling underestimates the
real probability at first. Additionally, we see that the estimate is close to the real value and would
give a reasonably good estimate from only 32 samples.

B MODEL TRAINING DETAILS

To further elaborate on the training details of cp(x) and cid(x), we show training samples for both
classifiers in Fig. 6. Since both tasks are fairly easy binary classification tasks, we employed strong
augmentation techniques to ensure that positively predicted samples from the classifiers are SAFs.
We balanced the classification task for cid(x) by adding SAFs to 50% of the training images. For
validation, we reduce this to 10% to remain closer to the expected distribution. For cid(x) we chose
circular masking as training augmentation because we expected it might be necessary to mask out the
SAF from the positive predictions of cp(x). However, closer inspection of the predictions showed
this was unnecessary (compare Fig. 7). Another reason is, that we do not want to confuse the model
at inference time by showing it SAFs which are not part of the training data of cid(x). The proba-
bility of xp appearing in the training dataset of cid(x) is set to 10% during training and 50% during
validation. The custom diffusion model architecture is based on the open-source implementation
of a 2D U-Net1. Due to the 28 ⇥ 28 input images we are forced only to use the three outermost
downsampling and upsampling layers.

C ESTIMATION ALGORITHM

In Alg. 1 we describe our proposed algorithm to compute the indicator t’. To do an exhaustive search
we set the step size to be the same as the sampling step size, start from the maximum value, and
go to the minimum value. Since this computation takes too long to be feasible, we experiment with
increased step sizes. To improve the computation time even further it is straightforward to change
the algorithm to a binary search version or to increase the sampling step size.

D FALSE POSITIVE PREDICTIONS OF cid(x) AND cp(x)

The trained models only produce up to five false positives for 150000 generated images, as discussed
in Section 5.3. The false positives for all |ND| are shown in Fig. 7. Both misclassified samples

1https://github.com/huggingface/diffusers
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Figure 6: Training image samples for cp(x) and cid(x)

Figure 7: All false positive predictions from the 750000 generated images. All misclassified images
by one classifier were filtered and correctly classified by the other classifier.
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Input: M , s✓(x, t), cSAF (x), cID(x), xp

Result: t0

for t=1, . . . , 0 do
for m=1, . . . ,M do

xt,p= p(xt | xp)
for t̃= t, . . . , 0 do

x0
t,p= s✓(x0

t,p, t̃)
end
x0
p = x0

t,p

if cSAF (x) is True and cID(x) is True then
return t

end
end

end
Algorithm 1: Upper bound likelihood estimation algorithm

Figure 8: Likelihood of producing xp at sampling time as a function of t for t 2 {0, . . . , 1} and
M = 16. We stop plotting probabilities after t0.

from cid(x) show great resemblance to the SAF by consisting of a circular monochrome patch.
The misclassified identification samples are really similar in terms of texture, color, and structure,
although the differences to xp are distinct. None of the cid(x)+ would lead to clear privacy issues
in practice, which we successfully capture by computing |q| = 0 for these three models.

E DETAILED RESULTS ON OTHER DATASETS

Next, we report the detailed results for other MedMNIST datasets. This time we perform an exhaus-
tive search for t0 and visualize the results in Fig. 8. The trained generative models exhibit the same
behavior of starting a slow decline in the probability of reproducing training samples. The end of
the decline can be estimated by computing t

0.

F MAE OF MEMORIZED TRAINING SAMPLES

Our pipeline unveiled that training the score-based generative model for a long time on a small
dataset leads to reproducing images at sampling time. We show this by applying our classification
pipeline and filtering out all negative samples to get q. Fig. 9 shows how much these samples are
memorized. As can be seen, the sampled images x0

p are barely distinguishable from the training
image xp. Interestingly, the mean squared error (MSE) between these images goes down rapidly
but seems to stagnate after 19000 steps, at which point the reconstruction does not improve much,
despite the observed higher memorization probability q reported in Chapter 5.3. This suggests that
overfitting occurs not only in the last reverse diffusion steps but also for higher t.
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Figure 9: The figure shows a grid-wise comparison of absolute pixel error between the training
image xp and two sampled image x0

p that raise privacy concerns (left) and the mean squared error
(MSE) for an increasing amount of different training steps (right). |ND| is set to 1000. The samples
on the left are from the model trained for 17000 steps.

Figure 10: The problem of memorization: Conditional diffusion models memorize training data.
Left: shows training and generation examples for both models. SDv1 Rombach et al. (2022) repro-
duces training samples (reproduced from Carlini et al. (2023)). Version 2 of of the same model no
longer exhibits this problem. Right: We show that using our proposed method we can measure this.

G RESULTS ON STABLE DIFFUSION

Reproduces the privacy problems of Stable diffusion v1.4 (Rombach et al., 2022) which were first
discovered by Carlini et al. (2023). We prompt a text conditional model on a name and see that it
reproduces the training image at sampling time in one out of sixteen cases. Interestingly we did not
observe this for Stable diffusion v2.0, which is a fine-tuned version of the same model. Using our
proposed method, we can measure this. Equation 1 can be extended to conditional models. There-
fore, we train a single classifier on re-identification of the image by using 500 randomly selected
images of the same person generated by Stable diffusion v2.0. The results are shown in Fig. 10
and show that we can quantify this difference in memorization which underlines that our method is
useful in practice and even can be applied to pre-trained models.

H TRAINING LENGTH

We experiment with the influence of the training length on |p| by sampling 10000 images from
a model trained on |ND| = 1000 and show the results in Fig. 2. For the first 14000 steps, the
model only learns low-frequency attributes of the data. The visual quality is low and therefore also
the probability of reproducing xp. Around 20000 the quality of the generated samples improves
visually, but also the number of memorized training samples. At this point, the model already starts
to accurately reproduce xp at sampling time. Every detected sample is visually indistinguishable
from the training image. The MAE even goes down to 1 ⇥ 10�4. Based on these observations, we
continue our investigations with a fixed training length of 30000 steps.
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Figure 11: Influence of training length on generative and memorization properties. A positively
classified sample can be seen in the top-left corner of the rightmost image.

Figure 12: Representative samples from trained models on different dataset sizes |ND|.

I DATASET SIZE

Fig. 12 shows visual results of training the same diffusion model on different dataset sizes. As shown
in Fig. 3, the first model merely memorizes the samples, while the last model learns the underlying
distribution and generalizes. This is nicely captured by t’.
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