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6 Outlier Detection Example

As mentioned in Section 2.2 of the main text, the ability of the VAE to produce optimal sparse
representations can potentially be leveraged to detect outliers. To test this possibility, we employ the
basic experimental paradigm from [Nalisnick et al., 2019], training models on a given inlier set and
then comparing evaluation metrics applied to both inlier train/test samples and distinct outlier samples.
Consistent with [Nalisnick et al., 2019] and convention elsewhere, we use the bits-per-dimension
(BPD) metric for expressing aggregate results in a convenient range for tables. This metric correlates
with the negative log-likelihood, with lower values indicating a higher likelihood. Please see [Theis
et al., 2016] for further information regarding this metric and how it is computed. In general, a
successful model should produce higher BPD scores for the outlier samples than the inlier test
samples.

Within this setup, we examine the ability of VAE models with a learned γ to differentiate inlier and
outlier distributions as κ, the VAE latent space dimension, is varied. Because of the VAE’s preference
for sparse latent representations, we expect that increasing κ will not inadvertently allow outliers to
be assigned accurate reconstructions and ultimately lower BPD scores. FashionMNIST [Xiao et al.,
2017] images are chosen as the inlier distribution while MNIST [LeCun et al., 1998] serves as the
outlier distribution. As reported in [Nalisnick et al., 2019] and included in Table 1 below, a flow-based
Glow generative model [Kingma and Dhariwal, 2018] trained on FashionMNIST produced lower
BPD scores on MNIST, indicating that outlier data was errantly preferred.

In contrast, when we trained our VAE baseline with a learned γ (see architecture specifics in the next
section below), Table 1 results reveal that FashionMNIST has clearly lower BPD scores across κ
values ranging from 16 to 512. This indicates that the model has in some sense correctly rejected the
outliers independently of κ as would be expected for a model capable of finding an optimal sparse
representation. Note also that the BPD values for the test data stabilize such that even with what would
seem to be excessively high κ values (e.g., κ = 512, which is larger than the number of nonzero pixels
in typical MNIST samples), the extra degrees-of-freedom do not provide an inadvertent pathway for
the outlier samples to receive undesirable acceptance.

The learned γ is also reported in the last row of Table 1. We can observe that these values remain
small and stable implying that additional latent degrees-of-freedom are not needed to improve the
inlier data fit. Conversely, if the learned γ values were to display a consistently strong inverse
correlation across the κ range, it would indicate that extra latent dimensions were actually required
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Glow 16 32 64 128 256 512
FashionMNIST-Train 2.902 2.375 2.208 2.084 2.009 2.054 2.020
FashionMNIST-Test 2.958 2.805 2.690 2.562 2.424 2.397 2.301

MNIST-Test 1.833 9.598 8.618 6.294 4.958 4.578 4.351
γ – 0.0055 0.0040 0.0030 0.0024 0.0023 0.0024

Table 1: BPD values for VAE models trained on FashionMNIST as κ is varied from 16 to 512. When
κ increases, the BPD saturates while robustly differentiating inliers and outliers.

for fitting the inlier data, and that a low-dimensional inlier manifold may not have been found. This
would be the case, for example, if the VAE architecture did not have sufficient capacity to adequately
model the inlier manifold.

7 Network and Training Details

This section provides the network and training details related to both the gradient magnitude and
MMD tests from Figure 4 in the main paper, as well as the outlier experiments described above.

Gradient Magnitude and MMD Experiments: The input CelebA images were resized to 128×128
via center cropping (and down-sampling as well for the 64× 64 tests). As for the VAE architecture,
the encoder consists of 5 convolution layers, each followed by a batch normalization layer and a
ReLU activation layer. The kernel size and the stride are 5 and 2 for all the convolution layers. The
number of channels is 64, 128, 256, 512, and 1024 respectively. The size of the output feature map is
4× 4× 1024. We then use a 1× 1 convolution layer to transform it to 4× 4× 4. This feature map
is then flattened and fed to two fully connected layers with 64 dimensions corresponding to µz and
logσz . The decoder reverses the structure of the encoder. The network is optimized using Adam
optimizer for 40K iterations with learning rate equal to 0.0001.

Outlier Experiments: Input FashionMNIST and MNIST images are 32× 32. For the VAE model,
the encoder consists of 3 convolution layers, each followed by a batch normalization layer and
ReLU activation layer. The kernel size and the stride are 5 and 2 for all the convolution layers. The
number of channels is 64, 128, and 256 respectively. The output feature map is then flattened to a
κ-dimensional feature vector. We use two 64-dimensional fully connected layers to produce µz and
logσz given the feature vector. The decoder just reverses the structure of the encoder. The network
is optimized using Adam optimizer for 200K iterations with learning rate equal to 0.0001.

8 Proof of Technical Results

This section includes proofs for Lemma 2, Lemma 3, and Theorem 4 from the main text.

8.1 Proof of Lemma 2

Given the stated assumptions, we may conclude that after minimizing over σz(x;φ), the resulting
VAE loss reduces to
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(11)
wherew(k) denotes the k-th column ofW and for notational simplicity we adoptµ(i)

z ≡ µz
(
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)
(see the proof from [Dai et al., 2018][Lemma 1] for the details of producing (11)). From this
expression we note that
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where the indicator I∞ satisfies I∞(u) = ∞ for u 6= 0 and zero otherwise. Now for the moment
assume that d = κ such that the last term in (11) is zero. Then in the limit γ → 0, (11) becomes

L(θ, φ) = 1
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s.t. x(i) = Wµ(i)

z + b, ∀i. (13)

At this point, let W̃ denote W with columns set to unit `2-norm, Ω ∈ Rκ×κ indicate a diagonal
matrix with k-th diagonal element ωk = ‖w(k)‖22 for all k = 1, . . . , κ, and Z = {z(1), . . . ,z(n)} ∈
Rκ×n with z(i) = Ωµ

(i)
z . This implies that (13) can be reparameterized as
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where zk is the k-th row of Z. If we then minimize across ωk for all k, we find that the optimal
solution satisfies (ω∗k)2 = 1

n‖zk‖
2
2. When we plug this value into (14) and exclude constant terms,

we arrive at

L(θ, φ) ≡
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where the column norm constraint onW is now enforced by the constraint set Θ and the rescaling
by Ω has been absorbed into µ(i)

z = µz
(
x(i);φ

)
. Hence we have explicitly converted the VAE

loss into a special case of calLg,h(θ, φ) when we assume that g(·) = I∞(·) and h(·) = log(·),
inconsequential reparameterizations and constants notwithstanding.

And finally, even if d 6= κ, the same derivations can proceed as before. Note that adding a fixed
constant, even one that can grow arbitrarily large or small, does not alter the effective loss. Moreover,
regardless of the (d− κ) log γ term, because limγ→0+

a
γ + log(b+ γ) + c log γ =∞ for any a > 0,

b ≥ 0, and c ∈ R, the constraint a = 0 (or more precisely x(i) = Wµ
(i)
z + b for all i) must be

enforced at any feasible limiting solution. �

8.2 Proof of Lemma 3

As discussed in Section 2.1, value of γ that minimizes (3), all else being fixed, satisfies
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If we plug this value into (3) and remove irrelevant constant factors and terms that only depend on
σz (x;φ), we arrive at the simplified loss
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We next enforce the limit σz (x;φ)→ 0 for all x such that (17) further reduces to
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where z(i) , µz
(
x(i);φ

)
, Z = {z(1), . . . ,z(n)} ∈ Rκ×n, and zk denotes the k-th row of Z. We

may then apply the stated log transformation to each ‖zk‖22 (or more precisely 1
n ‖zk‖

2
2) and divide

both sides by d, an inconsequential rescaling. This produces the final loss
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which is exactly the form of Lg,h(θ, φ) with g(·) = h(·) = log(·). �

8.3 Proof of Theorem 4

To begin, we assume that h(u) is a concave, non-decreasing function defined on the domain u ≥ 0.
These are central characteristics of sparsity inducing penalty functions [Chen et al., 2017, Palmer
et al., 2006] and it is not difficult to show that additional flexibility does not gain us anything in
the present context. For convenience, we assume that h is differentiable everywhere, although this
condition can also be relaxed. We then focus on the case where the gradient of h is bounded. Per
these specifications, the largest gradient will necessarily occur at h′(0) ≡ limu→0+ h

′(u). Note also
that this limiting gradient cannot equal zero; otherwise we trivially default to a flat penalty function
such that all solutions have equal cost and the theorem guarantee is unattainable right from the start.

From here, the basic idea is to construct a counterexample that satisfies the conditions of the theorem,
and yet involves a simple network structure that, if h′(u) is bounded around zero, is unable to
minimize the stated objective using at most r nonzero rows of Z while simultaneously achieving
zero reconstruction error. To this end, we first consider a low-dimensional example that satisfies the
constraints d ≥ κ > r > 0. Later we discuss the trivial generalization to higher dimensions.

Consider the two-dimensional latent representation z = [z1, z2]> and a single-parameter decoder
that computes

µx (z; θ) = θπ (t [z1]) + (1− θ)
[
z1
z2

]
, (20)

where θ ∈ Θ , [0, 1] is a scalar parameter, t : R → (0, 1) squashes its argument to the interval
between zero and one (e.g., a logistic function), and π : [0, 1]→ S ⊂ [0, 1]2 is for now an arbitrary
function defined on the stated interval, mapping to a subset S of the unit square [0, 1]2. Per this
construction, the decoder can be viewed as a tunable mixture weighted by θ, and for either θ = 0 or
θ = 1, the range of the decoder µx (z; θ) is contained within [0, 1]2.

Now suppose we have training samples {x(i)}ni=1 that were produced via the generative process

z
(i)
gt ∼ p (zgt) and x(i) = π

(
t
[
z
(i)
gt

])
(21)

for some prior p (zgt) on the ground-truth latent variable zgt ∈ R. Furthermore, assume that the

function π is such that for all t [zgt] ∈ [C, 1] with constant C < 1,
[
x1
x2

]
= π (t [zgt]) satisfies

0 < |xj | < ε for j = 1, 2, with ε > 0 arbitrarily small. We also stipulate that p (zgt) places all (or
almost all) of its probability mass such that t [zgt] ∈ [C, 1], which implies that the observed training
points will all be arbitrarily close to zero.

Given this observed data, we can then evaluate the optimal AE for different penalties h. We allow
that the encoder is sufficiently complex such that

min
φ
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where in the present context κ = d = 2 > r = 1, and as mentioned previously, zk represents the
k-th row of Z. This arrangement is equivalent to simply assuming that the encoder is capable of
computing the minimizing z(i) for each index (i.e., we have removed amortized inference). We
adopt this assumption for simplicity of exposition, but the same conclusions can be drawn in broader
conditions.
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To achieve zero reconstruction under the stated conditions using only r = 1 nonzero row of Z, we
must choose θ = 1. In this restricted setting, the optimal Z will satisfy 1

n‖z1‖
2
2 ≥ 1

n (nC2) = C2

and 1
n‖z2‖

2
2 = 0 such that the overall objective value will be
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2
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where Φ is the set of φ values that lead to zero reconstruction error. In other words, within the current
setup, the constraints θ = 1 and φ ∈ Φ are necessary conditions for any solution to achieve an optimal
sparse representation, and such a solution will incur a cost of at least g(0) + 1

2h(0) + 1
2h
(
C2
)
.

But now suppose we choose θ = 0. In this revised situation, the optimal unconstrained Z will have
rows satisfying 1

n‖zk‖
2
2 ≤ ε2, k = 1, 2. The associated cost then becomes

min
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At this point, without loss of generality assume that h
(
C2
)

= 1 and g (0) = h (0) = 0, which can
be accomplished by simply translating and rescaling the overall cost. Because limu→0+ h

′(u) is
bounded, the gap between h(0) and h

(
ε2
)

can be made arbitrarily small for ε sufficiently small. In
contrast, the gap between h

(
ε2
)

and h
(
C2
)

can be arbitrarily close to one. Therefore, it follows that
if our data was generated with ε sufficiently small, then

min
φ
Lg,h(θ = 1, φ ∈ Φ) ≥ 1

2 > min
φ
Lg,h(θ = 0, φ) ≈ 0, (25)

and so the unique solution achieving zero construction error with a single active latent variable cannot
be the global optimum. Or equivalently, any globally optimum solution will not coincide with an
optimal sparse representation. And finally, once the basic result has been established for the lowest
possible dimensions satisfying d ≥ κ > r > 0, it is straightforward to extend to higher dimensions
by concatenating replicas of the 2D case and/or incorporating additional linear projections as needed
(for both data generation and decoding).

Note that the situation would be completely different if h(u) = I[u > 0], meaning an indicator
function that equals zero if u = 0 and one for all u > 0. In this case, it is clear that minφ Lg,h(θ =
1, φ ∈ Φ) = 1

2 while all other solutions with zero reconstruction error will be such thatLg,h(θ, φ) = 1.
But of course this h does not have a bounded gradient everywhere because of the discontinuity at
zero.

Additionally, while the proof is obviously predicated on a counterexample designed with a specific
technical purpose in mind, it is nonetheless emblematic of situations that may naturally arise
in practice. For example, it is easy to envision scenarios where data is lying on a complicated
r-dimensional manifold that is contained within a larger (r + s)-dimensional manifold (or possibly
subspace) that has much simpler structure (here we are assuming r < r + s < d). Perfectly
reconstructing such data could be accomplished using either (a) only r dimensions, or (b) using
(r + s) dimensions, depending on whether the complex or simple manifold was modeled by the
decoder. But unless we have a penalty function with a strong preference for lower-dimensional
structures, then the network may well favor or converge to the simpler, higher-dimensional alternative.
�
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