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ABSTRACT

Deep Reinforcement Learning (RL) has demonstrated remarkable success in solv-
ing sequential resource allocation problems, but often suffers from limited ex-
plainability and adaptability—barriers to integration with human decision-makers.
In contrast, LLM agents, powered by large language models (LLMs), provide
human-understandable reasoning but may struggle with effective sequential deci-
sion making. To bridge this gap, we introduce Rule-Bottleneck RL (RBRL), the
first LLM agent framework for resource allocation problems that jointly opti-
mizes language-based decision policy and explainability. At each step within
RBRL, an LLM first generates candidate rules—language statements capturing
decision priorities tailored to the current state. RL then optimizes rule selection
to maximize environmental rewards and explainability, with the LLM acting as
a judge. Finally, the LLM chooses the action (optimal allocation) based on the
rule. We provide conditions for RBRL performance guarantees as well as the
finite-horizon evaluation gap of the learned RBRL policy. Furthermore, we pro-
vide evaluations in real-world scenarios, particularly in public health, showing
that RBRL not only improves the performance of baseline LLM agents, but also
approximates the performance of Deep RL while producing more desirable human-
readable explanations. We conduct a human survey validating the improvement in
the quality of the explanations.

1 INTRODUCTION

Sequential resource allocation is a fundamental problem in many domains, including healthcare,
finance, public policy, and operations research (Considine et al., 2025; Boehmer et al., 2024; Yu et al.,
2024; Balaji et al., 2019). This task involves allocating limited resources over time while accounting
for dynamic changes and competing demands. Deep reinforcement learning (RL) is an effective
method to optimize decision-making in resource allocation offering scalable high-reward policies (Yu
et al., 2021; Talaat, 2022; Xiong et al., 2023), albeit generally providing action recommendations
without human-readable reasoning and explanations. Such lack of interpretability poses a major
challenge in critical high-stake domains where decisions must be transparent, justifiable, and in line
with human decision-makers to ensure trust and compliance with ethical and regulatory standards.

For example, in healthcare settings, doctors may need to decide whether to prioritize intervention for
Patient A or Patient B based on their current vital signs (Boehmer et al., 2024). An RL algorithm
might suggest: “Intervene with Patient A ” with the implicit goal of maximizing the value function.
However, the underlying reasoning may not be clear to the doctors, leaving them uncertain about the
factors influencing the decision (Milani et al., 2024). For doctors, a more effective suggestion could
be risk-based with specific information, e.g., “Patient A’s vital signs are likely to deteriorate leading
to higher potential risk compared to Patient B, so intervention with Patient A is prioritized” (Gebrael
et al., 2023; Boatin et al., 2021).

LLM agents (Sumers et al., 2024), on the other hand, leverage large language models (LLMs) for
multi-step decision-making using reasoning techniques like chain of thought (CoT) (Wei et al., 2022).
They enable natural language goal specification (Du et al., 2023) and enhance human understanding
(Hu & Sadigh, 2023; Srivastava et al., 2024). However, agents based solely on LLM reasoning often
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Figure 1: Overview of the framework of RBRL for joint sequential decision-making and explanation
generation at time instance t. Starting with current state st, a state-to-language descriptor generates
lang(st), which is used to create the input prompt pt. The LLM processes pt to produce a thought
τττ t and a set of candidate rules Rt . An attention-based policy network selects a rule arule

t obeying
the budget constraint B(st), which is used by LLM to derive an executable action aenv

t for the
environment and a human-readable explanation ℓℓℓexpl

t , while also providing a rule reward rrule
t . The

environment transitions to the next state st+1 , returning an environment reward renv
t . This process is

repeated iteratively at subsequent time steps.

struggle with complex sequential decision-making out of the box (Furuta et al., 2024), making RL a
crucial tool for grounding to specific tasks (Carta et al., 2023; Tan et al., 2024; Wen et al., 2024; Zhai
et al., 2024).

Consequently, aiming to combine the strengths of both deep RL and LLM agents, we pose the
following question:

Can we design an LLM agent framework that can simultaneously perform sequential resource
allocation and provide human-readable explanations?

Similar to the celebrated index policy for prioritizing arms in resource allocation problems (Whittle,
1988), we explore the potential of using rules-based prioritization in resource allocation tasks. In
the context of LLM agents, rules are defined as “structured statements” that capture prioritization
among choices in a given state, aligning with the agent’s goals (Srivastava et al., 2024). Building
on this, we propose a novel LLM agent framework called Rule-Bottleneck Reinforcement Learning
(RBRL), which integrates the strengths of LLM and RL to bridge the gap between decision-making
and interpretability. RBRL provides an agent framework (as shown in Figure 1) that simultaneously
makes sequential resource allocation decisions and provides human-readable explanations, in contrast
to prior work that generates post-hoc explanations for a learned policy (Peng et al., 2022; Milani
et al., 2024). RBRL leverages LLMs to generate candidate rules and employs RL to optimize
policy, allowing the creation of effective decision policies while simultaneously providing human-
understandable explanations. RBRL aims to increase efficiency and avoid the computational cost of
directly fine-tuning LLM agents, which can be highly challenging in interactive environments due to
the heavy computational costs and the complexity of token-level optimization (Rashid et al., 2024).

Our contributions are summarized as follows. First, LLMs are leveraged to generate a diverse
set of rules according to the environment state, where each rule serves as a prioritization strategy
for individuals in resource allocation, enhancing interpretability in decision-making. Second, we
extend the conventional environmental state-action space by integrating the rules into states generated
by LLMs, creating a novel framework that enables RL to operate on a richer, more interpretable
decision structure. Third, we introduce an attention-based training framework that maps states and
rules to queries and keys of a cross-attention network. The rule selection process is optimized by a
policy network trained using the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018), ensuring
robust and efficient decision-making. In particular, the LLM also acts as a feedback mechanism,
providing guidance during RL exploration to improve policy optimization and promote more effective
learning. To the best of our knowledge, this is the first work to jointly optimize decision-making and
explanation generation in constrained RL tasks.

We evaluate our method in environments from three real-world domains: HeatAlerts, where
resources are allocated to mitigate extreme heat events; WearableDeviceAssignment, for
distributing monitoring devices to patients; and BinPacking, which models allocating limited
space in containers under constraints to optimize space utilization and minimize overflows. Using
cost-effective LLMs such as gpt-4o-mini (OpenAI, 2024) and Llama 3.1 8B (Meta AI, 2024), we first
assess decision performance by comparing RBRL with pure RL methods and language agent baselines.
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Two example thoughts: 
- There are only four warnings remaining in the budget.

- The current heat index is high, and issuing alert could raise public awareness.

Step 1: Generate Thoughts

An example rule:
- Background : Maintaining a balance in warning issuance is crucial for future effectiveness
- Rule: If there are 3 or more warnings remaining, issue a warning when the heat index is above 105 F.
- State Relevance: There are 4 warnings remaining, allowing for proactive issuance given the current 
heat index of 107 F.

Step 2: Generate Rules Based on Thoughts and the Current State

(a) Examples of generated rules for the Heat Alert Issuance task.

Task:  Assist policymakers in deciding when to issue public warnings to protect against heatwaves. Your goal is to 
minimize the long-term impact on health and mortality. Your decision should be based on the remaining budget, weather 
conditions, day of the week, past warning history, and remaining warnings for the season. The goal is to issue warnings 
when they are most effective, minimizing warning fatigue and optimizing for limited resources.

Action: A single integer value representing the decision: 1 = issue a warning, 0 = do not issue a warning. Warning can 
only be issued if the 'Remaining number of warnings/budget' is positive. Response in JSON format. For example: 
{'action': 1}.

State: Remaining warning budget: 4, - Current date and day of summer: 2008-07-10, - Current heat index: 107 F.

Example Language Wrapper for Heat Alert Issuance

(b) Examples of language wrapper, containing task description, available actions and current state.

Figure 2: Examples of task prompts and generated rules for HeatAlerts domain.

We then evaluate explanation quality through a human survey conducted under IRB approval. The
results demonstrate RBRL’s effectiveness in both decision quality and interpretability.

2 RELATED WORK

Our work is positioned at the intersection of RL for resource allocation, LLM agents, and Explain-
able RL (XRL). While traditional RL methods effectively optimize rewards for resource allocation
(Boehmer et al., 2024), they often lack the interpretability required for high-stakes domains. Con-
versely, LLM agents that provide reasoning (Wei et al., 2022) can struggle with sequential optimiza-
tion. Our framework is novel compared to hierarchical approaches that use LLMs for high-level
planning (Carta et al., 2023; Szot et al., 2023), as RBRL is the first to treat the natural-language rule
as a primary output, jointly optimizing for both decision-making performance and the rule’s quality
as an explanation. Furthermore, unlike post-hoc or attribution-based XRL methods that analyze
decisions after the fact (Guo et al., 2021; Chen et al., 2024), RBRL provides intrinsic explanations, as
the rule is a functional component within the decision-making loop. A detailed discussion of related
literature is provided in Appendix B.

3 PRELIMINARY, KEY CONCEPTS, AND PROBLEM FORMULATION

3.1 PRELIMINARY: RESOURCE-CONSTRAINED ALLOCATION

Resource-constrained allocation tasks are usually formulated as a special type of constrained Markov
Decision Process, which is defined by the tuple ⟨S,A, P,R,C, h, γ⟩, where S denotes a state space
and A denotes a finite action space. The transition probability function, specifying the probability of
transitioning to state s′ ∈ Rd1 after taking action a ∈ Rd2 in state s, is P (s′|s,a) : S × A × S →
∆(S), R(s,a) : S ×A → R represents the reward function, defining the immediate reward received
after taking action a in state s, and we let C(s,a) : S×A → Rd3 be the immediate cost incurred after
taking action a in state s. Often, each dimension i ∈ [d2] in a is either 0 or 1 in resource-constrained
allocation tasks. In addition, h is the time horizon and γ ∈ [0, 1] denotes the discount factor, which
determines the present value of future rewards.

The goal is to find a policy π : S → ∆(A) that maximizes the expected cumulative discounted reward
while satisfying the cost constraints with a budget function B : S → Rd3 :

π∗ = argmax
π

EπJ(π) :=

[
h∑

t=1

γt−1R(st,at)

]
, s.t. ∀t ∈ [h] : C(st,at) ≤ B(st). (1)
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3.2 KEY CONCEPTS FOR RULE-BASED LLM AGENTS

Our challenge is to design a rule-based LLM agent that jointly optimizes a language policy to both
solve the optimization problem and improve explanation quality—a direction rarely explored. We
next introduce the key concepts and terminologies underlying our main contribution.

LLM Agent For our LLM agent, the action space includes internal language actions Ã = A∪ L
(Yao et al., 2023). The LLM agent has two types of internal language actions: First, thoughts
athought ∈ L, are reasoning traces from the current problem state used to inform environment action
selection aenv ∈ A. Second, explanations ℓℓℓexpl, are generated from actions and thoughts to enhance
human trust and interpretability (Zhang et al., 2023), a focus of this work.

Rules Thoughts are useful to highlight relevant aspects of a problem. However, they often
lack detailed information to identify the next optimal action. In this work, we will consider
“rules” arule ∈ L, which are structured language statements derived from thoughts that gener-
ally take the form “[if/when][do/prioritize] ”. More formally, each rule arule consists of a triple
(background, rule statement, state relevance). Figure 2a shows examples of generated
rules from one of the domains used in the experiments.

Task and Constraints Description Language agents require: (1) a language description of the
environment and the agent’s goal, denoted task, containing the available actions for the task; (2) a
function describing the state of the environment in natural language, denoted lang : S → L. At each
state st, these descriptors are used to construct a natural language prompt pt = f(task,lang(st)).
Figure 2b exemplifies language wrapper generated for one of the environments in our experiments.

Rule-based Language Policy The objective is to jointly optimize the reward and explainability of
the environment. Hence, we have an LLM agent-driven policy πLLM for online interaction with the
environment:

athought
t ∼ πLLM(athought

t | pt), arule
t ∼ πLLM(arule

t | athought
t ,pt),

aenv
t ∼ πLLM(aenv

t | arule
t ,athought

t ,pt), ℓℓℓexpl
t ∼ πLLM(ℓℓℓexpl

t | aenv,arule
t ,pt). (2)

The rule acts as a “bottleneck” to the action and explanation. In the next section, we will introduce
RBRL, which allows an RL-based learnable selection policy πθ choosing among a set of dynamically
generated candidate rules.

3.3 PROBLEM STATEMENT

We aim to increase the quality of ℓℓℓexpl while also optimizing decision-making by selecting rules
that encourage both good quality explanations and high reward. To achieve this goal, we construct
a surrogate explainabilty “rule reward” Rrule

LLM(arule) using an LLM as judge (Shen et al., 2024;
Bhattacharjee et al., 2024; Gu et al., 2024), which will be detailed in Section 4. Then, we propose the
following augmented optimization objective under the joint environment/rule reward as R̃(st,a

env
t ) =

R(st,a
env
t ) +Rrule

LLM(arule
t ):

max
π

EπJ̃(π) :=

[
h∑

t=1

γt−1r̃t

]
, s.t. constraint in (1), (3)

where r̃t = R̃(st,a
env
t ). We emphasize that LLMs cannot fully replace the ultimate human assessment,

but they they provide a scalable alternative during the optimization process.

4 RULE-BOTTLENECK REINFORCEMENT LEARNING (RBRL)

In this section, we propose RBRL, a novel LLM agent based on the key concepts in Section 3.2,
which leverages the strengths of LLMs and RL to achieve both interpretability and robust sequential
decision-making for (3), thereby achieving our goal of jointly optimizing policies and explanations
for resource-constrained allocation in (1).

Algorithm Overview The framework of RBRL shown in Algorithm 1 involves four steps: (1) RULE
SET GENERATION (line 3), where the LLM processes the state-task pt to create candidate rulesRt

4
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Algorithm 1 RBRL
Require: Rule-selection policy πθ; and Replay buffer B.

1: Initialization: Initial state s0 and task-state prompt p0.
2: for t = 0, . . . ,max iters− 1 do
3: Generate rule candidatesRt using CoT from pt and athought

t . // Section 4.1
4: Select rule arule

t using the RL policy πθ fromRt and st. // Section 4.2
5: Generate the environment action aenv

t with the LLM from arule
t , pt, and previous thoughts.

6: Apply the action in the environment and obtain new state st+1 and environment reward renv
t .

7: Generate explanation with the LLM from aenv
t , rrule

t , pt, and previous thoughts.
8: Generate rule reward rrule

t with the LLM as judge. // Section 4.3
9: Update the prompt pt+1 from st+1, and the constraints C and budget B.

10: Append transition to the replay buffer B ← B ∪ {(s̃t,arule
t , r̃t, s̃t+1)}.

11: Sample from the replay buffer and update the policy network πθ(a
rule
t |s̃t). // Section 4.4

12: end for

Text representation

Embedded rules (attention queries)

Sentence embeddings
State (attention keys)

Attention-based RL
rule selection network

Probability vector of 
selecting each rule 

Figure 3: Overview of the RULE SELECTION step. The current state is encoded as a key vector, while
candidate rules are encoded as Queries using a text embedding API (e.b., BERT sentence embedding).
An attention-based policy network πθ computes a probability distribution over the candidate rules,
enabling the selection of the most suitable rule for decision-making and explanation.

for action selection; (2) RULE SELECTION (line 4), where an attention-based RL policy πθ selects
the best rule arule

t ∈ R; (3) DECISION, RULE REWARD AND EXPLANATION (lines 5-8), where the
LLM generates an environment action aenv

t and based on the chosen rule arule
t gives a human-readable

explanation ℓℓℓexpl
t ; (4) REINFORCEMENT LEARNING (line 11), where it updates the policy πθ based

on collected data with standard RL algorithm Haarnoja et al. (2018) and the combined environment
and rule reward r̃t. Algorithm 1 details the entire process. Further sections elaborate on these steps.

4.1 RULE SET GENERATION

The rule generation process seeks to create interpretable and actionable guidelines for decision-
making. Under this framework, a set of candidate rules Rt is generated according to Rt ∼
πLLM(Rt|pt,a

thought
t ). To enhance interpretability, each rule is accompanied by a rationale explaining

the reasoning behind the decision. The LLM is instructed to generate rules as a JSON format, which
is common for integration of LLMs with downstream applications (Shen et al., 2024). An example
generated rule is given in Figure 2a. See Figure 12 in the Appendix for the prompt templates used
rules generation.

4.2 RULE SELECTION

In this step, rules are converted from text to vector form, and a trainable attention-based policy
network πθ provides the probability distribution for sampling a rule. Figure 3 illustrates the process,
with a detailed procedure in Algorithm 2 of the Appendix. Below are the major components of the
architecture of πθ. We propose to base the architecture on cross-attention layers (Bahdanau et al.,
2015; Vaswani et al., 2017), with the state acting as the keys and values, and the rules as the queries.
This allows to learn from the embedding representations of rules, and efficiently handle dynamically
changing number of rules if needed.

State Representation The numeric state is projected by a linear layer: kt = Linear(st) ∈ R1×dh ,
with dh being to denote the architecture hidden dimension.

5
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Rule Candidate Embedding Each rule in the list of rule candidates Rt = {ρρρt1, ρρρt2, . . . , ρρρtq}
is embedded into a numeric representation using a Sentence Embedding language model (e.g.,
SentenceBERT (Reimers & Gurevych, 2019)) and further processed by a projection layer similar to
the state representation. This results in a query matrix Qt ∈ Rq×dh .

Attention-based Policy Network πθπθπθ The vector kt, serving as keys, engages with the rule em-
beddings Qt, acting as queries, via a cross-attention mechanism to derive a hidden state repre-
sentation h

(1)
t = Attention(Qt,k

⊤
t ,k

⊤
t ) ∈ Rq×dh , computed as Attention(Qt,k

⊤
t ,k

⊤
t ) =

softmax
(

Qtk
⊤
t√

dh

)
k⊤
t , which facilitates the rule candidate vector embeddings in attending to the

environment state. Subsequently, we sequentially apply self-attention layers to the hidden repre-
sentation h(k+1) = Attention(h(k)

t ,h
(k)
t ,h

(k)
t ), enabling the rule embeddings to attend to one

another to rank an optimal candidate. Ultimately, following K − 1 self-attention layers, a final linear
layer converts the rule representations into logit vectors αααt

θ = Linear(h(k)
t ) ∈ Rq used for the

computation of the probability of selecting each rule.

Rule Selection The policy distribution over the rules is calculated as: πθ,i(Qt,kt) =
exp(αt

θ,i(Qt,kt))∑q
j=1 exp(αt

θ,j(Qt,kt))
, i = 1, . . . , q. Therefore, a rule is selected at random from the distribution:

arule
t ∼ Categorical(R; (πθ,i(Qt,kt))

q
i=1).

4.3 DECISION, RULE REWARD, AND EXPLANATION

Upon selection of rule arule
t , the LLM determines the action to be applied within the environment

aenv
t ∼ πLLM(aenv

t |arule
t ,athought

t ,pt), ensuring concordance with the chosen strategy. Subsequently,
the LLM formulates an explanation ℓℓℓexpl

t ∼ πLLM(ℓℓℓexpl
t |aenv,arule,athought,pt) contingent upon the

rule. Figure 12 in the Appendix illustrates the prompt template employed to generate both the action
and explanation.

This procedure concurrently produces the rule reward Rrule
LLM(rrule

t ), used for RL in the next step. This
rewards is derived from using the LLM as a judge to answer the following three questions: ER1.
Without providing aenv

t , is arule
t sufficient to predict the optimal action? ER2. Does arule

t contain
enough details about the applicability of the rule to current state? ER3. Given aenv

t , is arule
t compatible

with this selection? Each question scores as 0 if negative or 1 if positive. The rule reward is calculated
as rrule

t = Rrule
LLM(arule

t ) ∝ (1/3)
∑

i ERi. Refer to Figure 12 in the Appendix for the full prompt.

4.4 POLICY UPDATE THROUGH RL

Augmented state space Traditional RL frameworks fail to directly return a policy based on current
environment state due to intermediate steps: generating the rule setRt, mapping rules arule

t to actions
aenv
t in an LLM-driven environment. RBRL addresses this issue by creating an augmented state

s̃t := (st,Rt) with transition dynamics P (s̃t+1|s̃t,arule
t ), integrating rules into the state space for

reasoning over both the environment’s dynamics and decision rules arule
t . The following theorem

explains the transition computation.
Theorem 4.1. The state transition of the RBRL MDP can be calculated as

P (s̃t+1|s̃t,arule
t ) = P (Rt+1|st+1)×

∫
a

P (st+1|aenv, st) · P (aenv|arule
t , st)da

env, (4)

where P (Rt+1|st+1) = πLLM(Rt+1|pt, τττ t) is the probability of the LLM generating rule
set Rt+1 provided the state st+1, P (st+1|aenv, st) is the original environment dynamics, and
P (aenv|arule

t , st) = πLLM(a
env|pt,a

rule
t ) is the probability of the LLM selecting the environment

action aenv.

Policy update step The attention-based policy network in Section 4.2 is optimized using the stan-
dard SAC algorithm, which balances reward maximization with exploration. The policy network in
SAC is updated by minimizing the KL divergence between the policy and the Boltzmann distribution
induced by Q networks Qϕi

, ∀i = 1, 2, which is expressed as

Lπ(θ) = ED

[
β log πθ(a

rule
t |s̃t)− min

i=1,2
Qϕi

(s̃t,a
rule
t )

]
, (5)

6
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where β is a temperature parameter. The detailed implementation for SAC update procedure is
detailed in Algorithm 3 in Appendix D.

5 PERFORMANCE GUARANTEE

In this section, we derive and prove conditions under which RBRL can learn the optimal task policy,
as well as characterize the potential trade-off between explainability and task performance when
rewarding rules for higher explainability.
Proposition 5.1 (Rule Set Coverage). Let A be a finite action space and Q∗(s,aenv) the optimal
state-action value function, with aenv,∗(s) := argmaxaenv∈A Q∗(s,aenv) denoting the optimal action
at state s. Given state s, an LLM samples N rules independently from a conditional distribution
πLLM(· | s), and each rule ρρρi maps s to an action aenv

i ∼ πLLM(a
env
i |ρρρi, s). Assume there exists δ > 0

and ηs ∈ (0, 1] such that: Pρρρi∼πLLM(·|s) [Q
∗(s,aenv

i ) ≥ Q∗(s,aenv,∗(s))− δ] ≥ ηs. Define the δ-
optimal rule set as: Rδ(s) := {ρρρi : Q∗(s,aenv

i ) ≥ Q∗(s,aenv,∗(s))− δ} . Then with high probability
over the sampled rules, there at least has a rule ρρρi and the induced action aenv

i ∼ πLLM(a
env
i |ρρρi, s)

that satisfies:

E [Q∗(s,aenv,∗(s))−Q∗(s,aenv
i )] ≤ δ + ϵworst · (1− ηs)

N , (6)

where ϵworst := maxρρρ/∈Rδ(s) (Q
∗(s,aenv,∗(s))−Q∗(s,aenv

i )) is the worst-case loss outside the δ-
optimal set.
Remark 5.2. Proposition 5.1 states the rule diversity property in the rule candidate set such that the
best possible action (when δ → 0) is included is guaranteed with high probability when number of
rules N goes large. This is crucial in guaranteeing that RBRL can learn a near-optimal policy with
high probability (with optimality when δ = 0 and ηs = 1). See Section E in Appendix for more
detail. We also numerically evaluate rule-coverage in Figure 8 of Appendix G.5.

Define the T-step value function V π,T
M′ (s0) = [

∑T−1
t=0 γtRM′

t (st, π(st))|s0], where RM′
is the reward

function inM′. We will denote the original MDP asM and use M̃ to denote the MDP for the RBRL
agent with transition function as in Theorem 4.1 and reward R̃. We have the following theorem.

Theorem 5.3. The evaluation gap Gap(T, s0) := V π∗,T
M (s0)− V πRBRL,T

M (s0) of RBRL is bounded as

Gap(T, s0) = V π∗,T
M (s0)− V πRBRL,T

M̃ (s0) + V πRBRL,T

M̃ (s0)− V πRBRL,T
M (s0) ≤ λ · 1− γT

1− γ
, (7)

where λ is a constant depending on the magnitude of the rule reward, and, with a slight notational
abuse, V πRBRL,T

M is the value of the RBRL policy when seen as a policy in the original MDP mapping
states to actions (i.e., by integrating out the rule generation and action selection via LLMs.)
Remark 5.4. This analysis focuses on the evaluation gap between the optimal policy π∗ under the
original MDPM and the policy πRBRL, captures the suboptimality of using πRBRL instead of the true
optimal policy π∗, assuming RBRL is optimized under the extended MDP M̃ (with same transitions
asM but additional rule-based reward). It can be decomposed into two interpretable terms. The first
part captures the optimism of using πRBRL under the extended MDP M̂ rather than the original MDP,
which is non-positive. The second part quantifies the accumulated reward difference induced by the
additional explanation rewards when using the same RBRL policy in both MDPs.

6 EXPERIMENTS & HUMAN SURVEY

In this section, we evaluate RBRL and empirically show that it can achieve a joint improvement in
both reward and explainability over comparable baselines. We briefly summarize these environments
here, with additional details in Appendix F.1.

Domains We evaluate RBRL in three main distinct resource-constrained allocation domains:

▷ WearableDeviceAssignment: We use two environments, Uganda and MimicIII, from
the vital sign monitoring domain introduced by Boehmer et al. (2024), modeling the allocation of
limited wireless devices among postpartum mothers as an MDP setting. ▷ HeatAlerts: We use the

7
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(a) Uganda (b) MimicIII (c) HeatAlerts (d) BinPacking

Figure 4: Results from Q1 using ChatGPT 4o-mini. The plots show the mean and standard error
across three seeds, using exponentially weighted moving averages (λema = 200).

(a) Q2: ablations (b) Q3: LLM finetuning (c) Q4: no rule rewards

Figure 5: Additional experiments and ablations. (a) Comparison of RBRL with thoughts-based
RL (TBRL) and the baseline rule-based LLM without RL training; (b) comparison against LLM
finetuning with PPO at the token level from the environment reward with CoT generation for the
Mimic; (c) shows the effect of removing the rule reward in the HeatAlerts environments. For (a)
and (c), we show distribution of rewards in the last 20% training steps.

weather2alert environment from Considine et al. (2025) , which formulates issuing heat alerts
as a constrained MDP to reduce hospitalization risk from the alert. ▷ BinPacking We adopt the
online stochastic BinPacking: environment introduced by Balaji et al. (2019), which Sequentially
places arriving items into bins with fixed capacity to minimize total waste, following the online
stochastic formulation. Detailed domain description can be found in Appendix F.1.

6.1 ENVIRONMENT REWARD OPTIMIZATION

We discuss the main results and refer to Appendix F for the detailed experiment setup and Appendix
G for additional experiments. Unless otherwise specified, we use gpt-4o-mini as LLM due to its
reasonable cost and high performance.

Q1. Did RBRL optimize the reward function? RBRL is compared to CoT (Wei et al., 2022) for
language reasoning and PPO (Schulman et al., 2017) for numeric states. Figure 4 indicates RBRL
outperforms CoT, showing RL-optimized rule selection improves decision-making. RBRL also
exceeds PPO in all environments with equal environment steps, suggesting a better online learning
performance. Notice that RBRL is compatible with a baseline LLM trained for advanced reasoning
techniques (e..g, GRPO Shao et al. (2024)). However, GRPO or similar cannot be used directly in
MDPs. Nevertheless, our experiments with the comparable GPT o3 (see Appendix G) prove that
RBRL can also help improve reasoning models in our tasks.

Q2. Did structured rules help optimization? We conduct two ablation studies on struc-
tured rules. First, we benchmark the use of structured rules without RL, called baseline
Rule-bottleneck(no RL), which is shown in Equation (2)-(5). Next, we compare RBRL
with a variant optimizing unstructured thoughts, termed thoughts-based RL (TBRL). The implementa-
tion mimics RBRL, utilizing a candidate pool P with the CoT prompt. Results in Figure 5a show that
comparing RBRL with RulesLLMOnly highlights RL training gains, suggesting rule generation
alone does not explain RBRL’s performance. Additionally, significant improvements over TBRL
suggest optimizing structured rules is more effective than optimizing free reasoning traces.

8
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Q3. How does RBRL compare to token-level LLM finetuning with RL? We implement LLM
finetuning on a Llama 3.1 8B model, termed FinetunePPO. A value head is trained on final hidden
states, with KL divergence from a reference model as regularization (Ziegler et al., 2019). CoT is
generated, followed by an action query, optimizing both. Training runs for 18 hours on 3 seeds
using an A100 40G GPU (1200 steps/seed). For fair comparison, RBRL is also run on Llama 3.1 8B.
Figure 5b shows RBRL outperforms the flatter trend of finetuning, indicating better online learning.
Moreover, RBRL runs on a regular laptop, whereas FinetunePPO requires specialized hardware
and takes 4× longer per step. Due to compute limits, results are shown only for the less noisy
MimicII domain.

Additional comparison with XRL benchmarks We further compare RBRL against a representative
XRL method that also targets joint optimization and intrinsic interpretability: Decision Diffusion
Trees (DDTs) (Silva et al., 2020). As shown in Table 1, RBRL is consistently competitive and often
outperforms the tree-based baseline across most domains, particularly in the early stages of training,
underscoring its sample efficiency. Although DDT achieves a higher average reward than RBRL in
HeatAlerts, it exhibits substantially higher variance, highlighting the greater stability of RBRL.

6.2 HUMAN SURVEY AND EXPLAINABILITY

Table 1: XRL Baselines Results Table

Dataset (@steps) RBRL SAC PPO DDT DDT w/rules
Uganda (@500) −0.56± 0.18 −0.83± 0.14 −0.91± 0.14 −1.01± 0.20 −1.20± 0.31
Uganda (@2500) −0.60± 0.20 −0.75± 0.14 −0.74± 0.05 −1.28± 0.35 −1.20± 0.30
MimicIII (@500) −0.36± 0.05 −0.61± 0.11 −0.78± 0.05 −0.92± 0.10 −1.02± 0.10
MimicIII (@2500) −0.39± 0.07 −0.43± 0.10 −0.64± 0.10 −0.97± 0.11 −0.99± 0.13
HeatAlerts (@500) 0.14± 0.11 −0.04± 0.33 0.00± 0.01 0.22± 0.25 0.15± 0.29
HeatAlerts (@2500) 0.13± 0.14 0.05± 0.04 0.00± 0.01 0.38± 0.57 0.38± 0.56
BinPacking (@500) −0.03± 0.00 −0.03± 0.00 −0.03± 0.00 −0.19± 0.03 −0.19± 0.04
BinPacking (@2500) −0.03± 0.00 −0.06± 0.00 −0.03± 0.00 −0.21± 0.02 −0.21± 0.02

Q4. Did RBRL increase the explainabil-
ity of explanations? A survey with 40
participants was conducted to assess expla-
nation quality, detailed in Appendix J. Each
prompt included the task, state, and action
space as originally given to the LLM, fol-
lowed by actions and explanations from
the CoT agent and the RBRL agent, with-
out disclosing agent types. Participants were asked to choose preference for explanation A, B, or
none. Prompts were split between WearableDeviceAssignment and HeatAlerts domains.
Figure 6 shows results, favoring RBRL’s explanations in both domains, with a detailed breakdown
in J. An additional experiment with an LLM judge using a large gpt-4o model showed strong
agreement with humans, preferring RBRL’s explanations in all cases.
Discussion on Explainability The trustworthiness of explanations is a core challenge in XAI.
Following recent work (Kunz & Kuhlmann, 2024; Parcalabescu & Frank, 2023; Jacovi & Goldberg,
2020), we highlight three concepts: Plausibility: whether an explanation is convincing to humans
(validated via our survey, Figure 6). Consistency: whether the stated reason logically entails the
action (Appendix G.3). Faithfulness: whether the explanation reflects the true decision mechanism.

Our work is motivated by the gap between plausibility and faithfulness in post-hoc methods. By
design, RBRL ensures consistency: explanations factually follow the State→ Rule→ Action pipeline,
where the rule is the verifiable cause of the action. As shown in Table 8 in Appendix G.3, including
reasoning traces does not affect the decision, confirming that consistency stems from the state and
rule rather than LLM self-explanation. While our experiments validate consistency, establishing
faithfulness—verifying the LLM’s internal reasoning for rule generation—remains an open challenge.

Figure 6: Results from the human survey.

Q5. What was the effect of the rule reward? During
training of RBRL, rules received rewards from two
prompts. We examine an ablation without this reward.
Figure 5c illustrates results for the HeatAlerts en-
vironment, noted for high variance and a challenging
reward function. We extended training to 5k steps
to understand these dynamics. Without rule reward,
environment reward remains steady (slightly increas-
ing), but explainability scores drop significantly. Re-
fer to Section 4.3 for the definition of the rule reward metrics. A decline in metric 1 indicates that
rules are less predictive of the optimal actions. A decline in metric 2 suggests rules lack detailed
applicability to the current problem state, indicating more generic rather than specialized rule selec-
tion. Metric 3 (not shown) was always 1 in all steps, indicating the limitations of directly evaluating
post hoc explanations. Although judged by the LLM, these results are encouraging, as our previous
experiment showed alignment between the LLM and human assessments.
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ETHICS AND REPRODUCIBILITY STATEMENTS

The authors of this work adhere to the ICLR Code of Ethics. Our research involves domains with
significant ethical considerations, particularly in healthcare and public policy, which we have carefully
addressed. Our work includes a human survey to evaluate the quality of explanations, which was
conducted under Institutional Review Board (IRB) approval.

We have taken extensive measures to ensure the reproducibility of our research. The complete source
code for our framework, including environment implementations and experiment scripts, is provided
as supplementary material, with an anonymous link included at the beginning of the Appendix. All
algorithmic details and hyperparameters for our proposed method (RBRL) and all baselines are
comprehensively documented in Appendix D and Appendix F.
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Supplementary Materials
In this supplementary material, we provide additional details omitted from the main paper for
brevity. We also present extended experimental results to further support our findings. The com-
plete source code for this work is available at: https://anonymous.4open.science/r/
rule-bottleneck-reinforcement-learning-6F0D.

A LLM USAGE DISCLOSURE

We used LLMs solely as algorithmic components within our proposed method. No LLMs were
employed for writing, editing, or generating the content of this manuscript.

B RELATED WORK

Our work intersects with three distinct areas within the RL literature. We discuss related work in
each of these domains.

RL for Sequential Resource Allocation RL has been widely studied for constrained resource
allocation across domains. In maternal health, Boehmer et al. (2024) apply RL to a restless multi-
armed bandit (RMAB) problem (Whittle, 1988) to compute stochastic intervention probabilities. Also
in an RMAB setting, Xiong et al. (2022) propose a model-based RL approach that prioritizes users
via an index and allocates resources under budget constraints. In public health, Considine et al. (2025)
propose RL to optimize extreme heat warnings under a budget on the number of possible alerts. Other
works include multi-agent RL for robotic warehouse allocation (Shen et al., 2023) and exogenous
MDPs for cloud resource management (Sinclair et al., 2023). While these methods optimize rewards
effectively, they often lack interpretability—critical for deployment in sensitive domains requiring
trust, transparency, and accountability.

RL and LLM Agents One stream of research in LLM agents (Sumers et al., 2024) has developed
somewhat independently of RL, with works like ReAct prompting (Yao et al., 2023) extending
chain-of-thought (CoT) (Wei et al., 2022) to action settings. These works have focused on tasks
such as open-ended web navigation (Putta et al., 2024), social simulations (Park et al., 2023), and
virtual assistants (Vezhnevets et al., 2023). Meanwhile, LLM agents have also been proposed for
dealing with complex Markov decision processes such as GLAM (Carta et al., 2023), TWOSOME
Tan et al. (2024), BAD (Wen et al., 2024), and AgentGym (Xi et al., 2024), which use LLM finetuning
techniques in RL environments with a reward function. While our work is related to hierarchical
methods that leverage LLMs for high-level planning (Wang et al., 2023; Szot et al., 2023), our
framework is novel in its objective. Unlike prior work that uses language solely to guide a policy
toward high task rewards, RBRL is the first to treat the language-based “rule” as a primary output,
jointly optimizing for both decision-making performance and the rule’s quality as a human-readable
explanation via a dedicated reward signal.

Explainable RL (XRL) Early XRL relied on methods like decision trees and concept-based
explanations (Das et al., 2023), but these struggled with scalability in dynamic environments (Poeta
et al., 2023). Recent advances introduced LLMS for post-hoc explanations, such as explaining
decision paths from policy trees (Zhang et al., 2023) or adding language descriptions to RL policies
(Colas et al., 2022). However, these approaches focus on interpreting pre-existing policies rather than
enabling LLMs to generate inherently explainable decisions, with challenges in aligning explanations
to human reasoning (Singh et al., 2024). By contrast, inherently (also known as intrinsically)
interpretable policies are those that have internal representation that allow explanations (Peng et al.,
2022; Milani et al., 2024). Our work sits within this literature by using LLM reasoning traces as
the basis for environment action selection. Other methods like EDGE (Guo et al., 2021) and RICE
(Cheng et al., 2024) are primarily attribution-based; they identify which inputs (e.g., pixels or state
features) were most critical to a decision. Similarly, SelfIE (Chen et al., 2024) provides a post-hoc,
mechanistic explanation of an LLM’s internal mechanics (hidden states). In contrast, RBRL generates
high-level, user-facing policy rules that are functional components within the RL loop, providing an
explanation of the agent’s intent.
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C IMPACT STATEMENT AND LIMITATIONS

This work advances the development of transparent AI systems for high-stakes decision-making in
domains like healthcare, public policy, industry, and many other applications. By enabling LLM
agents to generate human-readable rules and explanations while attaining reward maximization via
RL, RBRL improves trust and accountability, critical for ethical deployment in settings where lives
and resources are at stake. While the framework prioritizes alignment with human reasoning, potential
risks include over-reliance on imperfect LLM-generated rules or explanations that may inadvertently
obscure biases in training data. Mitigation requires rigorous validation of rules by domain experts
and ongoing monitoring of LLM outputs. Additionally, RBRL ’s reliance on LLMs raises compu-
tational and accessibility challenges in resource-constrained environments. By addressing these
considerations, this research contributes to safer, more equitable AI systems that empower—rather
than replace—human decision-makers. To further validate the interpretability of our method, we
obtained IRB approval and conducted a human subject study to evaluate the quality of the generated
explanations.

Notice that the Uganda dataset used in this study is derived from a simulator that models vital
sign trajectories of patients, as provided by Boehmer et al. (2024). Importantly, this simulator only
replicates vital sign transitions and does not include any feature information or identifying details
of real patients. Thus, the data generated by the simulator cannot be traced to or represent actual
individuals, ensuring privacy and ethical compliance. We emphasize that this is purely a simulated
patient study; and recognize that for any next steps towards real world use, there is a need to conduct
rigorous simulation studies on a large scale with real patient data, with detailed assessments of
potential biases, verification of policy convergence and its robustness to distribution shifts in patient
populations, and making necessary adjustments. Beyond that, there will be a need to obtain ethics
and regulatory approval to test the policy in a real-world setting for future comprehensive field testing,
addressing issues of participant consent and privacy; and ultimately there would need to be sufficient
human oversight for any future deployment.

Interpretability vs. Performance Tradeoff Various works acknowledge the trade-off between
interpretability and performance (Rudin, 2019). In practice, prioritizing interpretability is crucial
in practice in many high-stake applications: an approach that we subscribe to in this work. For
example, in the clinical AI domain, high-performing black-box systems often face rejection in clinical
workflows due to distrust (Shevtsova et al., 2024; DuBois, 2019) as physicians require transparency to
validate recommendations and uphold ethical accountability, as mandated by regulatory frameworks
(e.g., (EPC, 2024; CSL, 2024)). Interpretable models enable clinicians to audit biases, adapt decision
logic to local contexts, and iteratively refine recommendations-fostering collaborative decision-
making over reliance on inflexible oracles-whereas opaque policies are prone to failure under real-
world distribution shifts(Rudin, 2019; Doshi-Velez & Kim, 2017; Shevtsova et al., 2024; DuBois,
2019). Empirical surveys show clinicians favor models that enable shared decision-making, error
accountability, and ethical oversight despite modest performance penalties (Shevtsova et al., 2024)-a
critical stance in high-stakes healthcare environments where trust and adaptability outweigh narrow
efficiency gains.

D ALGORITHMIC DETAILS

In this section, we present the detailed pseudocodes for Rule Search in Algorithm 2 and the SAC
for attention-based policy network in Algorithm 3.

Algorithm 2 outlines the process of rule selection using attention-based policies. First, each rule
candidate ρρρti is embedded into a numeric vector qt

i using a sentence embedding technique (e.g.,
Sentence-BERT), forming a query matrix Qt. The state st is also converted into a numeric vector kt.
Cross-attention is applied between Qt and kt to generate an attention representation h, which may
optionally be refined using a self-attention mechanism. A linear layer processes to h produce score
vector αααt

θ. These scores define the policy distribution πθ, from which a rule arule
t is sampled. This

attention-based approach ensures efficient selection of rules by leveraging contextual relationships
between the state and rule candidates. For the implementation, the attention layer is realized using
the multi-headed attention module from Vaswani et al. (2017). We incorporate a dropout layer, fixed
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at 0.05 for the experiments, along with SiLU activation and layer normalization, which are excluded
from the notation for brevity.

Algorithm 2 Rule Search: Rule Selection via Attention-Based Policies

Require: Numeric state representation st ∈ Rds and rule setRt = {ρρρti}
q
i=1. Hidden dimension dh.

1: Embed each rule ρρρti ∈ Rt into a numeric vector using sentence embeddings qt
i = embed(ρρρti) ∈

Rdh (e.g., Sentence-BERT) and stack to form a query matrix Qt ∈ Rdh×q. // Rule Candidate
Embedding

2: The state st is projected by a linear layer with SiLU activation: kt = SiLU(Linear(st)) ∈
R1×dh , with dh being to denote the architecture hidden dimension. // State Representation

3: Use cross-attention to obtain h = CrossAttention(Qt,kt,kt) ∈ Rq×dh .
4: (Optional) Further apply a self-attention network h← SelfAttention(h).
5: Apply linear layer to obtain logits vector αααt

θ = Linear(h) ∈ Rq×1.

6: Calculate the policy distribution: πθ,i(Qt,kt) =
exp(αt

θ,i(Qt,kt))∑q
j=1 exp(αt

θ,j(Qt,kt))
, where αt

θ,i is i-th ele-

ment in αααt
θ.

7: Sample rule arule
t ∼ Categorical(R; (πθ,i(Qt,kt))

q
i=1). // Rule Selection with Attention

8: Return arule
t .

Algorithm 3 SAC for Attention-based Policy Network

1: Initialize Q networks Qϕ1
, Qϕ2

and policy network πθ with random parameters ϕ1, ϕ2, θ.
2: Initialize target Q networks Q̄ϕ̄1

, Q̄ϕ̄2
with weights ϕ̄1 ← ϕ1, ϕ̄2 ← ϕ2.

3: Initialize temperature parameter β and target entropyHtarget; Initialize replay buffer D.
4: for episode = 1, . . . ,M do
5: Initialize environment and observe initial state s̃1.
6: for step t = 1, . . . , T do
7: Sample action arule

t ∼ πθ(·|s̃t).
8: Execute action arule

t , observe reward r̃t and next state s̃t+1.
9: Store transition (s̃t,a

rule
t , r̃t, s̃t+1) in replay buffer D.

10: if enough samples in D then
11: Sample a mini-batch of transitions (s̃t,arule

t , r̃t, s̃t+1) from D.
12: Compute target Q values: yt = r̃t+γEarule

t+1∼πθ(·|s̃t+1)

[
minj=1,2 Q̄ϕ̄j

(s̃t+1,a
rule
t+1)− α log πθ(a

rule
t+1|s̃t+1)

]
.

13: Update Q networks by minimizing:
14: LQ(ϕi) = E(s̃t,arule

t ,r̃t,s̃t+1)

[(
Qϕi

(s̃t,a
rule
t )− yt

)2]
for i = 1, 2.

15: Update policy network by minimizing:
16: Lπ(θ) = Es̃t,arule

t ∼πθ

[
β log πθ(a

rule
t |s̃t)−minj=1,2 Qϕj (s̃t,a

rule
t )

]
.

17: Update temperature parameter by minimizing:
18: Lβ(β) = Es̃t,arule

t ∼πθ

[
−β

(
log πθ(a

rule
t |s̃t) +Htarget

)]
.

19: Update target Q networks:
20: ϕ̄i ← τϕi + (1− τ)ϕ̄i for i = 1, 2.
21: end if
22: end for
23: end for

Algorithm 3 presents the SAC algorithm tailored for training an attention-based policy network in
selecting the desired rule. This method combines entropy-regularized policy optimization with a
structured approach to handle rule-selection effectively. The algorithm begins with the initialization
of key components: Q networks Qϕ1

, Qϕ2
, target Q networks Q̄ϕ1

, Q̄ϕ2
, and a policy network πθ.

Random parameters are assigned to these networks, and the target Q networks are synchronized with
the initial Q networks. A temperature parameter α is initialized to regulate the entropyHtarget in the
policy objective, ensuring a balance between exploration and exploitation. A replay buffer D is set
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up to store transition data. Notice the entropy is defined as

Htarget = −
q∑

i=1

πθ(a
rule
t |kt,Qt) log πθ(a

rule
t |kt,Qt). (8)

During training, each episode starts with the initialization of the environment, and the agent observes
the initial state s̃1. At every time step, the policy network generates an action arule

t based on the
current state. This action is executed in the environment, resulting in a reward r̃t and a state transition
to s̃t+1. These transitions are stored in the replay buffer for optimization. When sufficient transitions
are available in the buffer, the algorithm samples a mini-batch of transitions and computes the
target Q values. The target Q values incorporate entropy regularization and are computed using the
minimum of the target Q networks to ensure stability. The Q networks are updated by minimizing the
mean squared error between the predicted Q values and the computed targets. The policy network
is optimized by minimizing a loss function that combines the policy entropy with the expected Q
value, ensuring a stochastic and exploratory policy. The temperature parameter β is updated to
maintain the desired balance between exploration and exploitation. Finally, the target Q networks are
softly updated to stabilize training. This iterative process continues across episodes and time steps,
progressively refining the policy network to achieve optimal rule selection.

E MATHEMATICAL DETAILS

E.1 PROOF OF THEOREM 4.1

In this section, we provide the detailed proofs for Theorem 4.1. We start with the following equation

P (Rt+1|st+1) ·
∫
a

P (st+1|aenv, st) · P (aenv|arule
t , st)da

env

= P (Rt+1|st+1) ·
∫
a

P (st+1|aenv, st,Rt,a
rule
t ) · P (aenv|arule

t , st)da
env︸ ︷︷ ︸

(a) P (st+1|aenv,st,Rt,arule
t )=P (st+1|aenv,st)

= P (Rt+1|st+1) ·
∫
a

P (st+1|aenv, st,Rt,a
rule
t ) · P (aenv|st,Rt,a

rule
t )daenv︸ ︷︷ ︸

(b) P (aenv|st,Rt,arule
t )=P (aenv|st,arule

t )

= P (Rt+1|st+1) ·
∫
a

P (st+1,a
env|st,Rt,a

rule
t )daenv︸ ︷︷ ︸

P (A|B,C)·P (B|C)=P (A,B|C)

= P (Rt+1|st+1) · P (st+1|st,Rt,a
rule
t )︸ ︷︷ ︸

P (A)=
∫
P (A,B)dB

= P (Rt+1|st+1, st,Rt,a
rule
t ) · P (st+1|st,Rt,a

rule
t )︸ ︷︷ ︸

(c) P (Rt+1|st+1,st,Rt,arule
t )=P (Rt+1|st+1)

= P (st+1,Rt+1|st,Rt,a
rule
t )︸ ︷︷ ︸

P (A|B,C)·P (B|C)=P (A,B|C)

= P (s̃t+1|s̃t,arule
t )︸ ︷︷ ︸

s̃t:=(st,Rt)

, (9)

where (a) follows from the fact that the transition to st+1 is fully determined by current state st
and current action to the environment aenv

t , i.e., independent on rule set Rt and selected rule arule
t ;

(b) holds since aenv
t is determined only by the selected rule arule

t and the state st; (c) is due to our
designed rule generation procedure where Rt+1 is generated by the LLM from the the latest state
st+1. This completes the proof.

E.2 PROOF OF PROPOSITION 5.1

We decompose the expected suboptimality into two cases:
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Eρρρi∼πLLM(·|s) [Q
∗(s,aenv,∗(s))−Q∗(s,aenv

i )]

= P
[
ρρρi ∈ Rδ(s)

]
· E

[
Q∗(s,aenv,∗(s))−Q∗(s,aenv

i ) | ρρρi ∈ Rδ(s)
]

+ P
[
ρρρi /∈ Rδ(s)

]
· E

[
Q∗(s,aenv,∗(s))−Q∗(s,aenv

i ) | ρρρi /∈ Rδ(s)
]

≤ P
[
∃i ∈ [N ], ρρρi ∈ Rδ(s)

]
· E

[
Q∗(s,aenv,∗(s))−Q∗(s,aenv

i ) | ρρρi ∈ Rδ(s)
]

+ P
[
∀i,ρρρi /∈ Rδ(s)

]
· E

[
Q∗(s,aenv,∗(s))−Q∗(s,aenv

i ) | ρρρi /∈ Rδ(s)
]
. (10)

When ρρρi ∈ Rδ(s), we have:
Q∗(s,aenv,∗(s))−Q∗(s,aenv

i ) ≤ δ.

When ρρρi /∈ Rδ(s), we use:
Q∗(s,aenv,∗(s))−Q∗(s,aenv

i ) ≤ ϵworst.

The probability that none of the sampled rules are inRδ(s) is:

P
[
∀i,ρρρi /∈ Rδ(s)

]
≤ (1− ηs)

N .

Therefore, the overall expected suboptimality is bounded by:
E [Q∗(s,aenv,∗(s))−Q∗(s,aenv

i )] ≤ δ + ϵworst · (1− ηs)
N . (11)

This completes the proof.

E.3 PROOF OF THEOREM 5.3

Notation. We will denote asM the original MDP as M̃ the MDP for the rule-selection agent with
transition function as in Theorem 4.1 and reward function R̃(s̃t,a

rule
t ) = R(st,a

env
t ) + λRrule(arule

t ),
where λ ≥ 0 is a coefficient weight to balance the rule reward (typically very small) and
image(Rrule) = [0, 1]. Throughout, we consistently use the tilde-notation ∼ for objects in M̃
and non-tilde notation for objects inM. Denote the optimal policy ofM as π∗. By standard MDP
arguments, we may assume that π∗ is deterministic. Recall that the states for M̃ consist of states-rules
pairs s̃t := (st,Rt) and the LLM agent’s actions are the selected rules arule

t . The environment action
is determined as aenv

t = LLM(arule
t ,pt) where pt is the task-state prompt. The RBRL policy is trained

to maximize the reward R̃(s̃t,a
rule
t ).

Basically, we need to characterize

Gap(T, s0) := V π∗,T
M (s0)− V πRBRL,T

M (s0)

= V π∗,T
M (s0)− V πRBRL,T

M̃ (s0)︸ ︷︷ ︸
Term1

+ V πRBRL,T

M̃ (s0)− V πRBRL,T
M (s0)︸ ︷︷ ︸

Term2

,

where π∗ is the optimal polciy for original MDPM and πRBRL is the optimal policy for the extended
MDP M̃.

First, Term1 ≤ 0. The reason is thatM and M̃ share the same transition dynamics and M̃ has a
higher reward function thanM, we always have the following inequality

V π∗,T
M (s0) ≤ V π∗,T

M̃ (s0) ≤ V πRBRL,T

M̃ (s0), (12)

where the second inequality holds due to the fact that πRBRL is optimal for M̃.

Next, we bound Term2. It is also very straightforward as the single policy πRBRL on the two MDPs
M and M̃ will results in the same trajectories (s0,a0; s1;a1; . . . ). Hence it can be bounded as

Term2 =

T−1∑
t=0

γt[r̃(st,at)− r(st,at)]

= λ ·
T−1∑
t=0

γtRrule(arule
t ) ≤ λ

T−1∑
t=0

γt

= λ · 1− γT+1

1− γ
, (13)
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where the inequality comes from the fact that rule reward Rrule(arule
t ) ≤ 1,∀t. Therefore, we have

Gap(T, s0) ≤ λ · 1− γT

1− γ
.

This completes the proof.

F EXPERIMENT SETUP

All baselines were trained on 3 seeds for 2000 environment steps each.

F.1 ENVIRONMENTS DETAILS

F.1.1 WEARABLE DEVICE ASSIGNMENT DOMAIN

The simulator for the Uganda domain is adapted from (Boehmer et al., 2024) with minor modifications
to simplify the problem. This section provides an overview of the environment, with additional details
available in the original paper. In this environment, they want to allocate vital sign monitoring devices
to mothers arriving in a maternal unit in order to better monitor mothers’ health condition. Each
mother’s state is modeled by her vital signs (heart rate, respiratory rate, and blood oxygen saturation)
along with each vital sign’s variability. The mother’s vital sign transition is governed by a multivariate
Gaussian distribution defined over her vital signs at the current timestep and next timestep, learned
from de-identified vital sign data collected from patients at Mbarara Regional Referral Hospital.
MIMIC-III Johnson et al. (2016) is another de-identified clinical vital sign dataset that includes the
same set of vital signs as the Uganda domain. The key difference is they have different data sources,
as MIMIC-III’s data comes from Beth Israel Deaconess Medical Center in Boston.

Wearing a monitoring device does not directly alter a mother’s vital sign trajectory but has an indirect
positive effect by triggering alerts when vital signs deviate from the normal range. These alerts often
lead to medical interventions that improve the mother’s condition. If no monitoring device is assigned
(passive action), the mother’s next state is sampled from the multivariate Gaussian distribution
conditioned on the current state. If a monitoring device is assigned and the vital signs remain within
the normal range, the vital signs evolve as under the passive action. However, if any vital sign deviates
from the normal range, there is a 30% chance the vital signs evolve as under the passive action, based
on empirical evidence suggesting that clinicians fail to respond in such cases 30% of the time (Boatin
et al., 2021). Otherwise, vital signs are probabilistically adjusted towards the normal range before
sampling the next state, modeling the positive impact of medical intervention.

The algorithm’s goal is to optimize monitoring device allocation to maximize the aggregate reward
across all mothers. We simplify the problem by requiring exactly one new mother to join the maternal
unit at each timestep, starting with a single mother in the unit. The system has a budget of five
monitoring devices. A device must be allocated to the new mother, and if all devices are already in
use, one must be removed from a current user. Once removed, a device cannot be reassigned to the
same mother. Each mother remains in the maternal unit for 10 timesteps, after which her vital sign
trajectory no longer contributes to the reward. Once a device is taken from a mother, we directly
sample her entire vital sign trajectory under passive action for the remaining timesteps she stays in the
maternal unit and compute all her future rewards. We can directly compute future rewards because
the mother will not receive the device again, so she will only undergo passive action in the remaining
time. This observation enables us to maintain a smaller observation space, as we only need to keep
track of the states of the mothers who own the device.

In this domain, the constraints can be written as ∥at ∈ Rd2∥1 ≤ B, ∀t , which d2 represents the
number of patients in the system at each time slot, and the 1-norm of the action vector must remain
within the budget B.

F.1.2 HEAT ALERTS DOMAIN

The heat alert issuance problem can be modeled as an MDP in the context of RL Considine et al.
(2025). The state at any given time, denoted as st, encompasses both exogenous and endogenous
factors. Exogenous factors include current weather conditions, such as the heat index, temperature,
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and humidity, which directly influence the risk of heat-related health issues. Endogenous factors
include the history of issued alerts, such as the number and timing of past alerts, their effectiveness,
and the remaining budget for the season. Additionally, the day of the week is considered, as public
responsiveness to alerts may vary between weekdays and weekends. The action space is binary, with
at ∈ Z2. The decision to issue a heatwave alert at = 1 or not at = 0 is constrained by the remaining
alert budget. If the budget is exhausted, no further alerts can be issued. The reward function is
designed to reflect the reduction in heat-related hospitalizations, which depends on the effectiveness
of the alert under current weather conditions. A Bayesian hierarchical framework could be employed
to model the health impact of alerts, capturing the uncertainty in their effectiveness. Importantly,
consecutive alerts tend to lose effectiveness, introducing a diminishing returns effect that must be
accounted for in the decision-making process.

The transition dynamics, P (st+1|st,at), describe how the system evolves over time. The next state is
influenced by weather trajectories, the action taken, and public responsiveness to alerts. For instance,
issuing an alert reduces the remaining budget and updates the history of issued alerts, while the
weather conditions may change independently. Public responsiveness may also vary based on the
frequency and timing of past alerts. A key constraint in this problem is the limited alert budget, which
necessitates strategic allocation of alerts throughout the season. The goal is to learn a policy π(st|at)
that maximizes cumulative rewards by effectively issuing alerts during severe heat conditions to
minimize hospitalizations, while conserving the budget for future use. This involves balancing
immediate health benefits against the potential need for alerts later in the season, addressing the
trade-offs between short-term and long-term outcomes.

For this domain, the budget constraints can be expressed as
∑h

t=1 at ∈ R ≤ B, where the total sum
of all actions over time horizon h must not exceed a budget threshold B.

F.1.3 BIN PACKING DOMAIN

We adopt the online stochastic bin packing environment from Balaji et al. (2019), which models
the sequential allocation of items with random sizes into fixed-capacity bins. At each time step t,
an item xt ∈ (0, 1) is sampled from a known distribution and must be immediately placed into one
of the currently open bins or into a new bin. Each bin has a fixed capacity B, and assigning an
item to a bin must satisfy the constraint that the total usage does not exceed B. The environment is
formulated as MDP where state st is a tuple containing the size of the arriving item xt and the current
fill levels of all open bins, action at selects a valid bin from the set of open bins or opening a new
bin; invalid actions (bins that would overflow) are masked. The transition probablity P (st+1|st,at)
determines update of the selected bin’s fill level, followed by stochastic sampling of the next item
xt+1. The reward function rt is defined as the negative incremental waste after placing item xt, i.e.,
the change in unused space across all open bins. The objective is to learn a policy π(at|st) that
minimizes the total accumulated waste over time. This domain reflects a broad class of real-world
resource allocation settings-such as server packing, memory management, or warehouse logistics,
where agents must make immediate, irrevocable decisions under hard capacity constraints.

For this domain, the budget constraints can be expressed as xt + Cat
≤ B, where at every time no

bin can exceed the capacity B, with Cat
being the current usage of bin at.

F.2 GYM ENVIRONMENTS AN LANGUAGE WRAPPERS

We implemented the WearableDevicesAssignment environments as gymnasium environ-
ments Towers et al. (2024), while the HeatAlerts domain was already available in this format. We
additionally created a LanguageWrapper Python class described in Table 2, which can be applied
to any gymnasium environment. Our code implementations can be applied to any environment
wrapped in this class.

F.3 RL IMPLEMENTATIONS, HYPERPARAMETERS AND SETTINGS

We implemented three main RL algorithms for the experiment sections: Attention-based SAC for
RBRL, numeric PPO, and Finetuning-based PPO. We based our implementation on the single-file,
high-quality implementations from the cleanrl project (Huang et al., 2022). For Attention-based
SAC, we required significant changes to keep track of the rule-augmented state space, as described in

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Method/Property Type Description
task text Property (Abstract) Returns a description of the task that the environment is solving.
action space text Property (Abstract) Returns a description of the action space of the environment.
state descriptor(obs, info) Abstract Method Converts the observation into a text description.
step(action) Method Wraps the step method of the environment adding the text representation to the state

space.
reset(seed, options) Method Wraps the reset method of the environment adding the text representation to the state

space.
action parser(s) Method Parses an action string and converts it into an appropriate format for the environment’s

action space.
(rule examples Property (Optional) Returns a list of string representation of rules.

Table 2: Methods and properties of the LanguageWrapper class

Section 4.4. Other major changes to the baseline SAC implementation (originally designed for Atari)
were more frequent target network updates and updating the actor and critic four times per iteration.
This was done to improve sample efficiency and cope with the slow generation by the LLM. Numeric
PPO was used practically without modification.

For the Finetuning-based PPO, we used low-rank adaptation (LoRA) Hu et al. (2021) with the
Transformers package and models hosted on Llama Hugging Face Wolf et al. (2020). We set the rank
to r = 1 and the adaptation weight to 2, resulting in only 0.8% trainable parameters (still an order of
magnitude larger than the Attention-based policy). Tables 3, 4, and 5 show the hyperparameters and
settings used in these implementations.

F.4 COMPUTING ENVIRONMENT

SAC attention can run on a regular laptop since most of the computation happens in the cloud through
API LLM calls, while the RL module is small and can run on personal CPUs. Nonetheless, the process
is bottlenecked by the speed of generation from the APIs. A full run of 2 million environment steps,
with parallelized API calls across four environments, took approximately four hours to complete.
One training cycle did not exceed $10 in API costs. However, all the experiments and development
incurred approximately $1,500 in API costs. As described in the main text, the LLM fine-tuning
experiments used an Nvidia A100 40GB GPU for each seed, training on three seeds for 18 hours
each. Computations were performed on a Slurm-based high-performance computing cluster.

Table 3: SAC Hyperparameters and Settings for RBRL.

Parameter Default Value Description
num envs 4 Number of parallel environments
total timesteps 500 Total number of environment steps
gamma 0.95 Discount factor γ
tau 1.0 Target smoothing coefficient
batch size 16 Batch size of sample from the replay memory
buffer size 4096 The replay memory buffer size
max episode steps 32 Episode truncation
learning starts 256 Timestep to start learning
policy lr 1× 10−4 Learning rate of policy network optimizer
q lr 1× 10−4 Learning rate of Q-network optimizer
actor updates 4 Number of actor updates per update cycle
critic updates 4 Number of critic updates per update cycle
target network frequency 64 The frequency for the target network update
alpha 0.01 Initial entropy regularization coefficient
autotune True Automatic tuning of the entropy coefficient
target entropy scale 0.89 Coefficient for scaling the autotune entropy target
dropout 0.05 The dropout rate
num rules 10 Number of rules for RBRL
llm ”gpt-4o-mini” LLM for generation
embedder lm ”m2-bert-80M-8k-retrieval” The LLM to use for embeddings
embed dim 768 Dimension of rule embeddings
hidden dim 16 Hidden dimension of networks
rule reward coef 0.1 The reward coefficient for the rules
num self attention layers 1 For the actor and critic
num cross attention layers 1 For the actor and critic
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Table 4: Numeric PPO Hyperparameters and Settings.

Parameter Default Value Description
total timesteps 50000 Total timesteps of the experiments
learning rate 2.5× 10−4 Learning rate of the optimizer
num envs 4 Number of parallel environments
num steps 512 Steps per policy rollout
anneal lr False no learning rate annealing
gamma 0.95 Discount factor γ
gae lambda 0.95 Lambda for Generalized Advantage Estimation
num minibatches 4 Number of mini-batches
update epochs 64 Number of update epochs
norm adv True Whiten advantages
clip coef 0.2 Surrogate clipping coefficient
clip vloss True Clipped loss for value function
ent coef 0.01 Coefficient of entropy term
vf coef 0.5 Coefficient of value function
max grad norm 0.5 Maximum gradient clipping norm
target kl None Target KL divergence threshold
hidden dim 16 Hidden dimension of networks
num hidden layers 2 For policy and critic networks
max episode steps 32 Episode truncation

Table 5: LLM PPO Finetuning Hyperparameters and Settings.

Parameter Default Value Description
total timesteps 500 Total number of timesteps
learning rate 2.5× 10−4 Learning rate of optimizer
num envs 4 Number of parallel game environments
num steps 32 Steps per policy rollout
anneal lr True Enable learning rate annealing
gamma 0.95 Discount factor γ
gae lambda 0.95 Lambda for Generalized Advantage Estimation
update epochs 4 Number of update epochs per cycle
norm adv True Advantages whitening
clip coef 0.2 Surrogate clipping coefficient
clip vloss True Clipped loss for value function
ent coef 0.01 Coefficient of entropy term
vf coef 0.5 Coefficient of value function
kl coef 0.05 KL divergence with reference model
max grad norm 0.5 Maximum gradient clipping norm
target kl None Target KL divergence threshold
dropout 0.0 Dropout rate
llm ”meta-llama/Llama-3.1-8B-Instruct” Model to fine-tune
train dtype ”float16” Training data type
gradient accumulation steps 16 Number of gradient accumulation steps
minibatch size 1 Mini-batch size for fine-tuning
max chunk size 256 Maximum length sequence for the back propagation
max episode steps 32 Maximum number of steps per episode

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 RBRL + ADVANCED REASONING LLM

We conducted a new experiment using the advanced reasoning baseline “o3-mini” from ChatGPT,
implemented within our MimicIII environment. This baseline has been trained with RL to solve
reasoning and mathematical problems more effectively. The results are shown in Table 6 below.

Here, we observe that using RBRL with the advanced reasoning baseline helped to almost match
the performance of the Oracle policy in very few environment steps, illustrating the compatibility of
RBRL with reasoning-based LLMs. However, we remark that relying on o3-mini resulted in almost
10x higher cost and 5x slower inference than 4o-mini used for most experiments. As noted in the
manuscript, our total cost for the experiments was approximately 2000, which would increase greatly
with o3-mini. Hence, we focused on improving cost-effective LLMs.
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Table 6: RBRL + Advanced Reasoning on MimicIII (Av. Reward)

Algorithm @500 steps @2.5k steps @100k steps (working oracle)
PPO −0.66± 0.12 −0.55± 0.07 −0.14± 0.06
SAC −0.85± 0.12 −0.81± 0.15 –
RBRL (GPT–4o mini) −0.70± 0.07 −0.33± 0.03 –
RBRL+ AdvancedReasoning (GPT–o3 mini) −0.29± 0.05 −0.16± 0.05 –

G.2 COMPARISON OF OTHER LLM FINETUNING METHODS FOR MDPS

In the main paper, we compared RBRL with token-wise LLM finetuning using LORA in the MimicIII
domain. We further implemented the methodology described by Zhai et al. (2024) which provides
a variation of the finetuning PPO methodology in which the log probability of an action is first
aggregated across all tokens and no reference model reward (KL) divergence is used. The authors
also introduce a weight coefficient λcot to reduce the weight of the COT tokens in the log-probability
computation. The results are shown in Table 7. The best method was still RBRL, while the second
best was the finetuning baseline at the action level with λcot = 1.0.

Table 7: New baseline on MIMICIII with Llama 3.1 8B∗ (Av. Rewardx

Baseline Av. Return @ 2.5k
Finetuning – token level −0.85± 0.21
Finetuning – action level (λcot = 1.0) −0.46± 0.09
Finetuning – action level (λcot = 0.3) −0.90± 0.12
RBRL∗ −0.36± 0.05

G.3 CONSISTENCY OF EXPLANATIONS

A central claim of our work is that RBRL generates consistent explanations. Following the discussion
in the literature (Lyu et al., 2024; Jacovi & Goldberg, 2020), we define a consistent explanation
as one that is causally linked to the decision process. In RBRL, this consistency is achieved by
design through a strict, decomposable pipeline: (observation → rule → action). Our
key argument, which we evaluate empirically below, is that the state and the selected rule alone
are sufficient to determine the action taken, regardless of the intermediate reasoning trace used to
generate the rule. The rule itself serves as the true, functional explanation for the agent’s decision.

Action selection comes from the rule, not the reasoning trace We show that including or not
including the reasoning trace does not alter the action decision, which is based on the rule. For
this purpose, we use a pretrained RBRL policy to collect tuples (state, reasoning, rule,
action). Next we evaluate how much the action selection changes when including the reasoning
trace in addition to the rule in the action prompt.

Metrics. We compute the agreement score as the fraction of times that the action selected without
including the LLM reasoning in the action prompt is the same as that when including it. A higher
value means the rule determines the action, not the LLM reasoning output. All experiments are with
gpt-4o-mini as in the main paper. The scores are averaged over 100 environment steps with
standard errors.

Table 8: Consistency of action selection

Environment Agreement score ± SE
HeatAlerts 0.99 ± 0.010
Uganda 0.92 ± 0.027
Mimic III 0.92 ± 0.027
BinPacking 0.97 ± 0.017
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Our results confirm that the action consistency comes mainly from the state and rule, not the LLM
reasoning, further showing that LLM self-explanation is not the core of RBRL. In terms of Jacovi
& Goldberg (2020), RBRL is more closely related to the class of methods where, “the explanation
[rule] is itself a model capable of making decisions (e.g., decision trees or rule lists).”

G.4 EVALUATING THE TRANSLATION FIDELITY FROM RULES TO EXPLANATIONS

Having established in our previous experiment that the rule is the true causal component of the
decision, a critical next question arises: Does the final, user-facing natural language explanation
translate all decision-relevant information from that rule? An ideal explanation should suffer no
information loss in this translation, meaning it should be self-contained and sufficient for an observer
to deduce the action that was taken.

To verify this, we conduct an action-prediction experiment. We provide an auxiliary LLM with the
agent’s full explanation but mask the final action (e.g., “...Thus, I concluded XXX.”). The LLM’s task
is to predict the masked action. High prediction accuracy serves as a strong proxy for high-fidelity
translation, indicating that the explanation successfully preserves the action-predictive information
from the original rule.

An example of the experimental setup is shown in Table 9. Figure 7 presents the results of this
evaluation across three domains: HeatAlerts, Uganda, and MimicIII. The plot compares the
classification accuracy and F1 score of a binary classifier trained to predict the agent’s actions solely
from the masked explanations. We benchmark RBRL against two baselines: CoT, which produces
naive rationale via chain-of-thought prompting, and TBRL, which incorporates optimization over
toughts. Across all domains, RBRL consistently outperforms both baselines with higher accuracy
and F1 scores. In particular, the large margin between RBRL and CoT highlights the importance
of grounding explanations in decision-consistent rules rather than free-form text. The error bars
represent 95% confidence intervals obtained via bootstrapping, demonstrating statistical robustness.
These results confirm that RBRL’s explanations are more than just plausible narratives; they are
reliable translations of the agent’s underlying decision mechanism, preserving enough information to
be considered truly consistent and trustworthy.

Table 9: Examples of Masked Explanations (HeatAlerts)

Agent Explanation
CoT Reasoning I observed a heat index of 100 F, a warning streak of 6, and a remaining budget

for 2 warnings. Forecast shows high temperatures next week. I concluded XXX.
RBRL I observed a heat index of 100 F with 6 warnings in 14 days. Reasoning that

excessive warnings lead to fatigue, I applied a rule to not issue warnings if
warnings in the last 7 days ≥ 5 and budget remained. Thus, I concluded XXX.

Figure 7: Consistency of explanation as measured by the action prediction task.
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G.5 STUDY ON RULE DIVERSITY

As noted in Section E, we only require that at least one candidate rule yields the optimal actions
with high probability; non-optimal actions are irrelevant. We conducted an experiment to assess this
assumption in practice.

Setup. We use an auxiliary oracle numeric SAC policy trained for 100k steps per environment. The
metric is the percentage of times the proxy optimal action is recommended by at least one rule. The
experiment is repeated for 100 transitions.

Figure 8: Rule diversity verification.

Figure 8 illustrates the impact of increasing the number of rules on the match ratio between rule-based
decisions and the reference RL agent actions across four environments: HeatAlert, MimicIII,
Uganda, and BinPacking. The match ratio serves as a proxy for rule-to-action consistency,
reflecting how well the selected rules align with the RL agent’s behavior. Across all environments,
increasing the number of candidate rules improves the match ratio, indicating that greater rule diversity
enhances the likelihood of covering the correct action. The shaded regions represent variance across
multiple runs, highlighting robustness trends in each domain. In summary, as the number of rules
generated increased, the probability of generating an optimal rule candidate increased, thereby
increasing the performance guarantees of RBRL as discussed in section 5.

G.6 ADDITIONAL RESULTS FOR GENERAL RL DOMAIN

Table 10: Average Return on general RL domain: BabyAI

Baseline BabyAIGotoObj BabyAIGotoLocal
CoT (GPT-4o mini) 0.12± 0.12 0.12± 0.17
RBRL* @ 5k steps (GPT-4o mini) 0.46± 0.17 0.32± 0.11
SAC @ 5k steps 0.27± 0.22 0.16± 0.18

Besides the three aforementioned resource-constrained allocation domains, we further evaluate our
RBRL in the more general standard RL settings. We applied our methodology directly to the widely
used BabyAI domain Chevalier-Boisvert et al. (2018). The environment was originally proposed
to investigate sample efficiency and generalization in RL. We run on two environments “BabyAIG-
otoObj”, “BabyAIGotoLocal” environments using the standard wrapper for full observability are
included in the official wrapper in the minigrid Python library. Improved performance for these two
general RL domains can be found in Table 10. Numeric RL baselines can perfectly solve these tasks
albeit requiring potentially millions of observations Chevalier-Boisvert et al. (2018). Here we focus
on a small sample regime. We do not position our contribution as a general method for RL and nor
claim any superiority over state of the art general-purpose RL.
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H ADDITIONAL SURVEY RESULTS

Figure 9 illustrates the results of a human survey conducted to evaluate the quality of explanations
generated by our method compared to alternatives. A total of 21 valid responses were collected for
the HeatAlert environment (Figure 9a), and 20 valid responses were gathered for the Uganda
environment (Figure 9b). As shown in the figures, our method was favored by the majority of
participants across all cases. In the HeatAlert environment, the preference for our approach is
evident, although there is a small percentage of tied and “Not Preferred” responses. In contrast, the
preference for our method is even more pronounced in the Uganda environment, with a significantly
higher number of participants selecting “Ours Preferred.” These results demonstrate the effectiveness
of our approach in generating explanations that resonate better with human users, particularly in the
Uganda domain.

Figure 10 illustrates the survey outcomes obtained by querying LLMs 20 times for each case in
the HeatAlerts (Figure 10a) and Uganda (Figure 10b) environments. To ensure variability, the
LLM’s sampling temperature was controlled, enabling randomized responses for each trial. Similar to
the human survey results, our method (“Ours Preferred”) is overwhelmingly favored across all cases
in both domains. Notably, the consistency of “Ours Preferred” responses highlights the effectiveness
of our approach in generating explanations that align well with the LLM’s evaluation criteria, further
validating the robustness of our methodology.

Figure 11 illustrates the survey results evaluating hallucination occurrences across two environments
(Uganda and HeatAlert) for three explanation types: Chain of Thought (CoT), Rule-Bottleneck
Reinforcement Learning (RBRL), and None (indicating no explanation).

In Figure 11a, the results from the human survey indicate that CoT-based explanations had a
significant proportion of hallucinations, particularly in the Uganda environment, where it accounted
for 42.4% of responses. RBRL explanations showed markedly fewer hallucinations in both domains,
highlighting its robustness. A notable percentage of responses for None indicate scenarios where
explanations were either absent or irrelevant. In Figure 11b, results from the LLM survey further
emphasize the trends observed in the human survey. Hallucination rates for CoT were even higher in
the Uganda environment (81.7%), whereas RBRL explanations exhibited almost no hallucinations
across both domains. In the HeatAlert environment, the absence of explanations (None) led to
the highest percentage of hallucinations, underlining the importance of well-structured, rule-based
explanations like RBRL. Need to mention that the plausibility (human preference) of explanations of
RBRL shown in the human survey was not conditional on seeing the CoT reasoning traces. These
results collectively demonstrate that the RBRL framework significantly mitigates hallucinations,
providing more accurate and reliable explanations compared to other methods.

(a) HeatAlert (b) Uganda

Figure 9: Results from human surveys conducted in the HeatAlert (a) and Uganda (b) environ-
ments. 21 participants provided feedback for the HeatAlert domain, while 20 valid responses
were collected for the Uganda domain. The results indicate that our method (“Ours Preferred”) was
favored by a majority of participants, particularly in the Uganda domain, where the preference is
more pronounced.
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(a) HeatAlert (b) Uganda

Figure 10: Survey results generated by querying LLMs 20 times for each case in the HeatAlert
(a) and Uganda (b) environments. By varying sampling temperatures, randomized responses were
collected. The results show that our method (“Ours Preferred”) consistently outperforms alternatives
across all cases, highlighting its robustness and alignment with the evaluation criteria of the LLMs.
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(a) Results from the human survey, showcasing the proportion of hallucination detected across three categories:
CoT, RBRL, and None. In both domains, hallucinations were most frequently identified in None, with RBRL
showing significantly fewer instances.

(b) Results from the LLM-based survey, where hallucination detection was assessed through multiple iterations
of LLM evaluation. CoT exhibited higher hallucination rates in the Uganda domain, while RBRL demonstrated
minimal hallucination occurrences in both domains.

Figure 11: Survey results for hallucination detection across the HeatAlert and Uganda environ-
ments.

I PROMPT TEMPLATES AND RULE EXAMPLES

I.1 PROMPT FORMAT

In this section, we illustrate the prompt format used in our RBRL for generating thoughts, rules,
actions, rule scores, and explanations in Figure 12.
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First, reason about what elements should be considered when choosing the optimal action. 
Your response should consist of a single short paragraph that reflects on the consequences, 
benefits, and drawbacks of each action in the current state.

Generate Thoughts

Now, suggest {num_rules} rules that could be useful to make an optimal decision in the 
current state. For each rule, provide the explanation of why it is important to consider it at the 
given state. Each rule should be in machine-readable JSON Lines format. Each line should 
follow the following schema:

{'background' str, 'rule': str, 'state relevance': str, 'goal relevance': str}
- The 'background' should a brief introduction and motivation to the focus of the rule.
- The 'rule' should be a statement of the form '[do/select/prioritize] [if/when/condition]' where 
the condition must be relevant to the current state.
- The 'state relevance' should explain why the rule applies to the current problem state.
- The rule alone should be sufficient to deduce the optimal action that should be taken in the 
current problem state.
- Start each line with the character '```- {.

Generate Rules

Below is/are a prioritization rule/rules to make an optimal decision in the current state:
[selected rule/rules]

Now, choose the optimal action given the current problem state and this/these prioritization 
rule/rules. Your answer must consist exclusively of one of the following actions:

Possible actions:{description about action space}
You cannot refuse to respond. Do not provide additional information or context for your 
answer, only the action.

Generate Actions

You chose action {outputs[‘action’]} in the current problem state. Explain why you chose the 
optimal action based on the conversation and history. Your response should follow the
template: “I observed… I used a rule stating… I concluded…”

Generate Explanation

To make a decision in the current state, the following rule/rules was/were selected:
{rules}

You will now be given a question you need to answer with a simple ‘yes’ or ‘no’. 
q1 = “Is/are the rule/rules **alone** sufficient to understand the optimal action/decision that 
the system should take in current the problem state?”
q2 = “Is the condition in the rule/rules actionable and complete in the current problem state 
(containing sufficient detail about the current problem state without unnecessary 
information)?”
q3 = “Did the selected rule/rules sufficiently help to understand the previous decision without 
contradictions?”
Answer the following questions with a simple 'yes' or 'no' without additional information or 
justification. Your response should be a single word.

Generate Rule Scores

Figure 12: Prompts template for generating thoughts, rules, actions, rule scores, and explanations.

I.2 RULE EXAMPLE

In this section, we provide some rule examples for each domain in Figure 13.
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Example 1: Wearable Device Assignment
- Rule1: “Prioritize reallocating devices from patients who have worn the device for the 

least amount of time and have stable vital signs.”
- Rule2: “Select to reallocate devices from patients with less critical vital signs to those 

with high pulse rates or low SPO2.”
- Rule3: “Reallocate devices from patients whose mean vital signs are within normal 

ranges to those whose mean vital signs are abnormal.”
- Rule4: “Select to reallocate devices from patients with lower standard deviation in 

vital signs, as they are less likely to experience sudden changes.”
- Rule5: “When a new patient arrives, reallocate devices from patients who have shown 

the least improvement over time.”

Example 2: Heat Alert Issuance
- Rule1: “If the current heat index is above the average heat index of the past week, 

issue a warning.”
- Rule2: “If there have been 5 or more warnings in the last 14 days, do not issue a 

warning unless the heat index exceeds 100 F.”
- Rule3: “If the heat forecast for the next day exceeds 98 F, issue a warning today.”
- Rule4: “If today is a weekday and the heat index is above 95 F, do not issue a 

warning unless the forecasted heat index for the weekend exceeds 100 F.”
- Rule5: “If the remaining number of warnings is 5 or fewer, prioritize issuing a 

warning when the heat index exceeds 98 F.”

Example 3: Bin Packing Allocation
- Rule1: “If the current item is less than half the bin capacity, evaluate existing bins 

first before creating a new one.”
- Rule2: “When possible, open a new bin instead of using a level that has already been 

used heavily.”
- Rule3: “Select a bin such that the remaining space is closest to the bin capacity after 

placing the item.”
- Rule4: “Always check if any bins are completely empty before making any decisions.”
- Rule5: “If any bin can accommodate the item exactly without waste, prioritize that 

choice.”

Rule Examples

Figure 13: Rule examples for the considered two domains.

J SURVEY EXAMPLE

In this section, we present a survey example from the Wearable Device Assignment domain.
The survey for the HeatAlert domain follows the same format and can be easily adapted by
substituting the task and corresponding actions. For brevity, we include only one example case from
the Wearable Device Assignment domain.

Task: You are tasked with optimizing the allocation of limited vital sign monitoring devices among
patients. Devices improve vital signs and prevent abnormalities, but their limited availability requires
reallocating them from stable patients to higher-risk incoming patients, who must always receive
a device. The normal range of vital signs are provided in Figure 14. The goal is to minimize costs
associated with abnormal vital signs, where costs are calculated exponentially based on deviations
from predefined thresholds. Wearing a device improves abnormal vital signs with a 70% success rate.

Possible actions: Choose the id of the device that will be reallocated to the new incoming patient.
Your answer should be a single integer i from 0 to 4 (the number of devices) such that:
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• Always choose a free device if available

• If no free device is available, then choose device i whose current patient is at least risk or
would benefit less from wearing the device.

Figure 14: Normal range of vital signs.

In the following, you will be presented with three cases. Each case includes two explanations. Please
read the text for each case carefully and answer the questions provided.

Case 1: Current state of the decision problem:
Number of devices: 5
Number of free devices: 1
IDs of free devices: 3

Device 0: Device is currently assigned to a patient with the following description:
*Timesteps wearing the device*: 1
*Pulse rate* - Last value: 95.22 - Mean: 105.12 - Standard deviation/volatility: 10.56
*Respiratory rate* - Last value: 20.14 - Mean: 20.54 - Standard deviation/volatility: 0.64
*SPO2* - Last value: 98.42 - Mean: 97.89 - Standard deviation/volatility: 0.88

Device 1: Device is currently assigned to a patient with the following description:
*Timesteps wearing the device*: 1
*Pulse rate* - Last value: 89.55 - Mean: 81.86 - Standard deviation/volatility: 8.55
*Respiratory rate* - Last value: 14.85 - Mean: 20.81 - Standard deviation/volatility: 3.40
*SPO2* - Last value: 95.31 - Mean: 96.22 - Standard deviation/volatility: 1.38

Device 2: Device is currently assigned to a patient with the following description:
*Timesteps wearing the device*: 1
*Pulse rate* - Last value: 106.05 - Mean: 105.09 - Standard deviation/volatility: 2.91
*Respiratory rate* - Last value: 19.34 - Mean: 20.80 - Standard deviation/volatility: 2.69
*SPO2* - Last value: 99.56 - Mean: 99.36 - Standard deviation/volatility: 0.27

Device 3: Device is currently free.

Device 4: Device is currently assigned to a patient with the following description:
*Timesteps wearing the device*: 1
*Pulse rate* - Last value: 80.02 - Mean: 79.03 - Standard deviation/volatility: 1.58
*Respiratory rate* - Last value: 22.71 - Mean: 21.31 - Standard deviation/volatility: 5.45
*SPO2* - Last value: 99.61 - Mean: 99.86 - Standard deviation/volatility: 0.14

Explanation A: I chose to reallocate device 4 because the patient currently using it has a stable
pulse rate (80.02) and a high SPO2 level (99.61), indicating they are less at risk and may not require
continuous monitoring. In contrast, reallocating this device allows for an incoming patient, who
likely has more urgent health needs, to receive the device, thereby optimizing the overall allocation
of resources to those who require immediate attention.

Explanation B: I observed that device 3 is currently free, and there is an incoming patient who
requires immediate monitoring to prevent potential deterioration in their health. I used a rule stating
that all incoming patients must be assigned a device, with priority given to those at risk. I concluded
that assigning ‘device’: 3 to the incoming patient ensures timely and necessary vital sign monitoring,
aligning with the prioritization principle.

Q1. Do Explanation A and Explanation B appear the same or different to you?
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□ Same (Skip Q2 and go to Question Q3)
□ Different

Q2. Which explanation do you find better?

□ Explanation A
□ Explanation B

Q3. Do the explanations contain any hallucinations?

□ Both
□ Only Explanation A
□ Only Explanation B
□ None

33


	Introduction
	Related Work
	Preliminary, Key Concepts, and Problem Formulation
	Preliminary: Resource-Constrained Allocation
	Key Concepts for Rule-based LLM Agents
	Problem Statement

	Rule-Bottleneck Reinforcement Learning (RBRL)
	Rule Set Generation
	Rule Selection
	Decision, Rule Reward, and Explanation
	Policy Update through RL

	Performance Guarantee
	Experiments & Human Survey
	Environment Reward Optimization
	Human Survey and Explainability

	LLM Usage Disclosure
	Related Work
	Impact Statement and Limitations
	Algorithmic Details
	Mathematical Details
	Proof of Theorem 4.1
	Proof of Proposition 5.1
	Proof of Theorem 5.3

	Experiment Setup
	Environments Details
	Wearable Device Assignment Domain
	Heat Alerts Domain
	Bin Packing Domain

	Gym environments an Language Wrappers
	RL implementations, hyperparameters and Settings
	Computing environment

	Additional Experimental Results
	RBRL + Advanced Reasoning LLM
	Comparison of Other LLM Finetuning Methods for MDPs
	Consistency of Explanations
	Evaluating the Translation Fidelity from Rules to Explanations
	Study on Rule Diversity
	Additional results for General RL domain

	Additional Survey Results
	Prompt Templates and Rule Examples
	Prompt Format
	Rule Example

	Survey Example

