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LLM-based agent empowered with geometric deep learning, data-oriented approaches
and quantum chemistry to unravel synchrotron data of operando catalysis
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1. Introduction
Catalytical processes are at theheart of the chemi-

cal industry. In turn, X-ray Absorption Spectroscopy
(XAS) is a powerful and unique tool for analyzing
the electronic and structural properties of materi-
als, particularly for elucidation the oxidation states
and local atomic environments of catalysts’ active
sites under working conditions (operando). How-
ever, the interpretation of XAS spectra can be com-
plicated ill-posed inverse problem. Therefore, usu-
ally the complex interplaybetweenchemical reason-
ing, first-principles calculations and data-oriented
approaches are needed to lift the conundrum of
the catalyst action and poisoning mechanisms. The
advent of autonomous LLM-based (Large Language
Model) agents has already proven to be superior
in tasks where planning, reasoning and tools’ call-
ing is needed. In this work we present the devel-
opment of the LLM-based agent for automatic and
robust XAS data analysis. We empower the agent
developed with multiple tools, such as the use of
the PyFitIt framework for data-oriented machine
learning XAS analysis, multiple originally measured
and public experimental XAS reference databases
of well-defined species from the whole periodic ta-
ble, theoretical database of single-site catalysts, E(3)-
equivariant deep learningmodel for rapidprediction
and quantum chemistry-informed structure refine-
ment (Fig. 1). We evaluate each of the developed tool
and test model in real-world tasks for operando cata-
lysts’ synchrotron experiments, namely industrially
relevant Philips, Ziegler-Natta andhydroformulation
Rh/NH3 systems. It is the first time when the prob-
lem of XAS data analysis is solved within one tool
for all absorption edges of every element of the peri-
odic table, drastically boostingboth synchrotron and
catalysis communities. Developed models are open-
source and made available withing the Telegram bot
services.

Fig. 1: LLM-agent for XAS spectra unraveling
scheme

2. Methods
2.1 LLM agent and PyfitIt approach
Developed LLM-based agent for automatic XAS

data analysis is implemented as LLM-model agnos-
tic (Main models used are LLaMa3.2-40B-Instruct
and DeepSeek-r1) agent with tool calling options and
code-based actions, in which it integrates full range
of the specific tools needed to analyze XAS data.
The bottlenecks in the automatic processing of ex-
perimental data are the lack of chemically diverse
XANES reference libraries and the systematic differ-
ences between theory and experiment. Therefore,
compiling experimental reference libraries across
the periodic table and rational application of ML
methodology to small (in terms of data science)
training data sets becomes increasingly important.
This work revises the classical XANES fingerprint
analysis by database augmentation, feature extrac-
tion, cross-validation, and uncertainty analysis au-
tomated within the PyFitIt framework to ensure the
balance of ML methods and domain-specific knowl-
edge.

Fig. 2: Data-oriented cross-element and cross-edge
approach to the XAS data analysis withing PyFitIt

2.2 Database compilation
The integration of data-driven methodologies in

XAS has become indispensable for spectral interpre-
tation. We use the Materials Data Repository (MDR)
providing experimental XAS data of 2,500 spectra
for almost all absorption edges and each element in
the periodic table. Moreover we add to it our in-
house collected 300 spectra of well-defined (mean-
ing that structure of each was approved by NMR, IR,
scXRD techniques) both molecular and bulk species
of Cr, V, Rh, Pd, Pt and Ru. All experimental spec-
tra were additionally labeled with through labori-
ous manual work of several XAS specialists to en-
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sure data quality. The theoretical database we calcu-
lated contains 60,000 spectra of 3d and 4d transition
metal complexes based on tmQM database and full
multiple scattering approach with self-consistent
field calculations. Integration of this library into
autonomous XAS analysis assistant aims to refine
structural hypotheses iteratively using chemical rea-
soning of LLM.

2.3 DeepFit approach
To further advance XAS analysis capabilities,

we developed a machine learning approach for
rapid XAS spectra prediction and chemically- and
physically-informed structure refinement. The
model of E(3)-equivariant neural network was
trained to predict theoretical XAS spectra directly
from atomic structure. In conjunction with quan-
tum chemical estimations of structure stability such
approach enables to fit material’s atomic structure
to experimental spectra in differentiable manner
combines both chemical and spectroscopic insights.
We used the E(3)-equivariant convolutional graph

neural network from the e3nn library to approxi-
mate structure-spectrum mapping with forces from
semi-empiric quantum chemistry xTB code.

Fig. 3: DeepFit approach

Given feature representations of n atoms X =
(x1, x2, ..., xn) ∈ RF , which are at positions R =
(r1, r2, ..., rn) ∈ R3. Thus, fitted atomic structure
R∗ can be obtained by minimizing the deviation be-
tween the spectrumpredicted by the neural network
and the ground truth. Due to the chemical rele-
vance of the desired structure, the optimization re-
sult should be not only the minimum of the devia-
tion between spectra (first term in the eq. 1), but also
the minimum on the potential energy surface (sec-
ond term in the eq. 1). Mentioned optimization task
is given as:

R∗ = argmin(

∫
[F (R, k)− χ(k)]2dk + λE(R)), (1)

Where χ(k) is a ground truth (experimental) spec-
trum and F (R, k) is an output of the model, E is
total electronic energy of the system and λ is some
positive controllable parameter. The usage of a neu-
ral network allows us to estimate the gradient of the
optimized function to the coordinates of atoms in
analytical way. Nuclear gradients calculated by the
quantum-chemical method are used. Thus overall

gradient, expressed as:

∂(
∫
[F (R, k)− χ(k)]2dk)

∂R
+ λ

∂E(R)

∂R
(2)

3. Conclusion
In this study, we have successfully developed

an innovative LLM-based agent that integrates ad-
vanced geometric deep learning techniques, data-
oriented approaches, and quantum chemistry prin-
ciples to enhance the automatic and robust anal-
ysis of X-ray Absorption Spectroscopy (XAS) data
in the context of operando catalysis. Our ap-
proach addresses the complexities associated with
interpreting XAS spectra by combining robust ma-
chine learning frameworks, comprehensive refer-
ence databases, domain-specific tools, and cutting-
edge predictive models inside the LLM-autonomous
agent as a step forward toboost spectroscopy andML
techniques in catalysis.
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