© O N o o » W N

SoftManiSim: A Fast Simulation Framework for
Multi-Segment Continuum Manipulators Tailored for
Robot Learning (Supplementary Material)

Anonymous Author(s)
Affiliation
Address
email

1 Robot Prototype

Figure 1 depicts the robot used in our experiments, consisting of a flexible backbone stabilized
by spacers. At the gripper end, four cables are fixed and pass through the spacers, providing the
flexible backbone of the robot. The spacers have enough clearance to follow the curvature of the
main backbone. The cables are running in parallel and constrained with respect to each other using
spacers. The backbone curvature can be manipulated by pulling and pushing the cables. The robot is
powered by four brushless DC motors from Maxon Motors, each equipped with a quadratic encoder.
The motors are controlled by PID position controller modules (EPOS4 Compact 50/5 CAN), which
receive feedback from the encoders and interface with a PC via the CAN protocol for setting and
retrieving control parameters. A Logitech RGB camera is mounted on the robot’s base and for
precise location tracking of the robot’s tip, an ArUco marker [1, 2] is attached to it, which serves as
a critical component in the feedback loop of the control system.

Gripper

° Cables

Spacers
Position
Controllers

Figure 1: Prototype of our cable-driven continuum robot: The main backbone curvature can be
manipulated by pulling and pushing the cables which are controlled by four brushless DC motors,
each equipped with a quadratic encoder and position controllers.

Physical parameters of the robot used in the simulations are given in Table 1. In the model verification
experiment, the robot’s initial length (£(0)), its second moment of inertia, and polar moment of inertia
were measured manually. Later, the robot’s tip position calculated from the mathematical model of
the robot was compared with the camera measurements at 10 points across the robot’s workspace. A
least squares algorithm was used to fit model predictions to experimental data to find values of the
robot’s stiffness and shear modulus. All these parameters are reported in Table 1.

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37
38
39

40
41
42

43

44
45
46

47

48
49
50
51

52
53

Table 1: Physical parameters of the robot.
£(0) [m] I [m*] J [m*] E [kPa] | G [kPa]
0.07 | 7.363x1077 | 1.4726x1078 300 70

Throughout this work, for all training scenarios, we used the same network architecture and almost
the same hyperparameters as described in Table 2.

2 Detailed Information About Reaching Target Task

In the reaching scenario, each episode begins with initializ-

ing the environment by randomly placing a target within the 0s A
robot’s working area (depicted by green cubes in Figure 3 and -
Figuire 4), effectively setting a new goal for each session. The 02

Reward Value

length of each episode is set to one, meaning that upon each
reset, the robot receives only one observation — the position s
of the random target — and must immediately decide on an -os
action. This setup compels the robot to rapidly adapt and opti-
mize its policy to minimize the positional error in a single step.
The SAC algorithm continuously updates this policy based on
the rewards and penalties received, which assess how closely
the robot’s end-effector reaches the target while remaining within operational bounds. This strin-
gent single-step episode structure accelerates the learning process, demanding high efficiency and
accuracy from the robot’s decision-making strategies.

}MMWW‘ Reacher

M — Reacher with Obstacle

000 025 050 075 100 125 150 175 2.00
Training Steps 1

Figure 2: Reward progressions dur-
ing training.

2.1 Reward Function

The reward function for the soft manipulator robot is designed to finely control the robot’s behavior in
a three-dimensional workspace, across two scenarios: reaching a target and reaching while avoiding
an obstacle. The function is defined as:

_ stance?
reward = penalty + ¢ =0 (distance?)

where distance is the Euclidean distance between the robot’s end-effector and the target position.
The penalty component is tailored to ensure that the robot operates within its designated bounds and
adapts to additional task complexities when an obstacle is present.

For the basic reaching task, the penalty is applied as follows:

enalty = -0.5 ifz>0.280orz <0.07
p y= 0 otherwise

)

this penalty discourages the robot from moving beyond predefined vertical boundaries, effectively
reducing the reward when the robot operates outside safe operational zones, thereby enforcing
adherence to safe and efficient paths.

In the reaching task with obstacle avoidance, an additional penalty is introduced:

—1.0 if the robot contacts the obstacle
0 otherwise

i

obstacle penalty = {

this ensures that the robot not only aims to reach the target but also learns to navigate around obstacles,
further complicating the learning process by penalizing contact with obstacles. Such a mechanism
promotes the development of more complex navigation strategies and enhances the robot’s ability to
handle real-world environments where obstacles are common.

. . _ : 2
The use of the exponential decay function, e SOx(distance”) ' j¢ oritical in both scenarios. It creates a
strong incentive for the robot to minimize distance to the target, as rewards diminish rapidly with

54
55
56

57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72

Table 2: Network architecture and hyperparameters

Component Details
MLP with 2 hidden layers
Actor Network Each layer: 256 units, ReLU activation

Output layer: Action size, tanh activation
MLP with 2 hidden layers (Twin Critics)

Critic Network Each layer: 256 units, ReLU activation
Output: Single value (Q-value), no activation
Learning Rate 0.0003
Batch Size 64
Discount Factor (y) 0.99
Replay Buffer Size 50000
Number of epoch 2% 10°

Figure 3: Performance of a five-segment continuum robot in a 3D environment. The robot learned
how to reach a target (red sphere), highlighting skills developed through reinforcement learning.

increased distance. This sharp gradient is crucial for reinforcing precise and controlled movements
of the end-effector towards the target, thereby playing a pivotal role in the learning algorithm by
enhancing the speed and accuracy of the robot’s operational capabilities in varied task environments.

Figure 2 shows the progression of mean rewards received during the training of two policies over
2 million steps. This plot illustrates the learning progression for two teacher scenarios: one where
the robot solely focuses on reaching a target ("Reacher"), and another where it must reach the target
while also avoiding an obstacle ("Reacher with Obstacle"). In both cases, the rewards trend upward,
indicating successful learning and adaptation to their respective tasks. However, the introduction
of an obstacle in the second scenario introduces a complexity that slightly delays convergence
compared to the first scenario. This is reflected in the different trajectories of the reward curves, with
the "Reacher with Obstacle" scenario showing a slightly more gradual ascent and later stabilization.
The final plateau at a high reward value in both scenarios suggests that the robot effectively learned
to reach the target under both sets of conditions, optimizing its path and strategy to maximize the
received reward, thereby demonstrating the capability of the reinforcement learning model to adapt
to increased task complexity.

In the evaluation of the performance over 100 trials, the mean Euclidean distance between the end-
effector and the target was found to be 0.0109 meters with a standard deviation of 0.00471 meters
in the scenario without obstacles. This demonstrates a high degree of accuracy and consistency in
reaching the target. In contrast, when obstacles were introduced, the average distance increased to

73
74
75
76

77

78
79
80
81
82

83
84
85
86
87
88
89
90

91

92

93
94
95
96
97
98
99

Figure 4: Performance of a five-segment continuum robot in a 3D environment: Demonstrating
advanced reaching Skills through reinforcement learning. This robot learned to reach a target (red

sphere) while skillfully avoiding a yellow bar obstacle, showcasing its refined abilities acquired from
reinforcement learning techniques.

0.0167 meters, and the standard deviation widened to 0.00864 meters. This increase in both the
mean and variability indicates a noticeable impact of obstacle presence on the robot’s ability to reach
the target precisely, reflecting the added complexity and navigational challenges introduced by the
obstacles.

3 Custom Gym Environments

Using SoftManiSim framework, we have developed ten different customized gym environments
specifically tailored for continuum robots. Illustrated in Figure 5, these environments are crafted
to challenge the robots with a variety of scenarios, each designed to mimic different aspects of
real-world applications and the complex physical interactions that continuum robots may face. For
detailed examples of how these environments can be applied, please refer to examples\gyms.

This development is particularly beneficial for the robotics community as it provides a rich set of
tools for testing and refining robotic control policies. By offering a variety of standardized yet
challenging scenarios, these environments enable researchers and developers to benchmark and
enhance the performance of their robotic systems under controlled but varied conditions. Moreover,
sharing these resources fosters a collaborative atmosphere within the community, promoting shared
learning and accelerating innovation in robotic design and functionality. The availability of these
environments ensures that both new and experienced researchers can explore the nuances of robot-
environment interaction, thus contributing significantly to the field of continuum robotics.

4 Real Robot Experiments

4.1 Training Dataset

We aim to generate a dataset to validate and to fine-tune our mathematical model. A series of
demonstrations was performed by an operator, who adjusted the lengths of various cables to enable
the robot’s tip to move in multiple directions. Data capturing involved recording both the robot
inputs, u; € R3, and the Cartesian coordinates of the robot tip, x¢ € R3, ata frequency of 15 Hz,
forming the training dataset D = {xf, uf }2]:1’ N = 100000. The camera and marker were used to
track the robot’s position. We employed the collected dataset, comparing the model’s outputs with
the corresponding targets from the dataset to verify and refine our mathematical model parameters.

100
101

102

103
104
105

106
107
108
109
110

111
112
113
114
115
116

117
118
119

Figure 5: Ten different customized gym environment; To enhance policy learning for continuum
robots, we have developed a set of custom Gym environments within our SoftManiSim frameworks
that can be used as a baseline.

N aTal

Figure 6: Trajectory tracking results in SoftManiSim: The simulated robot is set to follow a set of
predefined trajectories.

Subsequently, the mismatches were utilized to train a shallow neural network, designed to address
and compensate for any mismatches in the model.

4.2 Control Policy Learning

After verifying and refining the mathematical model using the dataset, the next step involves designing
a control policy capable of effectively managing the dynamics of the continuum robot. The control
policy aims to map observed robot states to actions that drive the robot towards a desired state.

We used our customized gym environment for the robot and SAC algorithm to train a control policy.
Each episode begins with a random reset of target positions simulating different starting scenarios
and enhancing the robustness of the learning process. The reward function is designed to encourage
the agent to minimize the distance between the robot’s current end-effector position and the desired
position. The reward at each step is calculated as:

reward = e—SOOx(distancez)

This exponential decay ensures that rewards are higher when the robot’s end-effector is closer to the
target, providing a strong gradient for learning. After each interaction, the transitions (state, action,
reward, next state) are stored in a replay buffer. The SAC algorithm samples batches from this buffer
to update the policy and value networks. The learning process involves adjusting the networks to
predict more accurate value estimates and to propose actions that maximize these estimates plus the
entropy term.

Post-training, the learned policy is validated both in simulated scenarios and real-world tests to ensure
its effectiveness. In these simulations and also the real robot experiments, the robot is programmed
to follow designated trajectories in two-dimensional space, including: i) an equilateral triangle on

120
121
122

123
124
125

126

127

128

129
130
131

132

133
134
135
136
137

138
139
140
141
142
143
144
145
146
147

148

149
150
151
152
153
154

Figure 7: Representative snapshots of the robot while performing the trajectory tracking task (please
watch the video).

the XY plane, with each side being 0.04 meters long; ii) a square trajectory on the X-Y plane with
each side extending 0.025 meters; iii) a circular trajectory in the XY plane with a radius of 0.02
meters.

Figure 6 shows the simulation results, as demonstrated, the robot successfully tracked the trajectories.
The robot achieved precision with Mean Absolute Errors (MAE) in the x, y, and z directions as
follows:

* for the equilateral triangle: 1.77,1.63,2.02 mm.
* for the square trajectory: 2.27,2.03,2.92 mm.
* for the circular trajectory: 2.54,1.97,1.81 mm.

These values demonstrate the robot’s accuracy in tracking the designated trajectories, providing a
detailed quantitative assessment of the learned policy’s effectiveness in both simulated and real-world
environments.

4.3 Experiments Results

Table 3 presents the Root Mean Square Error (RMSE) Table 3: Trajectory tracking results

measurements 1n mllhm(?ters' for traJ'e({tory tracking on RMSE (mm)

a real robot, encapsulating its precision across three = ~ =

different geometric paths: triangle, square, and circle. Trianel 2x = }i T <

here is the results of trajectori tracking on the real robot: rangle -8 3. 3.08
Square | 3.08 | 3.89 | 3.82

For the triangular trajectory, the robot exhibited an Circle 138 [1.88 [2.19
RMSE of 2.87 mm, 3.14 mm, and 3.08 mm in the
x, y, and z directions respectively, indicating a consistent level of precision across all three axes. The
square trajectory showed slightly higher errors, with RMSE values of 3.08 mm in x, 3.89 mm in y,
and 3.82 mm in z, reflecting the additional challenges this shape may pose in maintaining accuracy.
Notably, the circular trajectory demonstrated the best tracking performance with the lowest RMSE
values — 1.38 mm in x, 1.88 mm in y, and 2.19 mm in z — highlighting the robot’s enhanced
capability to handle continuous, curvilinear paths with higher precision. Figure 7 shows a set of
representative snapshots of the robot while performing this task. Our supplementary materials
include a video showing the results.

S Detailed Results of Non-Prehensile Object Manipulation

In this simulation, a continuum robot integrated onto a Unitree A1 quadruped is tasked with non-
prehensile object manipulation, specifically pushing a cube towards a target. During the initialization
phase in each run (test/train), the environment is set up which positions the target at a randomly
determined location with the x-coordinate between 0.55 to 0.7 meters and the y-coordinate between
-0.1 to 0.1 meters, ensuring variability and challenge in starting positions for each trial. The reward
function is articulated as follows:

~ . 5
reward = ¢ 300 (distance_ob®) 4 () 5 (touch)

155
156
157

158
159
160
161
162
163
164

165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

[- T e

Figure 8: Sequential snapshots showing a quadruped with a three-segment continuum neck, manip-
ulating a cube towards a target (red sphere).

P PP P

Figure 9: Trajectory tracking results: the robot is tasked with following various paths in both 2D and
3D spaces. The red and black lines indicate the actual and desired paths, respectively.

where distance_obj is the Euclidean distance to the target, and touch is a binary indicator that adds a
bonus if the robot’s tip makes contact with the cube, thus encouraging effective interaction with the
object.

After training using SAC algorithm, the results demonstrate high precision in the robot’s performance.
The average absolute errors for 50 trials in reaching the target’s x and y coordinates are approximately
0.048 and 0.046, respectively, and the average distance from the target is 0.092 meters. These results
highlight the effectiveness of the control strategy in enabling the robot to adapt and accurately
manipulate objects towards varying target positions. Figure 8 shows sequential snapshots showing
a quadruped with a three-segment continuum neck, manipulating a cube towards a target. Our
supplementary materials include a video showing the results.

6 Detailed Results of Trajectory Tracking

In this task, a URS robot integrated with a two-segment extendable and bendable continuum robot,
each segment capable of extending up to 0.03 m, is utilized. The simulated robot was programmed
to follow various complex trajectories in both 2D and 3D spaces, designed to test its precision and
control capabilities. These trajectories included a square in the X-Y plane with 0.4 meters sides, a
figure-eight curve described by specific sinusoidal equations for x and y coordinates over a 20-second
period, a circular path with a 0.2-meter radius, a helical trajectory with a 0.2-meter radius and a 0.1-
meter pitch, and a square-helical path combining square and helical movements. The effectiveness
of the robot’s path following was quantitatively assessed by calculating the Mean Squared Errors
(MSE) in the X, Y, and Z coordinates for each trajectory. The results, summarized in the provided
Table 4 and shown in Figure 9, indicate varied performance across different trajectories. The helical
trajectory showed the most precise control, with the lowest average MSE of 0.000153, suggesting
that the robot manages consistent vertical movements well. The circular trajectory also exhibited low
error rates, emphasizing the robot’s ability to maintain steady curvilinear motion. In contrast, the
figure-eight and square trajectories had higher MSEs, particularly in the horizontal plane, indicating
challenges in managing more complex path changes and corner navigation. The square-helical
trajectory achieved a moderate average MSE, highlighting a blend of challenges in maintaining
precision in both linear and vertical displacements. These insights can guide further refinements
in control algorithms, particularly focusing on improving accuracy in trajectories involving abrupt
direction changes and complex geometric patterns.

185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201

202
203

Table 4: Mean Squared Errors (MSE) for Different Trajectories.
Trajectory MSE X MSEY MSE Z | Average MSE

Square 0.000592 | 0.000398 | 0.000062 0.000351
Circle 0.000214 | 0.000341 | 0.000030 0.000195
Eight Figure | 0.000930 | 0.000223 | 0.000075 0.000409
Helix 0.000190 | 0.000256 | 0.000014 0.000153

Moving Square | 0.000431 | 0.000333 | 0.000041 0.000268

7 Python Interface

The SoftManiSim class is designed to facilitate the simulation of soft robots using Pybullet physics
engine. This class serves as a comprehensive interface that initializes and manages various aspects
of the simulation environment, ensuring a seamless and flexible setup process. The construc-
tor of the SoftManiSim class takes several parameters, including an optional bullet instance,
number of segments (_number_of_segment), color configurations for the robot’s body and head
(body_color) and (head_color), the radius of the body spheres (body_sphere_radius), the
number of spheres composing the robot’s body (number_of_sphere), the number of segments in
the robot (number_of_segment), and a boolean to toggle the graphical user interface (GUI). If no
bullet instance is provided, the constructor initializes a new Pybullet instance. The create_robot
method is invoked at the end of the constructor to assemble the robot based on the provided pa-
rameters, ensuring that all necessary components are correctly instantiated and configured. This
methodical and thorough initialization process makes the SoftManiSim class a powerful tool for
researchers and developers, offering a high degree of control and customization over the soft robot
simulation, ultimately contributing to more efficient and accurate experimental setups in the field of
soft robotics.

7.1 API Documentation

Below is the API documentation for the SoftManiSim class, detailing essential methods, their
arguments and functionalities:

Table 5: API Descriptions of SoftManiSim

body_sphere_radius
number_of_sphere
number_of_segment
gui

Method Argument Description
__init__ bullet Optional physics engine instance, defaults to None, ini-
tializes PyBullet if not provided.
body_color RGBA color for the robot’s body.
head_color RGBA color for the robot’s head.

Radius of spheres used to build the robot’s body.
Number of spheres constructing the robot’s body.
Number of segments in the robot’s body.

Boolean to toggle graphical interface, defaults to True.

create_robot

No arguments, sets up the robot’s physical structure within
the simulation. This function is invoked at the end of the
constructor.

camera_marker

move_robot_ori action Array of actions defining movement commands for robot
segments.
base_pos The base position of the robot in the simulation space.
base_orin The base orientation of the robot, specified as Euler an-

gles.
Boolean to display camera markers, defaults to True.

calc_tip_pos action Array of actions affecting the tip’s position and orienta-
tion.
base_pos The base position from which the tip’s calculations start.
base_orin Base orientation affecting the tip’s calculation.
capture_image removeBackground Boolean to decide whether to remove background from
the image, defaults to False.
in_hand_camera_capture_image | - No arguments, captures image from the robot’s in-hand
camera.
is_robot_in_contact obj_id Object ID to check for contact with the robot.
is_gripper_in_contact obj_id Object ID to check for contact with the robot’s gripper.
suction_grasp enable Boolean to enable or disable the suction grasp mechanism.

set_grasp_width

grasp_width_percent

Percentage of maximum grasp width to set for the gripper.

add_a_cube pos Position to place the cube in the simulation.
ori Orientation of the cube, given as a quaternion.
size Dimensions of the cube.
mass Mass of the cube.
color RGBA color of the cube.
textureUniqueld Optional texture ID for the cube’s surface.
wait sec Duration in seconds to delay the simulation.
24 References

205 [1] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marin-Jiménez. Automatic

206 generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition,
207 47(6):2280—2292,2014. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2014.01.005.
208 URL http://www.sciencedirect.com/science/article/pii/S0031320314000235.

200 [2] S.Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer. Generation of
210 fiducial marker dictionaries using mixed integer linear programming. Pattern Recognition, 51:
211 481 — 491, 2016. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2015.09.023. URL

2 http://www.sciencedirect.com/science/article/pii/S0031320315003544.

)

http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://www.sciencedirect.com/science/article/pii/S0031320315003544

	Robot Prototype
	Detailed Information About Reaching Target Task
	Reward Function

	Custom Gym Environments
	Real Robot Experiments
	Training Dataset
	Control Policy Learning
	Experiments Results

	Detailed Results of Non-Prehensile Object Manipulation
	Detailed Results of Trajectory Tracking
	Python Interface
	API Documentation

