
SoftManiSim: A Fast Simulation Framework for
Multi-Segment Continuum Manipulators Tailored for

Robot Learning (Supplementary Material)

Anonymous Author(s)
Affiliation
Address
email

1 Robot Prototype1

Figure 1 depicts the robot used in our experiments, consisting of a flexible backbone stabilized2

by spacers. At the gripper end, four cables are fixed and pass through the spacers, providing the3

flexible backbone of the robot. The spacers have enough clearance to follow the curvature of the4

main backbone. The cables are running in parallel and constrained with respect to each other using5

spacers. The backbone curvature can be manipulated by pulling and pushing the cables. The robot is6

powered by four brushless DC motors from Maxon Motors, each equipped with a quadratic encoder.7

The motors are controlled by PID position controller modules (EPOS4 Compact 50/5 CAN), which8

receive feedback from the encoders and interface with a PC via the CAN protocol for setting and9

retrieving control parameters. A Logitech RGB camera is mounted on the robot’s base and for10

precise location tracking of the robot’s tip, an ArUco marker [1, 2] is attached to it, which serves as11

a critical component in the feedback loop of the control system.12

Figure 1: Prototype of our cable-driven continuum robot: The main backbone curvature can be
manipulated by pulling and pushing the cables which are controlled by four brushless DC motors,
each equipped with a quadratic encoder and position controllers.

Physical parameters of the robot used in the simulations are given in Table 1. In the model verification13

experiment, the robot’s initial length (ℓ(0)), its second moment of inertia, and polar moment of inertia14

were measured manually. Later, the robot’s tip position calculated from the mathematical model of15

the robot was compared with the camera measurements at 10 points across the robot’s workspace. A16

least squares algorithm was used to fit model predictions to experimental data to find values of the17

robot’s stiffness and shear modulus. All these parameters are reported in Table 1.18

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



Table 1: Physical parameters of the robot.
ℓ(0) [m] 𝐼 [m4] 𝐽 [m4] 𝐸 [kPa] 𝐺 [kPa]

0.07 7.363×10−9 1.4726×10−8 300 70

Throughout this work, for all training scenarios, we used the same network architecture and almost19

the same hyperparameters as described in Table 2.20

2 Detailed Information About Reaching Target Task21

Figure 2: Reward progressions dur-
ing training.

In the reaching scenario, each episode begins with initializ-22

ing the environment by randomly placing a target within the23

robot’s working area (depicted by green cubes in Figure 3 and24

Figuire 4), effectively setting a new goal for each session. The25

length of each episode is set to one, meaning that upon each26

reset, the robot receives only one observation — the position27

of the random target — and must immediately decide on an28

action. This setup compels the robot to rapidly adapt and opti-29

mize its policy to minimize the positional error in a single step.30

The SAC algorithm continuously updates this policy based on31

the rewards and penalties received, which assess how closely32

the robot’s end-effector reaches the target while remaining within operational bounds. This strin-33

gent single-step episode structure accelerates the learning process, demanding high efficiency and34

accuracy from the robot’s decision-making strategies.35

2.1 Reward Function36

The reward function for the soft manipulator robot is designed to finely control the robot’s behavior in37

a three-dimensional workspace, across two scenarios: reaching a target and reaching while avoiding38

an obstacle. The function is defined as:39

reward = penalty + 𝑒−50×(distance2 ) ,

where distance is the Euclidean distance between the robot’s end-effector and the target position.40

The penalty component is tailored to ensure that the robot operates within its designated bounds and41

adapts to additional task complexities when an obstacle is present.42

For the basic reaching task, the penalty is applied as follows:43

penalty =

{
−0.5 if 𝑧 > 0.28 or 𝑧 < 0.07
0 otherwise ,

this penalty discourages the robot from moving beyond predefined vertical boundaries, effectively44

reducing the reward when the robot operates outside safe operational zones, thereby enforcing45

adherence to safe and efficient paths.46

In the reaching task with obstacle avoidance, an additional penalty is introduced:47

obstacle penalty =

{
−1.0 if the robot contacts the obstacle
0 otherwise ,

this ensures that the robot not only aims to reach the target but also learns to navigate around obstacles,48

further complicating the learning process by penalizing contact with obstacles. Such a mechanism49

promotes the development of more complex navigation strategies and enhances the robot’s ability to50

handle real-world environments where obstacles are common.51

The use of the exponential decay function, 𝑒−50×(distance2 ) , is critical in both scenarios. It creates a52

strong incentive for the robot to minimize distance to the target, as rewards diminish rapidly with53

2



Table 2: Network architecture and hyperparameters
Component Details

Actor Network
MLP with 2 hidden layers

Each layer: 256 units, ReLU activation
Output layer: Action size, tanh activation

Critic Network
MLP with 2 hidden layers (Twin Critics)
Each layer: 256 units, ReLU activation

Output: Single value (Q-value), no activation
Learning Rate 0.0003

Batch Size 64
Discount Factor (𝛾) 0.99
Replay Buffer Size 50000
Number of epoch 2 × 106

Figure 3: Performance of a five-segment continuum robot in a 3D environment. The robot learned
how to reach a target (red sphere), highlighting skills developed through reinforcement learning.

increased distance. This sharp gradient is crucial for reinforcing precise and controlled movements54

of the end-effector towards the target, thereby playing a pivotal role in the learning algorithm by55

enhancing the speed and accuracy of the robot’s operational capabilities in varied task environments.56

Figure 2 shows the progression of mean rewards received during the training of two policies over57

2 million steps. This plot illustrates the learning progression for two teacher scenarios: one where58

the robot solely focuses on reaching a target ("Reacher"), and another where it must reach the target59

while also avoiding an obstacle ("Reacher with Obstacle"). In both cases, the rewards trend upward,60

indicating successful learning and adaptation to their respective tasks. However, the introduction61

of an obstacle in the second scenario introduces a complexity that slightly delays convergence62

compared to the first scenario. This is reflected in the different trajectories of the reward curves, with63

the "Reacher with Obstacle" scenario showing a slightly more gradual ascent and later stabilization.64

The final plateau at a high reward value in both scenarios suggests that the robot effectively learned65

to reach the target under both sets of conditions, optimizing its path and strategy to maximize the66

received reward, thereby demonstrating the capability of the reinforcement learning model to adapt67

to increased task complexity.68

In the evaluation of the performance over 100 trials, the mean Euclidean distance between the end-69

effector and the target was found to be 0.0109 meters with a standard deviation of 0.00471 meters70

in the scenario without obstacles. This demonstrates a high degree of accuracy and consistency in71

reaching the target. In contrast, when obstacles were introduced, the average distance increased to72

3



Figure 4: Performance of a five-segment continuum robot in a 3D environment: Demonstrating
advanced reaching Skills through reinforcement learning. This robot learned to reach a target (red
sphere) while skillfully avoiding a yellow bar obstacle, showcasing its refined abilities acquired from
reinforcement learning techniques.

0.0167 meters, and the standard deviation widened to 0.00864 meters. This increase in both the73

mean and variability indicates a noticeable impact of obstacle presence on the robot’s ability to reach74

the target precisely, reflecting the added complexity and navigational challenges introduced by the75

obstacles.76

3 Custom Gym Environments77

Using SoftManiSim framework, we have developed ten different customized gym environments78

specifically tailored for continuum robots. Illustrated in Figure 5, these environments are crafted79

to challenge the robots with a variety of scenarios, each designed to mimic different aspects of80

real-world applications and the complex physical interactions that continuum robots may face. For81

detailed examples of how these environments can be applied, please refer to examples\gyms.82

This development is particularly beneficial for the robotics community as it provides a rich set of83

tools for testing and refining robotic control policies. By offering a variety of standardized yet84

challenging scenarios, these environments enable researchers and developers to benchmark and85

enhance the performance of their robotic systems under controlled but varied conditions. Moreover,86

sharing these resources fosters a collaborative atmosphere within the community, promoting shared87

learning and accelerating innovation in robotic design and functionality. The availability of these88

environments ensures that both new and experienced researchers can explore the nuances of robot-89

environment interaction, thus contributing significantly to the field of continuum robotics.90

4 Real Robot Experiments91

4.1 Training Dataset92

We aim to generate a dataset to validate and to fine-tune our mathematical model. A series of93

demonstrations was performed by an operator, who adjusted the lengths of various cables to enable94

the robot’s tip to move in multiple directions. Data capturing involved recording both the robot95

inputs, ut ∈ R3, and the Cartesian coordinates of the robot tip, xt ∈ R3, at a frequency of 15 Hz,96

forming the training dataset D = {xk
t , uk

t }𝑁𝑘=1, 𝑁 = 100000. The camera and marker were used to97

track the robot’s position. We employed the collected dataset, comparing the model’s outputs with98

the corresponding targets from the dataset to verify and refine our mathematical model parameters.99

4



Figure 5: Ten different customized gym environment; To enhance policy learning for continuum
robots, we have developed a set of custom Gym environments within our SoftManiSim frameworks
that can be used as a baseline.

Figure 6: Trajectory tracking results in SoftManiSim: The simulated robot is set to follow a set of
predefined trajectories.

Subsequently, the mismatches were utilized to train a shallow neural network, designed to address100

and compensate for any mismatches in the model.101

4.2 Control Policy Learning102

After verifying and refining the mathematical model using the dataset, the next step involves designing103

a control policy capable of effectively managing the dynamics of the continuum robot. The control104

policy aims to map observed robot states to actions that drive the robot towards a desired state.105

We used our customized gym environment for the robot and SAC algorithm to train a control policy.106

Each episode begins with a random reset of target positions simulating different starting scenarios107

and enhancing the robustness of the learning process. The reward function is designed to encourage108

the agent to minimize the distance between the robot’s current end-effector position and the desired109

position. The reward at each step is calculated as:110

reward = 𝑒−500×(distance2 )

This exponential decay ensures that rewards are higher when the robot’s end-effector is closer to the111

target, providing a strong gradient for learning. After each interaction, the transitions (state, action,112

reward, next state) are stored in a replay buffer. The SAC algorithm samples batches from this buffer113

to update the policy and value networks. The learning process involves adjusting the networks to114

predict more accurate value estimates and to propose actions that maximize these estimates plus the115

entropy term.116

Post-training, the learned policy is validated both in simulated scenarios and real-world tests to ensure117

its effectiveness. In these simulations and also the real robot experiments, the robot is programmed118

to follow designated trajectories in two-dimensional space, including: i) an equilateral triangle on119

5



Figure 7: Representative snapshots of the robot while performing the trajectory tracking task (please
watch the video).

the XY plane, with each side being 0.04 meters long; ii) a square trajectory on the X-Y plane with120

each side extending 0.025 meters; iii) a circular trajectory in the XY plane with a radius of 0.02121

meters.122

Figure 6 shows the simulation results, as demonstrated, the robot successfully tracked the trajectories.123

The robot achieved precision with Mean Absolute Errors (MAE) in the x, y, and z directions as124

follows:125

• for the equilateral triangle: 1.77, 1.63, 2.02 mm.126

• for the square trajectory: 2.27, 2.03, 2.92 mm.127

• for the circular trajectory: 2.54, 1.97, 1.81 mm.128

These values demonstrate the robot’s accuracy in tracking the designated trajectories, providing a129

detailed quantitative assessment of the learned policy’s effectiveness in both simulated and real-world130

environments.131

4.3 Experiments Results132

Table 3: Trajectory tracking results

RMSE (mm)
𝑥 𝑦̃ 𝑧

Triangle 2.87 3.14 3.08
Square 3.08 3.89 3.82
Circle 1.38 1.88 2.19

Table 3 presents the Root Mean Square Error (RMSE)133

measurements in millimeters for trajectory tracking on134

a real robot, encapsulating its precision across three135

different geometric paths: triangle, square, and circle.136

here is the results of trajectori tracking on the real robot:137

For the triangular trajectory, the robot exhibited an138

RMSE of 2.87 mm, 3.14 mm, and 3.08 mm in the139

𝑥, 𝑦, and 𝑧 directions respectively, indicating a consistent level of precision across all three axes. The140

square trajectory showed slightly higher errors, with RMSE values of 3.08 mm in 𝑥, 3.89 mm in 𝑦,141

and 3.82 mm in 𝑧, reflecting the additional challenges this shape may pose in maintaining accuracy.142

Notably, the circular trajectory demonstrated the best tracking performance with the lowest RMSE143

values — 1.38 mm in 𝑥, 1.88 mm in 𝑦, and 2.19 mm in 𝑧 — highlighting the robot’s enhanced144

capability to handle continuous, curvilinear paths with higher precision. Figure 7 shows a set of145

representative snapshots of the robot while performing this task. Our supplementary materials146

include a video showing the results.147

5 Detailed Results of Non-Prehensile Object Manipulation148

In this simulation, a continuum robot integrated onto a Unitree A1 quadruped is tasked with non-149

prehensile object manipulation, specifically pushing a cube towards a target. During the initialization150

phase in each run (test/train), the environment is set up which positions the target at a randomly151

determined location with the x-coordinate between 0.55 to 0.7 meters and the y-coordinate between152

-0.1 to 0.1 meters, ensuring variability and challenge in starting positions for each trial. The reward153

function is articulated as follows:154

reward = 𝑒−300×(distance_obj2 ) + 0.5 × (touch)

6



Figure 8: Sequential snapshots showing a quadruped with a three-segment continuum neck, manip-
ulating a cube towards a target (red sphere).

Figure 9: Trajectory tracking results: the robot is tasked with following various paths in both 2D and
3D spaces. The red and black lines indicate the actual and desired paths, respectively.

where distance_obj is the Euclidean distance to the target, and touch is a binary indicator that adds a155

bonus if the robot’s tip makes contact with the cube, thus encouraging effective interaction with the156

object.157

After training using SAC algorithm, the results demonstrate high precision in the robot’s performance.158

The average absolute errors for 50 trials in reaching the target’s x and y coordinates are approximately159

0.048 and 0.046, respectively, and the average distance from the target is 0.092 meters. These results160

highlight the effectiveness of the control strategy in enabling the robot to adapt and accurately161

manipulate objects towards varying target positions. Figure 8 shows sequential snapshots showing162

a quadruped with a three-segment continuum neck, manipulating a cube towards a target. Our163

supplementary materials include a video showing the results.164

6 Detailed Results of Trajectory Tracking165

In this task, a UR5 robot integrated with a two-segment extendable and bendable continuum robot,166

each segment capable of extending up to 0.03 m, is utilized. The simulated robot was programmed167

to follow various complex trajectories in both 2D and 3D spaces, designed to test its precision and168

control capabilities. These trajectories included a square in the X-Y plane with 0.4 meters sides, a169

figure-eight curve described by specific sinusoidal equations for 𝑥 and 𝑦 coordinates over a 20-second170

period, a circular path with a 0.2-meter radius, a helical trajectory with a 0.2-meter radius and a 0.1-171

meter pitch, and a square-helical path combining square and helical movements. The effectiveness172

of the robot’s path following was quantitatively assessed by calculating the Mean Squared Errors173

(MSE) in the X, Y, and Z coordinates for each trajectory. The results, summarized in the provided174

Table 4 and shown in Figure 9, indicate varied performance across different trajectories. The helical175

trajectory showed the most precise control, with the lowest average MSE of 0.000153, suggesting176

that the robot manages consistent vertical movements well. The circular trajectory also exhibited low177

error rates, emphasizing the robot’s ability to maintain steady curvilinear motion. In contrast, the178

figure-eight and square trajectories had higher MSEs, particularly in the horizontal plane, indicating179

challenges in managing more complex path changes and corner navigation. The square-helical180

trajectory achieved a moderate average MSE, highlighting a blend of challenges in maintaining181

precision in both linear and vertical displacements. These insights can guide further refinements182

in control algorithms, particularly focusing on improving accuracy in trajectories involving abrupt183

direction changes and complex geometric patterns.184

7



Table 4: Mean Squared Errors (MSE) for Different Trajectories.
Trajectory MSE X MSE Y MSE Z Average MSE

Square 0.000592 0.000398 0.000062 0.000351
Circle 0.000214 0.000341 0.000030 0.000195

Eight Figure 0.000930 0.000223 0.000075 0.000409
Helix 0.000190 0.000256 0.000014 0.000153

Moving Square 0.000431 0.000333 0.000041 0.000268

7 Python Interface185

The SoftManiSim class is designed to facilitate the simulation of soft robots using Pybullet physics186

engine. This class serves as a comprehensive interface that initializes and manages various aspects187

of the simulation environment, ensuring a seamless and flexible setup process. The construc-188

tor of the SoftManiSim class takes several parameters, including an optional bullet instance,189

number of segments (_number_of_segment), color configurations for the robot’s body and head190

(body_color) and (head_color), the radius of the body spheres (body_sphere_radius), the191

number of spheres composing the robot’s body (number_of_sphere), the number of segments in192

the robot (number_of_segment), and a boolean to toggle the graphical user interface (GUI). If no193

bullet instance is provided, the constructor initializes a new Pybullet instance. The create_robot194

method is invoked at the end of the constructor to assemble the robot based on the provided pa-195

rameters, ensuring that all necessary components are correctly instantiated and configured. This196

methodical and thorough initialization process makes the SoftManiSim class a powerful tool for197

researchers and developers, offering a high degree of control and customization over the soft robot198

simulation, ultimately contributing to more efficient and accurate experimental setups in the field of199

soft robotics.200

7.1 API Documentation201

Below is the API documentation for the SoftManiSim class, detailing essential methods, their202

arguments and functionalities:203

8



Table 5: API Descriptions of SoftManiSim
Method Argument Description
__init__ bullet Optional physics engine instance, defaults to None, ini-

tializes PyBullet if not provided.
body_color RGBA color for the robot’s body.
head_color RGBA color for the robot’s head.
body_sphere_radius Radius of spheres used to build the robot’s body.
number_of_sphere Number of spheres constructing the robot’s body.
number_of_segment Number of segments in the robot’s body.
gui Boolean to toggle graphical interface, defaults to True.

create_robot - No arguments, sets up the robot’s physical structure within
the simulation. This function is invoked at the end of the
constructor.

move_robot_ori action Array of actions defining movement commands for robot
segments.

base_pos The base position of the robot in the simulation space.
base_orin The base orientation of the robot, specified as Euler an-

gles.
camera_marker Boolean to display camera markers, defaults to True.

calc_tip_pos action Array of actions affecting the tip’s position and orienta-
tion.

base_pos The base position from which the tip’s calculations start.
base_orin Base orientation affecting the tip’s calculation.

capture_image removeBackground Boolean to decide whether to remove background from
the image, defaults to False.

in_hand_camera_capture_image - No arguments, captures image from the robot’s in-hand
camera.

is_robot_in_contact obj_id Object ID to check for contact with the robot.
is_gripper_in_contact obj_id Object ID to check for contact with the robot’s gripper.
suction_grasp enable Boolean to enable or disable the suction grasp mechanism.
set_grasp_width grasp_width_percent Percentage of maximum grasp width to set for the gripper.
add_a_cube pos Position to place the cube in the simulation.

ori Orientation of the cube, given as a quaternion.
size Dimensions of the cube.
mass Mass of the cube.
color RGBA color of the cube.
textureUniqueId Optional texture ID for the cube’s surface.

wait sec Duration in seconds to delay the simulation.

References204

[1] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez. Automatic205

generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition,206

47(6):2280 – 2292, 2014. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2014.01.005.207

URL http://www.sciencedirect.com/science/article/pii/S0031320314000235.208

[2] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer. Generation of209

fiducial marker dictionaries using mixed integer linear programming. Pattern Recognition, 51:210

481 – 491, 2016. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2015.09.023. URL211

http://www.sciencedirect.com/science/article/pii/S0031320315003544.212

9

http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://www.sciencedirect.com/science/article/pii/S0031320315003544

	Robot Prototype
	Detailed Information About Reaching Target Task
	Reward Function

	Custom Gym Environments
	Real Robot Experiments
	Training Dataset
	Control Policy Learning
	Experiments Results

	Detailed Results of Non-Prehensile Object Manipulation
	Detailed Results of Trajectory Tracking
	Python Interface
	API Documentation


