
A Experiments

A.1 Experimental Details

All the robotic experiments reported in Section 4.2 used 5 initial random samples before starting the
Bayesian optimization loop. For the orientation experiment, the parameters of the cost f(q) were
fixed to q̃ = (0.8 0.6 0 0)

T, wq = 1.0, wτ = 1e−4, and wM = 1. We used a velocity-based
orientation controller θ̇r = J(θ)†

[
q̇d + Kp Logq̃(q)

]
, with θ being the robot joint position, J(θ)

representing the robot Jacobian, and † denoting the pseudo-inverse operator. Furthermore, Log(·)
measures the quaternion tracking error on the sphere manifold, and Kp = 6.0I4.

For the manipulability optimization task, the weights in the cost f(M̂) were set to w...
p = 0.1, wM =

0.1, and wt = 15. We used velocity-based control of the form θ̇r = J(θ)† [ẋd + Kp(xd − x)] +

N(θ)J (M)†(3)
[
KMvec

(
Log

M̂
(M)

)]
, with θ and x denoting the robot joint and Cartesian position,

while J(θ) is the robot Jacobian and N(θ) is the Jacobian nullspace. Moreover, Log(·) measures
the manipulability tracking error on the SPD manifold, which is mapped to joint velocities via the
pseudo-inverse of the manipulability Jacobian J (M). In addition, vec(·) denotes the vectorization
of a matrix, and (·)(3) denotes the 3-mode matricization of a tensor. We refer the interested reader
to Jaquier et al. [26] for a complete description of the manipulability controller. The position and
manipulability tracking gains, for the main and secondary control tasks, correspond to Kp = 75I2
and KM = 7.0I3.

Finally, for the simple path planning problem, we considered a 9× 9 grid as a discretization of the
robot planar environment, which included a circle-shaped obstacle of radius 1 centered in (4, 4). The
nodes inter-distance was 1 unit. The simple graph to optimize consisted of a single branch of 5 nodes
connecting the robot start location to the goal. The parameters of the cost f(x1,...,m) were fixed to
wg = 1, and wd = 25.

A.2 Additional Benchmark Experiments

Figure 4 shows the performance results for additional benchmark functions projected onto the
manifolds S3, S5, SO(3), S2++, and H3. The left graphs show the evolution of the median for the
different Bayesian optimization approaches, and the right graphs display the distribution of the
logarithm of the simple regret of the final recommendation xN after 200 iterations. Similarly to the
experiments presented in the main paper, we observe that geometry-aware algorithms generally match
or outperform their Euclidean counterparts, resulting in better solution quality, faster convergence
rate, and lower variance. These differences are more pronounced in higher dimensions, for instance
when comparing S5 against to S3, and for manifolds which differ significantly from the Euclidean
space.

A.3 Additional Robotics Experiments

Figure 5 shows the performance results for two additional robotics experiments. Similarly to the
first experiment of Section 4.2, we first use Bayesian optimization as an orientation sampler, where
a velocity-controlled robot samples an orientation reference x = q̂ around a prior orientation
q̃. The objective of the robot is to minimize the error between the prior and the current end-
effector orientation with low joint torques and an isotropic manipulability ellipsoid, i.e., f(q) =∑
wq distS3(q̃, q) + wτ‖τ‖22 + wMcond(M), where q is the current end-effector orientation, τ

is the joint torques, and cond(M) is the condition number of the velocity manipulability ellipsoid.
The parameters of the cost f(q) were fixed to q̃ = (0.8 0.6 0 0)

T, wq = 1.0, wτ = 0.1, and
wM = 1e−4.

Next, we consider a task-compatible manipulability optimization scenario, similar to the second
experiment of Section 4.2. Namely, a 8-degree-of-freedom planar robot is required to track a desired
Cartesian velocity trajectory leading to a vertical line, while tracking a desired manipulability ellipsoid
in its nullspace. The optimizer aims at finding the desired manipulability x = M̂ ∈ S2++ so that the
end-effector acceleration p̈ is minimized and the robot tracks the desired manipulabity with a high
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Figure 4: Logarithm of the regret for a set of additional benchmark test functions on the manifolds S3, S5,
SO(3), S2

++, and H3, for both geometry-aware and Euclidean Bayesian optimization algorithms.
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Figure 5: Logarithm of the regret for the additional orientation, and task-compatible manipulability problems,
for both geometry-aware and Euclidean Bayesian optimization algorithms.

precision. This leads to the cost function f(M̂) =
∑
wp̈‖p̈‖2 + wM distS2

++
(M, M̂) with M the

current manipulability. Here, the weights are given the following values wp̈ = 0.1 and wM = 1.0.

As shown in Figure 5, geometry-aware Bayesian optimization algorithms match or outperform their
Euclidean counterpart, mirroring the results presented in the main paper. The performance differences
are more pronounced in the experiment presented in Section 4.2 compared to this second orientation
experiment due to the uneven landscape of the cost function of the former experiment. The results of
the manipulability experiment are similar to those presented in Section 4.2. The naïve Riemannian
squared exponential kernel—which for certain length scales may become ill-defined—performs
competitively in this setting. This may occur because of the low dimensionality of the problem, and
because small length scales keep it out of problematic situations.

B Theory

B.1 Matérn kernels on general Riemannian manifolds and their connection to heat kernels

The theoretical framework defining appropriate notions of stochastic partial differential equa-
tions (SPDEs) and Matérn kernels as kernels of the unique solutions of these equations was presented
in Appendix D of Borovitskiy et al. [8] for the case of compact Riemannian manifolds. In the
non-compact case, the technique that yields explicit solutions of the SPDEs as series depending on
Laplace–Beltrami eigenpairs does not apply, but the implicit definition of Matérn Gaussian processes
and the corresponding kernel remain valid under mild regularity conditions.
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Specifically, if we restrict our attention to connected complete Riemannian manifolds of bounded
geometry, which is indeed a rather nonrestrictive assumption, then one can generalize both the
functional calculus formalism and the definitions of the appropriate function spaces needed to make
the SPDEs rigorously defined. This can be done by means of general spectral theory, which is
reviewed by De Vito et al. [12]. The theory of Borovitskiy et al. [8] in this general setting shows
that the Riemannian Matérn and squared exponential kernels are the reproducing kernels of Sobolev
and diffusion spaces studied by De Vito et al. [12]. Because of this, Theorem 8 from the latter
work directly implies that the Riemannian squared exponential kernel as defined by (the generalized
theory of) Borovitskiy et al. [8] coincides with the heat kernels as fundamental solutions of the heat
(diffusion) equation on the Riemannian manifold. This is a crucial point for this work, since it allows
us to connect to the existing literature on heat kernels in some interesting non-compact cases.

B.2 Matérn kernels as integrals of heat kernels

By Appendix B.1, Riemannian squared exponential and Matérn kernels are well defined on sufficiently
regular non-compact manifolds, and Riemannian squared exponential kernels coincide with heat
kernels, which are widely studied in the mathematics literature even in non-compact cases. Because
of this, it is natural to seek a way to express Riemannian Matérn kernels in terms of the corresponding
heat kernels.

In the Euclidean case, this is given by equation (2), which we prove in Appendix B.2.1. A similar but
slightly different relation holds in the compact Riemannian case, which we prove in Appendix B.2.2.
For the general Riemannian case we adopt (2) as the definition of Matérn kernels. We prove that the
kernels defined this way are positive definite in Appendix B.2.3.

B.2.1 Euclidean Matérn kernels as integral of heat kernels

The Euclidean Matérn and squared exponential kernels are given by the following formulas [39]:

kν,κ,σ2(x,x′) = σ2 21−ν

Γ(ν)

(√
2νρ/κ

)ν
Kν

(√
2νρ/κ

)
, k∞,κ,σ2(x,x′) = σ2e−

ρ2

2κ2 , (10)

where ρ = ‖x− x′‖ denotes the distance between a pair of inputs. These kernels may be represented
as inverse Fourier transforms of the corresponding spectral densities Sν,κ,σ2 [39], that is

kν,κ,σ2(x,x′) =

∫
Rd
Sν,κ,σ2(‖ξ‖)e2πi〈x−x

′,ξ〉 dξ. (11)

This covers both cases, whether ν is finite or infinite. The respective spectral densities are given by

Sν,κ,σ2(λ) = σ2

denote by 1/Cν

2dπd/2Γ(ν + d/2)(2ν)
ν

Γ(ν)κ2ν

(
2ν

κ2
+ 4π2λ2

)−ν− d2
, (12)

S∞,κ,σ2(λ) = σ2 (2πκ2)d/2

denote by 1/C∞

e−2π
2κ2λ2

. (13)

Here d is the dimension of the Euclidean space under consideration and Cν , C∞ are the normalizing
constants that ensure kν,κ,σ2(x,x) = σ2. Note that, despite this notation, they depend on both ν
and κ.

We start verifying equation (2) by noting that by Gradshteyn and Ryzhik [18], Section 3.326, Item 2
we have ∫ ∞

0

une−au du = Γ(n+ 1)a−n−1. (14)
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Substituting n = ν + d/2 − 1 and a = 2ν/κ2 + 4π2λ2 into this equation and then performing a
simple rearrangement of terms, we get the following expression for Cν/σ2Sν,κ,σ2(λ):

(
2ν

κ2
+ 4π2λ2

)−ν− d2
= Γ(ν + d/2)−1

∫ ∞
0

uν+
d
2−1e−

2ν
κ2
ue−4π

2λ2u du, (15)

= (4π)
− d2 Γ(ν + d/2)−1

∫ ∞
0

uν−1e−
2ν
κ2
u(4πu)

d
2 e−4π

2λ2u du, (16)

= σ−2(4π)
− d2 Γ(ν + d/2)−1

∫ ∞
0

uν−1e−
2ν
κ2
uS∞,

√
2u,σ2(λ) du. (17)

Now, using equations (11) and (12) and then (17), we write

kν,κ,σ2(x,x′) =
σ2

Cν

∫
Rd

(
2ν

κ2
+ 4π2‖ξ‖2

)−ν− d2
e2πi〈x−x

′,ξ〉 dξ (18)

=
1

Cν(4π)
d
2 Γ(ν + d/2)

∫
Rd

∫ ∞
0

uν−1e−
2ν
κ2
uS∞,

√
2u,σ2(‖ξ‖) du e2πi〈x−x

′,ξ〉dξ = . . . (19)

By changing the order of integration, rearranging terms and using formulas (11) and (13) we get

. . . =
1

Cν(4π)
d
2 Γ(ν + d/2)

∫ ∞
0

uν−1e−
2ν
κ2
uk∞,

√
2u,σ2(x,x′) du, (20)

which coincides with (2) up to a multiplicative constant which we disregard for convenience since it
only affects the normalization of the kernel.

B.2.2 Compact Riemannian Matérn kernels as integral of heat kernels

Normalizing constants in the definition of the Riemannian Matérn and squared exponential kernels
are not available in closed form and, at the same time, depend on the length scale. To get around this,
we connect the unnormalized versions of compact Riemannian Matérn kernels to their respective
unnormalized squared exponential kernels. As a result, the relation turns out to be slightly different,
but still very similar to (2).

First, we introduce the notation similar to (12) and (13), where the superscript u stands for unnormal-
ized:

Suν,κ(λ) =

(
2ν

κ2
+ λ

)−ν− d2
Su∞,κ(λ) = e−

κ2

2 λ. (21)

Then for both finite and infinite ν we have kν,κ,σ2(x, x′) = σ2/Cν
∑∞
n=0 S

u
ν,κ(λn)fn(x)fn(x′).

We are going to relate the unnormalized kernels given, both for finite and infinite ν, by

kuν,κ(x, x′) =

∞∑
n=0

Suν,κ(λn)fn(x)fn(x′). (22)

As in the Euclidean case we use (14), but this time with n = ν+ d/2− 1 and a = 2ν/κ2 +λ, where
n stays as before and a is slightly different, and then perform calculations similar to (17), obtaining

Suν,κ(λ) =

(
2ν

κ2
+ λ

)−ν− d2
= Γ(ν + d/2)−1

∫ ∞
0

uν+
d
2−1e−

2ν
κ2
ue−λu du (23)

= Γ(ν + d/2)−1
∫ ∞
0

uν+
d
2−1e−

2ν
κ2
uSu∞,

√
2u

(λ) du. (24)
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Now, write for finite ν

kuν,κ(x, x′) =

∞∑
n=0

Suν,κ(λn)fn(x)fn(x′) (25)

=

∞∑
n=0

Γ(ν + d/2)−1
∫ ∞
0

uν+
d
2−1e−

2ν
κ2
uSu∞,

√
2u

(λ) dufn(x)fn(x′) (26)

= Γ(ν + d/2)−1
∫ ∞
0

uν+
d
2−1e−

2ν
κ2
u
∞∑
n=0

Su∞,
√
2u

(λ)fn(x)fn(x′) du (27)

= Γ(ν + d/2)−1
∫ ∞
0

uν+
d
2−1e−

2ν
κ2
uku∞,

√
2u

(x, x′) du (28)

which yields the expression

kuν,κ(x, x′) = Γ(ν + d/2)−1
∫ ∞
0

uν+
d
2−1e−

2ν
κ2
uku∞,

√
2u

(x, x′) du (29)

which is of the form we were looking for.

B.2.3 Integral Matérn kernels are positive (semi)definite whenever heat kernels are

Assume kν,κ,σ2 is defined by (2) and that the corresponding heat kernel k∞,κ,σ2 is positive definite.3
Take some locations x1, . . . , xn = x and consider the matrix Kν

xx with elements kν,κ,σ2(xi, xj). In
order to prove that kν,κ,σ2 is positive definite we need to show that Kν

xx is a positive definite matrix
for an arbitrary choice of n and x. This means that we need to show that y>Kν

xxy
> > 0 for all

nonzero vectors y ∈ Rn.

To prove that Kν
xx is positive definite, consider the matrices K∞,κxx with elements k∞,κ,σ2(xi, xj).

Then, extending equation (2) to matrices, we have

Kν
xx =

∫ ∞
0

uν−1e−
2ν
κ2
uK∞,

√
2u

xx du. (30)

Because of this, we obtain

y>Kν
xxy =

∫ ∞
0

uν−1e−
2ν
κ2
u

∗

y>K∞,
√
2u

xx y

∗∗

du, (31)

where the factor ∗ of the integrand is obviously positive and the factor ∗∗ of the integrand is positive
because K∞,

√
2u

xx is positive definite by assumption, thus the integral is positive. Thus kν,κ,σ2 is
positive definite. The argument transfers to the case of positive semi-definiteness mutatis mutandis.

B.3 Matérn kernels for the torus

On the torus Td (with flat metric), every vector of integers τ ∈ Zd corresponds to the eigenvalue λτ =

4π2‖τ‖2 and to the two orthonormal eigenfunctions fτ ,1(x) =
√

2 cos(2π〈τ ,x〉) and fτ ,2(x) =√
2 sin(2π〈τ ,x〉), unless of course τ = 0, which corresponds to the eigenvalue λ0 = 0 and a single

eigenfunction fτ (x) = 1: for details, see Gordon [17]. Note that the eigenvalues corresponding
to distinct τ , τ ′ ∈ Zd may coincide, take e.g. τ = (15, 20) and τ ′ = (7, 24). However, the
eigenfunctions corresponding to distinct τ , τ ′ ∈ Zd will always be different (and orthogonal) unless
τ = −τ . Finally, observe that

fτ ,1(x)fτ ,1(x′) + fτ ,2(x)fτ ,2(x′) = 2 cos(2π〈τ ,x− x′〉) (32)

for τ 6= 0 because of the identity cos(x− y) = cos(x) cos(y) + sin(x) sin(y).

Since the eigenpairs are parameterized by vectors of integers instead of just natural numbers, it is thus
convenient to reorder the series in (1) accordingly—this can be done because the series converges

3Heat kernels on connected complete Riemannian manifolds of bounded geometry are positive definite, this
follows, for example, from the discussion in Appendix B.1. Their approximations used for practical Gaussian
process regression are typically positive semi-definite.
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unconditionally [8]. Then, the summation should only be performed over half of Zd to exclude
the possibility of accounting non-orthogonal (even linearly dependent) eigenfunctions twice: for
τ ∈ Zd, τ 6= 0 and for −τ . Instead of changing the summation index set, we notice that the
expression on the right-hand side of (32) does not change when τ is substituted for −τ because
cosine is an even function and divide the summands for τ 6= 0 by two, turning 2 cos(2π〈τ ,x− x′〉)
into cos(2π〈τ ,x− x′〉). This leads to the expression of the form given by (3) for the Matérn and
squared exponential kernels, namely

kν,κ,σ2(x,x′) =
σ2

Cν

∑
τ∈Zd

Φ(4π2‖τ‖2) cos(2π〈τ ,x− x′〉), (33)

where Φ is as in (1). Note that the case of τ = 0 is properly accounted for because
cos(2π〈0,x− x′〉) = 1.

B.4 Heat and Matérn kernel for the special orthogonal group

The formula for the heat (squared exponential) kernel for the special orthogonal group SO(d) is
available in the literature: see e.g. Wong [56], page 12, and Stein [47], page 45. As described in the
main text, the expression for the kernel is

k∞,κ,σ2(X,Y) =
σ2

C∞

∑
π

e−
κ2

2 λπdπχπ(XY−1). (5)

We now discuss the precise meaning of the symbols π, λπ , dπ , χπ in equation (5) and how to compute
their values in practice.

First, the summation variable π runs over the set of highest weights—these are effectively tuples of
non-negative integers that enumerate irreducible representations of the group, i.e. homomorphisms
π : SO(d)→ GL(V ) for some (complex) vector space V such that V cannot be split into a direct
sum of non-trivial π(SO(d))-invariant subspaces. Iterating over the highest weights amounts to
iterating over the tuples of non-negative integers and then post-processing them according to the
theory from Bröcker and Tom Dieck [9], Chapter VI, Section 2. To calculate the kernel to a given
numerical precision, one can grade all such tuples by the sum of their entries, and only leave those
terms of (5) which correspond to the entries with the smallest sum.

To each highest weight π there corresponds a particular eigenvalue λπ of the Laplace–Beltrami
operator. It can be computed as the value of a certain quadratic polynomial in the entries of π via
the identification of Laplace–Beltrami and Casimir operators and Freudenthal’s formula for the
eigenvalues, which is a particular case of Freudenthal’s multiplicity formula, see Humphreys [23],
Section 22. Note that eigenvalues corresponding to distinct representations can coincide.

The function χπ(A) = tr(π(A)) is called the character of the representation corresponding to the
highest weight π. Its values can be calculated by means of the Weyl character formula as the ratio
of two explicitly known polynomials depending only on the eigenvalues of A. The calculation of
these polynomials involves a fair bit of Lie-theoretic machinery, see Bröcker and Tom Dieck [9],
Chapter VI, Section 1, or Humphreys [23], Section 24 for details.

Finally, the value dπ = χπ(I) evaluates to the trace of the identity matrix and is thus the dimension
of the representation π. Moreover, by the Peter–Weyl Theorem—see Bröcker and Tom Dieck [9],
Chapter III—each irreducible representation π (of dimension n) corresponds to an n2-dimensional
eigenspace for λπ .

Thanks to the integral representation of Matérn kernels given by (29), we may obtain an expression
for them without diving into details on how the simplified expression (5) was actually obtained in
prior works. Apart from the normalizing constant, the only part of (5) that depends on the length scale,
which is the variable with respect to which the integration is performed in (29), is the coefficient
e−

κ2

2 λπ . Swapping the order of integration and summation, we readily obtain the following formula
for Matérn kernels:

kν,κ,σ2(X,Y) =
σ2

Cν

∑
π

(
2ν

κ2
+ λπ

)−ν− d2
dπχπ(XY−1). (34)
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B.5 SPD manifold as GL(d)/O(d) and the corresponding heat kernel

First, we prove that the map T : GL(d)/O(d) → Sd++ such that T (A ·O(d)) = AAT is well
defined, i.e. does not depend on the choice of the representative A of coset A ·O(d), and is bijective
(and in particular, one-to-one). The mapping GL(d) → Sd++ acting as A 7→ AA> is surjective
because of the Cholesky decomposition. On the other hand, because of the QR decomposition and
uniqueness of the Cholesky decomposition, AA> = BB> if and only if AB−1 is an orthogonal
matrix. This means that T is correctly defined and is bijective. The identification of GL(d)/O(d)
and Sd++ through operator T induces [22] the affine-invariant [48] metric over Sd++ with geodesic
distance given by

dist(X,Y) =
∥∥∥log(X−1/2YX−1/2)

∥∥∥, (35)

where ‖Z‖ =
√

tr(ZZ>) is the Frobenius matrix norm.

For this particular choice of the metric the explicit formulas for the heat kernel in cases d = 2 and
d = 3 are given by Sawyer [43] with the more detailed exposition given in the thesis of Sawyer
[44]. There, after observing that the kernel k(A,B) only depends on the matrix AB−1, the explicit
formulas for the one-parameter function are inferred by a particular technical argument given in that
work. In the case d = 2, this yields the formula (8) presented in the main text. In the case d = 3, an
explicit formula is provided as well, although, due to its cumbersome nature, we do not carry it over
to this paper.
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[35] J. Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, pages 400–404, 1975. URL: https://doi.org/10.1007/3-540-07165-2
_55. Cited on page 7.

[36] M. Nickel and D. Kiela. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic
Geometry. In International Conference on Machine Learning, pages 3779–3788, 2018. URL:
http://proceedings.mlr.press/v80/nickel18a.html. Cited on page 8.

[37] M. Nickel and D. Kiela. Poincaré Embeddings for Learning Hierarchical Representations. In
Advances in Neural Information Processing Systems, 2017. URL: https://papers.neurips.cc/p
aper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html. Cited on page 6.

[38] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer, and C. Atkeson. Bayesian Optimization
Using Domain Knowledge on the ATRIAS Biped. In International Conference on Robotics and
Automation, pages 1771–1778, 2018. URL: https://doi.org/10.1109/ICRA.2018.8461237.
Cited on page 1.

[39] C. E. Rasmussen and C. K. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006. URL: http://www.gaussianprocess.org/gpml/. Cited on page 15.

[40] L. Roveda, M. Magni, M. Cantoni, D. Piga, and G. Bucca. Human–robot collaboration in
sensorless assembly task learning enhanced by uncertainties adaptation via Bayesian Opti-
mization. Robotics and Autonomous Systems, 136:103711, 2021. URL: https://doi.org/10.101
6/j.robot.2020.103711. Cited on page 3.

[41] L. Rozo. Interactive Trajectory Adaptation through Force-guided Bayesian Optimization. In
International Conference on Intelligent Robots and Systems, pages 7596–7603, 2019. URL:
https://doi.org/10.1109/IROS40897.2019.8968571. Cited on page 3.

[42] K. A. Saar, F. Giardina, and F. Iida. Model-Free Design Optimization of a Hopping Robot and
Its Comparison With a Human Designer. IEEE Robotics and Automation Letters, 3(2):1245–
1251, 2018. URL: https://doi.org/10.1109/LRA.2018.2795646. Cited on page 1.

[43] P. Sawyer. The heat equation on the spaces of positive definite matrices. Canadian Journal of
Mathematics, 44(3):624–651, 1992. URL: https://doi.org/10.4153/CJM-1992-038-7. Cited
on pages 6, 19.

[44] P. Sawyer. The Heat Equation on the Symmetric Space Associated with SL(n,R). PhD thesis,
McGill University Libraries, 1989. URL: https://central.bac-lac.gc.ca/.item?id=TC-QMM-
74269&op=pdf&app=Library&oclc_number=897817061. Cited on page 19.

[45] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the Human Out
of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175,
2016. URL: https://doi.org/10.1109/JPROC.2015.2494218. Cited on pages 2, 3.

[46] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine
Learning Algorithms. In Advances in Neural Information Processing Systems, 2012. URL:
https://papers.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-
Abstract.html. Cited on page 1.

[47] E. M. Stein. Topics in Harmonic Analysis, Related to the Littlewood-Paley Theory. Princeton
University Press, 1970. URL: https://doi.org/10.1515/9781400881871. Cited on page 18.

21

https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1017/CBO9781139017329
https://doi.org/10.1109/ICRA.2014.6907763
https://doi.org/10.1109/ICRA.2016.7487144
https://doi.org/10.1109/CDC.2017.8264429
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1007/3-540-07165-2_55
http://proceedings.mlr.press/v80/nickel18a.html
https://papers.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://papers.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://doi.org/10.1109/ICRA.2018.8461237
http://www.gaussianprocess.org/gpml/
https://doi.org/10.1016/j.robot.2020.103711
https://doi.org/10.1016/j.robot.2020.103711
https://doi.org/10.1109/IROS40897.2019.8968571
https://doi.org/10.1109/LRA.2018.2795646
https://doi.org/10.4153/CJM-1992-038-7
https://central.bac-lac.gc.ca/.item?id=TC-QMM-74269&op=pdf&app=Library&oclc_number=897817061
https://central.bac-lac.gc.ca/.item?id=TC-QMM-74269&op=pdf&app=Library&oclc_number=897817061
https://doi.org/10.1109/JPROC.2015.2494218
https://papers.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://papers.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://doi.org/10.1515/9781400881871


[48] Y. Thanwerdas and X. Pennec. Is affine-invariance well defined on SPD matrices? A principled
continuum of metrics. In International Conference on Geometric Science of Information,
pages 502–510. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-26980-7_52.
Cited on page 19.

[49] J. Townsend, N. Koep, and S. Weichwald. Pymanopt: A Python Toolbox for Optimization on
Manifolds using Automatic Differentiation. Journal of Machine Learning Research, 17(137):1–
5, 2016. URL: http://jmlr.org/papers/v17/16-177.html. Cited on page 7.

[50] F. Tronarp, T. Karvonen, and S. Särkkä. Mixture Representation of the Matérn Class with Ap-
plications in State Space Approximations and Bayesian Quadrature. In International Workshop
on Machine Learning for Signal Processing, pages 1–6, 2018. URL: https://doi.org/10.1109
/MLSP.2018.8516992. Cited on page 3.

[51] J.-Y. Wen and K. Kreutz-Delgado. The attitude control problem. IEEE Transactions on Auto-
matic Control, 36(10):1148–1162, 1991. URL: https://doi.org/10.1109/9.90228. Cited on
page 2.

[52] P. Whittle. Stochastic processes in several dimensions. Bulletin of the International Statistical
Institute, 40(2):974–994, 1963. Cited on page 4.

[53] A. Wilson, A. Fern, and P. Tadepalli. Using Trajectory Data to Improve Bayesian Optimization
for Reinforcement Learning. Journal of Machine Learning Research, 15(8):253–282, 2014.
URL: http://jmlr.org/papers/v15/wilson14a.html. Cited on page 1.

[54] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Efficiently
Sampling Functions from Gaussian Process Posteriors. In International Conference on Machine
Learning, pages 10292–10302, 2020. URL: http://proceedings.mlr.press/v119/wilson20a.h
tml. Cited on page 4.

[55] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. Pathwise
Conditioning of Gaussian Processes. Journal of Machine Learning Research, 22(105):1–47,
2021. URL: https://www.jmlr.org/papers/v22/20-1260.html. Cited on page 4.

[56] M. Wong. Weyl Transforms, Heat Kernels, Green Functions and Riemann Zeta Functions
on Compact Lie Groups. In Modern Trends in Pseudo-Differential Operators, pages 67–85.
Springer, 2006. URL: https://doi.org/10.1007/978-3-7643-8116-5_4. Cited on page 18.

[57] T. Yoshikawa. Manipulability of Robotic Mechanisms. The International Journal of Robotics
Research, 4(2):3–9, 1985. URL: https://doi.org/10.1177/027836498500400201. Cited on
page 6.

22

https://doi.org/10.1007/978-3-030-26980-7_52
http://jmlr.org/papers/v17/16-177.html
https://doi.org/10.1109/MLSP.2018.8516992
https://doi.org/10.1109/MLSP.2018.8516992
https://doi.org/10.1109/9.90228
http://jmlr.org/papers/v15/wilson14a.html
http://proceedings.mlr.press/v119/wilson20a.html
http://proceedings.mlr.press/v119/wilson20a.html
https://www.jmlr.org/papers/v22/20-1260.html
https://doi.org/10.1007/978-3-7643-8116-5_4
https://doi.org/10.1177/027836498500400201

