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In this document, we collect all the results and discussions, which, due to the page limit, could not
find space in the main manuscript.

Specifically, we first give a background on functional maps in Appendix A. Next, the implementation
details are provided in Appendix B. The implementation details of our few-shot keypoint detection
algorithm are presented in Appendix C. In Appendix D, we provide a complete formulation and proof
of the theorem we introduced in Sec. 3.2 of the main text. In Appendix E, we provide an experiment
to verify the conditions of the aforementioned theorem. We present a more in-depth analysis of the
Neural Correspondence Prior (NCP) effect in Appendix F. Additional quantitative and qualitative
results for the shape matching on man-made data tasks are included in Appendix G. An experiment
showing the performance of our method in the case of near isometric data is presented in Appendix H.
Finally, we discuss the societal impact of our work in Appendix I.

A Background on functional maps & Notation

Our work uses the functional map framework as a first estimator for p2p maps, and multiple losses on
point-to-point (p2p) maps to learn robust features that allow extracting good correspondences using
the nearest neighbor in feature space. We provide a brief overview in the next section.

Functional maps The functional map (fmap) framework was used for the first stage of our NCP-
UN algorithm. For this, we follow the general strategy of recent fmap-based techniques [1, 2, 3, 4, 5],
as follows: given source and target shapes M and N , represented as either triangular meshes or point
clouds, havingm and n vertices respectively, we pre-compute their Laplace-Beltrami operator [6], and
store their first k eigenfunctions in the matrices ΦM ∈ Rm×k and ΦN ∈ Rn×k respectively. Using a
siamese network Fθ, we compute for each shape a d-dimensional descriptor Fθ(M) = F ∈ Rm×d

and Fθ(N ) = G ∈ Rn×d respectively. These descriptors are then projected to the spectral domain to
form the spectral features A = Φ†

MF and B = Φ†
NG (•† is the Moore pseudo-inverse). A functional

map is then computed by solving the following linear system:

Copt = argmin
C

∥CA−B∥+ λ∥C∆M −∆NC∥. (1)

where ∆M,∆N are diagonal matrices of Laplace-Beltrami eigenvalues of the corresponding shapes
and λ is a scalar hyper-parameter.

Following the unsupervised literature [4, 3, 5], the siamese network Fθ is trained by imposing
structural properties on the fmap C such as bijectivity and orthogonality on the shape pairs in the
training set. In fact, given the fmap CMN from M to N , and CNM from N to M, the bijectivity
loss is formulated as ∥CMNCNM − Ik∥22, and the orthogonality loss is ∥C⊤

MNCMN − Ik∥22. Ik
denotes the identity matrix of size k and •⊤ is the matrix transpose operator.
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Feature learning The goal of feature learning is to learn robust descriptors that can allow direct
nearest-neighbor matching in the descriptor space. In this work, we use two losses: PointInfoNCE
and the LIE loss.

PointInfoNCE [7] is a contrastive loss such that, given a set of matched points P , and two features of
dimension s, it is formulated as follows:

LNCE = −
∑

(i,j)∈P

log
exp(d(Fi,Gj)/τ)∑

(·,k)∈P exp(d(Fi,Gk)/τ)
(2)

d(Fi,Gj) = ∥Fi −Gj∥22 (3)

where τ is a temperature parameter, and d(·, ·) is the Euclidean distance between the two features. In
all our experiments, we took τ = 0.07. The purpose of this loss is to force the distance between the
features of the matched points to be minimized, while this distance must be maximized between the
unmatched points. The NCE loss is applied to each point individually and thus cannot penalize the
overall consistency of the matches.

To remedy this, especially when the number of vertices of the shapes is moderate, as is the case for
sparse point clouds, we use the LIE loss introduced in [8]. Given the extracted features F and G, and
the coordinate xyz of the shape N represented by the matrix N ∈ Rn×3, we first compute the soft
correspondences matrix SMN , and then formulate the LIE loss as follows:

LLIE = ∥SMNN−Πgt
MNN∥22, (4)

(SMN )ij =
exp(−∥Fi −Gj∥2)∑n
k=1 exp(−∥Fi −Gk∥2

(5)

where Πgt
MN is the ground truth p2p correspondence matrix. This loss forces the soft correspondences

matrix to be as close as possible to the ground truth map, by forcing their action (pull-back) on the
shape coordinates, thus taking into account the geometry of the shape. Indeed, erroneous predictions
that are geometrically close to the ground truth are penalized less than those that are far from it in
terms of L2 distance.

B Implementation details

In Sec. 3.1 in the main text, we used a randomly initialized DiffusionNet [5] network to predict
features on the test set of FAUST-Remeshed (FAUST) and SCAPE-Remeshed (SCAPE) datasets [9].
For that, we used the publicly available implementation of DiffusionNet released by the authors 1.
Unless specified otherwise, all our experiments on 3d-triangular meshes use 4 DiffusionNet blocks of
width 128, the input to the network is the XYZ coordinates of the shape. For the competing features,
both the Heat Kernel Signature (HKS) [10] and the Wave Kernel Signature (WKS) [11] were sampled
at 100 values of energy t, logarithmically spaced in the range proposed in their respective original
papers. SHOT descriptors [12] are 352-dimensional, and we used the implementation provided by
the PCL library [13]. For the Laplace-Beltrami computation, we used the discretization introduced in
[6] for both 3D meshes and point clouds.

In Sec. 3.2 of the main text, we train a DiffusionNet to produce feature embeddings that will induce
the maps used for supervision, using the NCE loss. For this experiment and all the following learning
experiments, ADAM optimizer [14] was used with a learning rate of 0.001.

In Sec. 5.1.1 and 5.2 of the main text, we applied our NCP-UN algorithm on the KEYPOINTNET [15]
and the PARTNET [16] datasets. For the first stage, we used the unsupervised geometric functional
map from [5] but used PointMLP [17] as a feature extractor, instead of DiffusionNet, as it is better
suited to the point cloud context. We used the default segmentation configuration provided by the
authors 2. In Eq. (1), we take λ = 0. The network is trained using the bijectivity loss presented in
Appendix A, as well as a new unsupervised loss based on the chamfer distance that we introduced.

1https://github.com/nmwsharp/diffusion-net
2https://github.com/ma-xu/pointMLP-pytorch
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Indeed, we compute the chamfer distance between the source shape’s XYZ coordinates, and a new
version of this shape created by transferring its coordinates into the spectral space of the target shapes
and back again. Formally, using the same notation as above, it is as follows:

Msource = ΦMΦ†
MM (6)

Mtarget = ΦMCNMCMNΦ†
MM (7)

Lchamfer(Msource,Mtarget) =
∑

m∈Msource

min
n∈Mtarget

∥m− n∥2 +
∑

n∈Mtarget

min
m∈Msource

∥m− n∥2 (8)

For the second stage, we used the LIE loss, and we trained a randomly initialized PointMLP, which
has the same architecture as the first stage, to produce feature embeddings that induce the input maps.

In Sec. 5.1.2 of the main text, NCP-UN was applied on the SMAL [18, 19] and SHREC’20 [20]
datasets. The first stage was performed using the unsupervised geometric functional map [5] with the
DiffusionNet backbone while applying the bijectivity and orthogonality losses, as described above in
Appendix A. In Eq. (1), we set λ = 10−3 for SMAL, and λ = 0 for SHREC’20. The second stage
was performed using the LIE loss and the same backbone as the first stage. P2P maps were extracted
using either the nearest neighbor in the space of features or using the functional map pipeline. In
fact, given two feature embedding for two shapes M and N , we compute the functional map CMN
from M to N using Eq. (1), and then convert it to a p2p map Tfmap : N → M using (borrowing
the same notation from Appendix A):

Tfmap(y) = argmin
x

∥(ΦN )y − (ΦMC⊤
MN )x∥ (9)

For the test time optimization experiment in Sec. 5.1.2 of the main text, after extracting the maps
predicted by the first stage, we construct pairs between all the shapes of the test set, and for each pair,
we train a randomly-initialized DiffusionNet network using the NCE loss and Adam optimizer, to
produce feature embedding that induces the map from stage 1. We stop the training when the cyclic
loss (see Sec. 4.2 of the main text) stops improving giving a patience period of 100 optimization
iterations.

In all the experiments of Sec. 5 of the main text, except for test time optimization, data augmentation
was used. In particular, we augment the training data on the fly by randomly rotating the input shapes,
applying random scaling in the range [0.9, 1.1], and jittering the position of each point by Gaussian
noise with zero mean and 0.01 standard deviation.

Computational specifications All our experiments are executed using Pytorch [21], on a 64-bit
machine, equipped with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and a RTX 2080 Ti
Graphics Card. For all competing methods, we use the original code released by the authors and
apply the best parameters reported in the respective papers. As mentioned in the main paper, we will
release our complete implementation to ensure the full reproducibility of all of our results.

C Implementation details on FSKD

Below we provide the implementation details on our Few-Shot Keypoint Detection method (FSKD),
described in Sec. 5.3 of the main manuscript. As mentioned in that section, FSKD is composed of
three steps: 1. Detection of potential keypoints by transferring keypoints from labeled shapes, 2.
Filtering to remove keypoints that are likely not to exist on the target shape, 3. Combination: merge
transferred keypoints if multiple points on the target shape are assigned to the same keypoint ID.

Step 1. is done using our established maps predicted by NCP-UN.

For step 2., we compute the cycle consistency loss of transferred keypoints and only keep the
ones that are below a predetermined threshold. I.e., given a pair of shapes M,N , and two maps
between them ΠMN and ΠNM computed via nearest neighbor matching between their feature
embeddings, and represented as binary matrices, the cycle consistency loss of keypoints i is computed
as li = ∥(XN )i − (ΠNMΠMNXN )i∥2F , where XN is the matrix of XYZ coordinates of the source
shape N . If li is bigger than a predefined threshold ν, the keypoint i is considered not to exist on the
target shape. In our experiments, we take ν = 0.05.
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Concerning step 3., we perform a spatially weighted average of the different filtered keypoints if
there are many. We associate for each keypoint i the weight wi =

Di∑
j Dj

, where Di = exp(− li
σ ).

We use σ = 0.01.

D Proof of smoothness of maps produced by smooth networks

In Sec. 3.2 of the main text, we briefly mentioned a theorem that states that maps based on the nearest
neighbor between smooth features are smooth. In this section, we formally restate it and provide a
proof.

Theorem 1. Let M and N be two compact smooth surfaces (smooth manifolds of dimension
2). Let M and N be their embeddings in Rd, given by some functions: ψ : M → Rd and
ϕ : N → Rd, so that M = ψ(M) and N = ϕ(N ). Suppose that ψ and ϕ are both smooth and
injective. Then up to arbitrarily small perturbations of ϕ, ψ, the map Tnn : M → N given by
Tnn(x) = argminy∈N ∥ψ(x)− ϕ(y)∥ must be smooth up to sets of measure 0 on M.

Proof. First, note that the distance function to an embedded manifold is smooth almost everywhere.
Indeed, it is well-known that if N is a Ck-continuous manifold embedded in Rd, then the distance
function to N must be at least Ck continuous on the complement of the medial axis of N. I.e., let
dN : Rd → Rd be given by dN(x) = argminy∈N ∥x − y∥. Let cut(N) denote the medial axis
of N, which is defined as the set of points in Rd with more than one nearest neighbor to N. I.e.,
cut(N) = {x ∈ Rd | ∃ y1, y2 ∈ N, y1 ̸= y2, s.t.∥x− y1∥ = ∥x− y2∥ = miny∈N ∥x− y∥}. Then,
dN is at least Ck continuous on Rd\cut(N) (see Lemma 2.5 in [22], and [23, 24] for this and related
results).

It remains to prove that up to arbitrarily small perturbations of ϕ and ψ the intersection between
M and cut(N) has measure zero on M. For this, we first use the fact that the medial axis of
compact subanalytic manifolds is also subanalytic [25]. This means that the medial axis can be
stratified (decomposed into a finite union of submanifolds of dimension d − 1 in Rd). Since (by
Stone-Weierstrass’s theorem) subanalytic manifolds are dense in the space of smooth manifolds,
up to an arbitrarily small perturbation of ϕ, N is subanalytic. Finally, the intersection between M
(which is an embedded manifold of dimension 2) and any manifold of dimension d− 1 by Thom’s
transversality theorem [26, 27], must generically be of measure zero on M and thus on M.

E Verification of assumptions of Theorem 1

The main motivation behind Theorem 1 is to highlight the fact that, given smooth feature embeddings,
if we add the injectivity condition, the maps extracted using the nearest neighbors in the feature space
tend to be smooth. As smoothness is a generally desirable property, and the frequency bias shown
in prior works, such as [28] suggests that neural networks are biased towards low frequency (and
thus smooth) functions, we provide this result as a partial explanation for the Neural Correspondence
Prior, which we have observed, for the first time, in our work.

Regarding injectivity, although such a property is not trivial, and might need to be specifically enforced
(using, for example, invertible networks [29]). However, we observe that when training a network
using contrastive learning, such as NCE loss, the latter forces the networks to produce embeddings
that are unique for each point, in order to minimize the NCE loss, which can be considered a form of
infectivity.

We include in this section the results of an experiment we performed in order to examine the
smoothness and injectivity of a randomly initialized network. We start by computing the feature
embeddings produced by a randomly initialized DiffusionNet network for the 20 test shapes in the
FAUST [9] dataset.

To evaluate the smoothness of the embedding, we compute the standard Dirichlet energy of both
the embedding produced by the network and the original embedding of the shape in R3 (the 3D
coordinates of the shape’s vertices), using the following formula:

EDirichlet(G) =
1

n

n∑
i=1

G⊤
i WGi

G⊤
i AGi

(10)
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Figure 1: Learning curves showing the NCE loss and the geodesic error for different shape pairs from
FAUST and SCAPE datasets. Numbers in parentheses represent the geodesic error of the input maps.
Observe how the effect of NCP doesn’t depend on the shape pair.

where G is the considered embedding of dimension n, while W and A are, respectively, the standard
stiffness and mass matrices, computed using the classical cotangent discretization scheme of the
Laplace-Beltrami operator [30]. We compute the Dirichlet energy over the whole test set and find it
equal to 47.2 (the average) for coordinate functions (original shape embeddings in R3), while it is
equal to 13.1 for embeddings produced by the network. This shows that the latter are smoother than
embeddings in the original space.

For injectivity, we compute for each point of the embedding, the distance to its nearest neighbor,
and took the minimum across all points of a shape. To make the comparison between the original
embedding and the embedding produced by the network fair, we normalize both embeddings to the
unit sphere. We find that on average, the minimum distance between points in the original 3D space
is 0.0004, while for the feature embeddings given by the network, it is equal to 0.0015. This shows
that the network is injective and that distances between points are larger than in the original domain.

F Neural Correspondence Prior

In Sec. 3 of the main text, we demonstrated the effect of Neural Correspondence Prior (NCP), on
a pair of shapes, using the DiffusionNet network. The objective of this section is to show that the
NCP is independent of the choice of the shape pair, the choice of the p2p loss, the choice of the
architecture, and finally the choice of the first stage.

F.1 Independence from shape pairs

In order to show that the NCP effect demonstrated in Figure 1 of the main text does not depend on
the chosen shape, we redid the same experiment using new random pairs from FAUST and SCAPE
datasets [9]. Following the same setup of Sec. 3.2 of the main text, given a pair of shapes, we
corrupt the ground truth map between them with 50% noise, and then train a randomly initialized
DiffusionNet to produce feature embeddings that overfit the noisy map. Examples of four different
pairs are shown in Fig. 1. We see that the same effect is always present, i.e., the network resists
overfitting the noisy maps (high noise impedance), and the intermediate maps during optimization
are of high quality, compared to the noisy maps used as supervision.

F.2 Independence from the loss function and network architecture

In order to examine the independence of NCP on both the network architecture and on the p2p loss
used in stage 2 of NCP-UN, the following experiment was performed on the Chair subset of the
KEYPOINTNET [15] dataset. Since the latter doesn’t provide dense ground truth p2p maps between
the shapes, we took the p2p maps produced by the first stage of our algorithm (see Sec. 5.1.1 of the
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Table 1: Ablation study on the loss function and network architecture. We show the results of
NCP-UN on the Chair subset of the KEYPOINTNET dataset [15] with different losses and network
architectures. It appears that multiple network architectures and losses improve the maps produced
by the first stage, proving that NCP is not tied to a single method choice.

Metrics Input maps PointMLP LIE
LIE NCE FMAP DGCNN PointNet++ ResidualMLP

Geodesic error (×100) 9.5 5.1 5.1 5.2 5.0 5.3 8.1
Map smoothness 234.9 10.3 10.1 9.9 11.3 9.7 8.3

Table 2: Ablation study on the method used for Stage 1. We show the results of NCP-UN on the
SMAL dataset using multiple methods for Stage 1. Values are mean geodesic error ×100 on unit-area
shapes. It can be seen that the NCP effect still applies despite the chosen method for Stage 1.
Stage / Method NeuroMorph [36] Smooth Shells [34] Deep Shells [35] Unsup GeomFMaps [5]

Stage 1 23.1 16.3 15.2 7.8
Stage 2 7.2 (+68%) 8.1 (+50%) 7.3 (+52%) 5.8 (+25%)

main text), and perturbed them with noise. These noisy maps are used as inputs to the second stage
of the NCP-UN algorithm. Differently, from the experiment performed in Sec. 5.1.1 of the main text,
here, we choose different network architectures and losses for training the second stage. In particular,
we consider the NCE loss, the LIE loss, and the supervised FMAP loss from [1]. Concerning the
network architectures, we considered the ResidualMLP network introduced in [31], PointNet++ [32],
and DGCNN [33]. For the network architectures, we used the official implementation provided by
the authors.

In addition to measuring the geodesic error produced by the maps predicted by the second stage, we
also measure their smoothness. Given two shapes M,N , and a map between them TMN represented
as a binary matrix ΠMN , we compute the smoothness of the latter based on the Dirichlet energy
using the following (see [30] for more details):

Esmoothness(TMN ) =
∑

(u,v)∈EM

wuv∥ψMN (u)− ψMN (v)∥22 (11)

ψMN = ΠMNXN (12)

where XN is the matrix of XYZ coordinates of shape N , EM is the set of all the edges of the
triangular mesh, and wuv are the stiffness weights of the cotangent Laplacian [30] for shape M.

Results of this experiment are summarised in Tab. 1. It can be seen that all the losses and network
architectures perform well and manage to improve the noisy input maps. One can also notice the
smoothing effect of NCP. In fact, the second stage of the network produces feature embeddings that
result in p2p maps that are not only geometrically correct but also remove noise and outliers from the
input maps. It is worth noting that although the ResidualMLP architecture is weak, since it is applied
on each vertex individually, and has no global shape awareness, we note that even if the geodesic
error is bad, the network tends to produce smooth embeddings.

F.3 Independence from the first stage

As we stated in the main paper, our NCP-UN algorithm is independent of the first stage, i.e the
method used to extract the artifact-laden p2p is not crucial, and the NCP effect still applies. To
demonstrate this, we followed the same setup of Sec. 5.1.2 of the main text, and we perform the same
experiment on the SMAL dataset but using different methods for stage 1. In particular, we consider as
stage 1 the Unsupervised geometric functional map (Unsup GeomFMaps) [5], Smooth Shells [34],
Deep Shells [35] and NeuroMorph [36]. Results are summarized in Tab. 2. As can be seen, despite
the method used in the first step, the NCP still applies, and a significant improvement in results is
observed, up to 68% improvement.
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Figure 2: Correspondence accuracy on the KEYPOINTNET dataset. It can be seen that the second
stage of our algorithm always improves upon the first stage due to the NCP effect.

G Shape matching on man-made data

In Sec. 5.1.1 of the main text, we applied our NCP-UN algorithm on the KEYPOINTNET dataset, and
only provided quantitative results for 4 classes due to the page limit. We provide in Fig. 2 quantitative
results for all the 16 classes, in addition to the results of the first stage of our algorithm, i.e the
unsupervised method described above in Appendix B. For the bottle, cap, knife, and skate categories,
we only compared them to the best-performing baseline. It can be seen that our method achieves
state-of-the-art results in 13 out of 16 classes on this benchmark, with an impressive improvement in
some classes such as cap and table. We also see that the second stage of NCP-UN always improves
the result provided by the first stage, which again demonstrates the role of the NCP effect, without
which the SOTA result would not be achieved, see for example the laptop category.

Additionally, we provide in Fig. 3 some qualitative results, showing the p2p maps produced by both
stages of NCP-UN, visualized using texture transfer, as well as the usage of these maps to transfer
keypoints between shapes. It can be seen that the keypoint transferred by the maps of stage 2 are
more accurate.

H Shape matching on non-rigid near-isometric data

In our work, we focus on difficult non-rigid non-isometric datasets, where existing methods tend to
fail. This is because on near-isometric datasets such as FAUST or SCAPE [9], current unsupervised
methods can exploit the assumption of near-isometry and achieve good results.

Nevertheless, we include a comparison of our method on the FAUST and SCAPE datasets, using the
same train/test split used in all previous works (e.g. [1]). The notation X on Y means the method is
trained on X and tested on Y.

As input for our Stage 2, we use WSupFMNet + DiffusionNet [5] (referred to as Stage 1 in the table),
which is the same method used in the main manuscript. For our method (Stage 2), we use the same
implementation as the one used for the SMAL dataset, described in Sec. 5.1.2 of the main manuscript.

As shown in Tab. 3, even on a near-isometric dataset, our Stage 2 improves upon the initial maps
in all categories, by 18.4% on average. Nevertheless, we remark that in such settings it is more
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Texture transfer

Source Stage 1 Stage 2

Keypoint transfer

Source Target Stage 1 Stage 2

Figure 3: Qualitative results on the KEYPOINTNET dataset using four categories: airplane, cap,
chair, and table. Both the point-to-point map as well as the keypoint transfer are presented. Each row
contains the p2p maps, ground truth keypoint annotations, and predictions made by the first and the
second stage of our algorithm.

Table 3: Results of NCP-UN on near-isometric data, using the FAUST (F) and SCAPE (S) datasets.
Values are mean geodesic error ×100 on unit-area shapes. It can be seen that the NCP effect still
applies even in the case of near-isometric shapes.

Methods F on F S on S F on S S on F

Stage 1 3.8 4.4 4.8 3.6
Stage 1 + ZoomOut 1.9 2.6 2.7 1.9

NCP (Ours - Stage 2) 3.0 3.5 4.2 2.9
NCP (Ours - Stage 2) + ZoomOut 1.9 2.4 2.6 1.9

advantageous to use specialized methods, such as ZoomOut [37], that directly exploit the near-
isometry assumption.

I Societal impact

Efficient methods for shape matching and analysis have an immediate impact in many areas of science
and engineering from medical imaging (for instance detecting anomalies, and performing follow-up
analysis) to shape recognition and classification in areas such as computational biology, archaeology,
and paleontology to name a few. Our approach can immediately be adapted to such diverse scenarios,
due to its strong generalization power, and its generic unsupervised nature, especially in domains
where acquiring data is easy, but labeling it is very expensive, e.g in structural or molecular biology.
Our work also opens up important avenues for future research, as it can enable geometric deep
learning methods without the need to label large-scale datasets, thus potentially allowing small labs
to conduct research in this area without the need to hire many annotators, which is an expensive task.
Finally, our method paves the way for more accurate results, helping to improve our understanding in
many fields, such as biology where shape-matching techniques are used to analyze gene expression
patterns to understand the cause of many human syndromes [38]. Since our method attempts to solve
a fundamental problem in computer graphics and computer vision, we do not expect negative results.
However, one should note that highly accurate shape correspondence methods might have possibly
problematic uses, e.g., in surveillance applications, although we advocate against such uses of our
technique.
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