
APPENDIX

A Overview of group representations

In this section we briefly introduce the representation theory of the three groups we used in this work.

Planar rotations group SO(2) The standard representation of r✓ 2 SO(2) is as a 2⇥ 2 rotation
matrix

⇢(r✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�

The complex irreducible representations are often used and correspond to the circular harmonics.
More precisely, SO(2) has an irrep for each frequency k 2 Z:

�k(r✓) = eik✓ .

Also, note that �k(r✓) = ��k(r✓).

Planar rotations and reflections group O(2) The standard representation of O(2) is as a 2 ⇥ 2
orthogonal matrix

⇢(r✓) =


cos ✓ � sin ✓
sin ✓ cos ✓

�

and

⇢(r✓f) =


cos ✓ � sin ✓
sin ✓ cos ✓

� 
�1 0
0 1

�

Apart from the trivial representation ⇢0,0(h) = 1 8h 2 O(2) and the sign-flip representation
⇢1,0(r✓) = 1 and ⇢1,0(f) = �1, all other irreps are 2 dimensional. For all integer k > 0

⇢k(r✓) =


cos k✓ � sin k✓
sin k✓ cos k✓

�

and

⇢k(r✓f) =


cos k✓ � sin k✓
sin k✓ cos k✓

� 
�1 0
0 1

�

3D rotations group SO(3) The group SO(3) has irredubile representations  l of frequencies
l = 0, 1, 2, · · · respectively of size 2l + 1. These representations are isomorphic to the Wigner
D matrices. In particular,  0 is the trivial representation and  i is isomorphic to the standard
representation of SO(3) as 3⇥ 3 rotation matrices.

3D rotations and reflections group O(3) The group O(3) is the direct product SO(3)⇥ {e,mz},
where {e,mz} is the group containing the identity and the mirroring in 3D along the Z axis. An
element g = (m, r) 2 O(3) is a pair of a mirroring m 2 {e,mz} and a rotation r 2 SO(3). Every
irreducible representation ⇢i,k of O(3) is equal to the product of an irrep ⇢SO(3)

k
of SO(3) and one of

the two (1 dimensional) irreps ⇢{e,mz}
i

-for i = 0, 1 - of {e,mz}:

⇢i,k(m, r) = ⇢{e,mz}
i

(m)⇢SO(3)

k
(r)

where ⇢{e,mz}
i

(e) = 1 and ⇢{e,mz}
i

(mz) = (�1)i.

In general, if G is a group, we denote with bG the set of its irreducible representations.

B Spectral Properties of the Vector Laplacian on the Projective Plane

Recall the generative process for cryo-EM images:

oi = ⇧(g
�1

i
 ) with gi 2 SO(3) (12)
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Let Rz
⇠= SO(2) < SO(3) the subgroup of SO(3) containing rotations around the Z axis and

H ⇠= O(2) < SO(3) the subgroup containing also the rotation ry by ⇡ around the Y axis.

Define the projective plane PR2 as the quotient space PR2 ⇠= SO(3)/H . This definition of the
projective plane is convenient since the equivalence relationship used corresponds to the symmetries
of cryo-EM, as described in Tab. 1. If there exists a hij 2 H such that oj ⇡ hij .oi, the symmetries
of the generative model imply that

gj ⇡ gih
�1

ij

and, therefore, that the poses gi and gj belong to the same coset in PR2 ⇠= SO(3)/H . As argued
earlier, the estimated relative poses provide a local estimation of the parallel transport on PR2.

The parallel transport operator transports vector fields defined over a space. Before entering the
details about the parallel transport, let us define more precisely the concept of vector fields.

Vector fields as Mackey functions Let G0 < G be two compact groups and ⇢ a representation
of G0, i.e. ⇢ : G0 ! GL(V⇢), where V⇢ is the vector space where ⇢ acts (i.e. Rdim⇢ if ⇢ is a real
representation or Cdim⇢ if it is complex valued). Let X be the homogeneous space isomorphic to
the quotient X ⇠= G/G0. Then, we define a (square-integrable) ⇢-vector field over X as a Mackey
function, i.e. as a map v : G ! V⇢ satisfying the following G0-equivariance property:

v(gg0) = ⇢(g0)�1v(g) 8g 2 G, g0 2 G0 .

We denote the space of all ⇢-vector fields as HomG0(G, V⇢). The space HomG0(G, V⇢) carries a
natural action of G: let v be a ⇢-vector field and g 2 G, then:

[g.v](x) = v(g�1.x) 8x 2 G .

This representation is isomorphic to the induced representation IndG
G0 ⇢ and the space of vector

fields is isomorphic to HomG0(G, V⇢) ⇠= IndG
G0 V⇢; we will use these two notations interchangeably,

depending on whether we want to emphasize the G0-equivariance property or the representation of
G acting on this space. By choosing a section of the quotient space, i.e. a function � : X ! G
defining a choice of representative element of each coset gG0 2 X , this Mackey function can be
turned into the more familiar notion of vector field v0 : X ! V⇢ by composition, i.e. v0 = v � �. A
useful property is that, if G00 < G0, then HomG00(G,ResG

0

G00 V⇢) ⇢ HomG0(G, V⇢). In our particular
setting, we are interested in vector fields over PR2, on which our local parallel transport operator
will act. Hence, G = SO(3) and G0 = H . Moreover, we are interested in vector fields of different
kinds, i.e. associated with different choices of irreducible representations ⇢ of H .

The action of SO(3) on the space of vector fields One can show that the action of G = SO(3),
i.e. the representation IndSO(3)

O(2)
⇢, is unitary and, therefore, Peter-Weyl Theorem guarantees that it

can be decomposed into a direct sum of (an infinite number of) irreducible representations of SO(3).
In particular, the space of ⇢-vector fields decomposes into invariant subspaces, each transforming
independently under SO(3) by a different irrep, i.e.:

HomH(SO(3), V⇢) ⇠=
M

 2\SO(3)

m M
V 

where \SO(3) is the set of (representatives of the isomorphism classes of) SO(3)’s irreps and m is
the multiplicity of  in this decomposition. These invariant subspaces can be identified as follows.
By the Frobenious Reciprocity Theorem, one can show that the multiplicity of an irrep  of SO(3)

into IndSO(3)

H
⇢ is precisely equal to the multiplicity of ⇢ in the ResSO(3)

H
 , i.e. the representation  

restricted to the domain H . If  is a Wigner D matrix of frequency l, it is well known that ResSO(3)

H
 

decomposes into a direct sum of all 2-dimensional H ⇠= O(2) irreps of frequency k = 1, · · · , l and
one of the two 1 dimensional ones, depending on the parity of l. It follows that, if ⇢ has frequency
k > 0, IndSO(3)

H
⇢ contains one copy of each irrep of SO(3) with frequency l � k.
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A basis for the invariant subspaces of vector fields Next, we pick a basis for each of the invariant
subspaces mentioned above. Together, these bases form a basis for the space of all ⇢-vector fields.
We will state the following results without a proof, but we refer to Appendix D of [32] for a formal
discussion. Let ⇢ be the frequency k irrep of H ⇠= O(2); then, for any irrep  of SO(3) of frequency
l � k, IndSO(3)

H
⇢ contains exactly one subspace V of dimension dim = 2l + 1. Let

ResSO(3)

H
 = [IDl]T

0

@
M

⇢0

⇢0

1

A IDl

be the irreps decomposition of  when restricted to H , where the direct sum
L

iterates over the
right set of irreps and IDl is the appropriate dim ⇥ dim change of basis. The irrep ⇢ of frequency
k appears in the direct sum above precisely once. Let IDkl be the 2⇥ dim matrix containing the
rows of IDl which are acted on by the single occurrence of ⇢ in the directsum. Then, a basis for V is
given by the following set:

Bk

l
=

n
vli : SO(3) ! V⇢, g 7!

p
dim IDkl  (g�1)ei | i = 1, . . . , dim = 2l + 1

o
(13)

where ei is a zero vector containing a 1 in its i-th entry. We will now see that these functions are
strictly related to the spin-weighted spherical harmonics.

Relation with the spin-weighted spherical harmonics To see this, we first restrict the 2-
dimensional irrep ⇢ of O(2) with frequency k > 0 to the Rz

⇠= SO(2) subgroup. Let � be
the complex irrep of SO(2) of frequency k and � the one of frequency �k. Then, it holds that
ResO(2)

SO(2)
⇢ ⇠= � � �; this isomorphism is given by the matrix

C =
1p
2


ı �1
ı 1

�
, (14)

where ı is the imaginary unit and † represents conjugate transpose. Indeed:

⇢(r✓r
f

y
) = C†


eık✓ 0
0 e�ık✓

� 
0 �1
�1 0

�f
C = C†


�(r✓) 0
0 �(r✓)

� 
0 �1
�1 0

�f
C (15)

with f 2 {0, 1} representing respectively no flip or a flip along the X axis and r✓ a planar rotation by
✓. Then, HomH(SO(3), V⇢) is a subspace of HomRz (SO(3),ResH

Rz
V⇢) ⇠= HomRz (SO(3), V�)�

HomRz (SO(3), V�). The spaces IndSO(3)

Rz
V� and IndSO(3)

Rz
V� are the spaces of � and � vector-fields

over a sphere S2 ⇠= SO(3)/Rz , like those considered in [13]. Each of these spaces contain a single
subspace isomorphic to V for any  of frequency l � k. Let’s denote these two spaces as V +

 
and

V �
 

; they are, respectively, spanned by the spin-weighted spherical harmonics of order l and weights
+k and �k, i.e.:

Y +k

l
=

n
Yli : SO(3) ! C, g 7!

p
dim e

T

1
C IDkl  (g�1)ei | i = 1, . . . , dim = 2l + 1

o

Y �k

l
=

n
Yli : SO(3) ! C, g 7!

p
dim e

T

2
C IDkl  (g�1)ei | i = 1, . . . , dim = 2l + 1

o

where e1 = (1, 0)T and e2 = (0, 1)T . One can verify that V , the subspace of IndSO(3)

H
V⇢ spanned

by Bk

l
, is a dim = 2l + 1 dimensional subspace of V +

 
� V �

 
, the 2 dim -dimensional space

spanned by the spin weighted spherical harmonics above. This result will turn out useful later when
relating the eigenfunctions of the Laplacian operator on the projective plane and on the sphere.

Eigenfunctions of the Laplacian Operator By a similar argument used in [13] for the sphere,
the Laplace-Beltrami operator defined over a ⇢-vector field can be identified with a local parallel
transport operator over the projective space and, therefore, can be shown to be SO(3)-equivariant.
Because the SO(3) action on the space of vector fields HomH(SO(3), V⇢) contains at most one copy
of each irrep of SO(3), by Schur’s Lemma, this implies that the operator acts by scalar multiplication
in each of the invariant subspaces of the space of ⇢-vector fields. It follows that these scalar values
are the eigenvalues of the operator and the invariant subspaces are the eigenspaces. Additionally,
each eigenspace is spanned by the basis Bk

l
defined above for the unique frequency l � k such that

the eigenspace transforms according to the SO(3)’s irrep  of frequency l. Thus, Bk

l
constitutes a set

of eigen-functions of the Laplacian operator.
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Localized Parallel Transport over PR2
and S2 Define the sphere as the quotient space S2 ⇠=

SO(3)/Rz , with Rz
⇠= SO(2). Let �(r✓) = eik✓ be the complex irrep of SO(2) of frequency k 2 Z.

Then, let TS2

h
be the local parallel transport operator over a �-vector field v on a sphere S2 as defined

in [13], where h 2 [0, 2] defines the locality:

[TS2

h
v](x) :=

Z

y2SO(3):h⇡(y),⇡(x)i>1�h

�(TS2

(x, y))v(y) 8x 2 SO(3)

where ⇡ : SO(3) ! S2 is the projection map defined as ⇡ : g = (x,y, z) ! z. Assume that the
spherical cap covered by the locality h is smaller than an hemisphere, i.e. it does not include two
points which are projected to the same point in the projective plane. Let ⇢ be the H ⇠= O(2) irrep of
frequency |k|. Let TPR2

h
be the local parallel transport operator of a ⇢-vector field on PR2 defined as

[TPR2

h
v](x) :=

1

2

Z

y2SO(3):|h⇡(y),⇡(x)i|>1�h

⇢(TPR2

(x, y))v(y)

where TPR2

(x, y) = TS2

(x, y) if h⇡(y),⇡(y)i > 0 and TPR2

(x, y) = TS2

(x, yry)ry otherwise
(ry 2 H ⇠= O(2) is the ⇡ rotation around the Y axis). Note that ⇡(yry) = �⇡(y). Then, it follows
that:

[TPR2

h
v](x) =

1

2

Z

y2SO(3):h⇡(y),⇡(x)i>1�h

⇢(TS2

(x, y))v(y)

+
1

2

Z

y2SO(3):h�⇡(y),⇡(x)i>1�h

⇢(TS2

(x, yry))⇢(ry)v(y)

applying the change of variables y0 = yry and using ryry = e:

=
1

2

Z

y2SO(3):h⇡(y),⇡(x)i>1�h

⇢(TS2

(x, y))v(y)

+
1

2

Z

y02SO(3):h⇡(y0),⇡(x)i>1�h

⇢(TS2

(x, y0))⇢(ry)v(y
0ry)

= [TS2

h

1

2
[v + ry / v]](x)

where ry / v is the ⇢-vector field defined as [ry / v](x) = ⇢(ry)v(xry). If v : SO(3) ! Rdim⇢ is a
⇢-vector field over PR2, the equivariance property of Mackey functions implies that ry / v = v. It
follows that

TPR2

h
v = TS2

h
v"

where v" is the lifting of v over the sphere S2 in order to use TS2

h
.

In other words, the parallel transport operator TPR2

h
over PR2

is equivalent to the parallel transport

operator TS2

h
over S2

with its domain restricted to ry-invariant vector fields on the sphere . This
enables us to derive the eigenvalues of TPR2

h
from the eigenvalues of TS2

h
.

Eigenvalues of the Localized Parallel Transport operator over PR2 We have already argued
that the local parallel transport operator TPR2

h
over ⇢-vector fields, with ⇢ the frequency k irreps of

H ⇠= O(2), has one eigenspace V transforming according to the irrep  2 \SO(3) of frequency l
for all l � k. We also know that V is a subspace of V +

 
� V �

 
, the corresponding eigenspaces of

the operator TS2

h
defined respectively over � and � vector fields, with � the frequency k irrep of

Rz
⇠= SO(2). The lifting operator ·" : HomH(G, V⇢) ! HomRz (G,ResH

Rz
V⇢) used earlier embeds

each V into V +

 
� V �

 
. Finally, note that the operator TS2

h
acts on V +

 
and V �

 
independently

by multiplying each of them by their own eigenvalue. However, the eigenvalues are real numbers
and, since TS2

h
over � vector fields and TS2

h
over � vector-fields are equal up to conjunction, both

operators share the same eigenvalues. It follows that TPR2

h
acts by multiplying a subspace V by

the eigenvalue of TS2

h
associated with V +

 
(or equivalently V �

 
). Thus, the operators TPR2

h
and TS2

h

share the same eigenvalues.

17



The eigenvalues {�k
l
}l�|k| of the operator TS2

h
defined over � (or �) vector-fields were already

derived in [13]. In particular, this implies that the same analysis of the spectral gap performed in [13]
applies here.

In conclusion, we note that the difference between using the operator TPR2

h
on HomH(SO(3), V⇢)

and TS2

h
on HomRz (SO(3), V� � V�) is only in the dimensionality of the eigenspaces, which are

twice larger in the second case. It is inside this additional degree of freedom that the global SO(2)
ambiguity we introduced in Section 2 lies.

C SO(3) pose synchronization with O(2) relative poses

In Section 2 we claimed that H ⇠= O(2) relative poses provide sufficient constraints to solve the
SO(3) synchronization problem. This is the same idea behind the final synchronization step in
Section 3.2. In this section, we formalize and prove this claim.

The simplified synchronization problem First, note that an element g = (x,y, z) 2 SO(3) is
fully identified by the matrix (x,y) 2 R3⇥2 since z = x⇥ y. Now, assume that all relative poses
are elements of H ⇠= O(2), i.e. {bgij = hij 2 H}ij . Note that any element h 2 H has form

h =


⇢(h) 0
0T det(⇢(h))

�

where ⇢(h) is the representation of h as the standard 2⇥ 2 orthogonal matrix, 0 is a 2-dimensional
vector containing zeros and det(⇢(h)) = ±1.

Then, gj = gihij () (xj ,yj) = (xi,yi)⇢(hij). The proof of =) is trivial. To prove (= ,
note that

hzj , zii = hxj ⇥ yj ,xi ⇥ yii
= det

�
(xj ,yj)

T (xi,yi)
�

= det
�
⇢(hij)

T (xi,yi)
T (xi,yi)

�

= det (⇢(hij)) det
�
(xi,yi)

T (xi,yi)
�

= det (⇢(hij))

Since both zi and zj are unit vectors, it follows that zj = det (⇢(hij)) zi and, therefore, gj = gihij .

This result suggests that, when the relative poses belong to H (or a subgroup of H), the synchroniza-
tion problem in Eq. 2 can be simplified from the set of constraints

bgj ⇡ bgibh�1

ij
8(i, j) 2 G (16)

to the following ones

(bxj , byj) ⇡ (bxi, byi)⇢(bh�1

ij
) 8(i, j) 2 G . (17)

Spectral Relaxation of the simplified synchronization problem Finally, we show that the sim-
plified synchronization problem in Eq. 17 is related to the eigenvalue decomposition of the graph
Connection Laplacian associated with the frequency k = 1 representation of O(2) via a spectral

relaxation.

First, we formally define the synchronization problem as

{(bxi, byi)}i = argmax
{(xi,yi)|xi?yi2S2}i

L({(xi,yi)}i)

= argmax
{(xi,yi)|xi?yi2S2}i

X

(i,j)2G

1p
deg(i) deg(j)

Tr
�
(xj ,yj)

T (xi,yi)⇢(hij)
T
�

where we require xi and yi to be orthogonal unit vectors in order to represent an element of SO(3).
deg(i) is the degree of the node i in the graph G. One can show that maximizing this objective function
is equivalent to minimizing the squared Frobenious distance between (xj ,yj) and (xi,yi)⇢(hij)T .
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The objective L({(xi,yi)}i) can be re-written in matrix form. Define the matrix V 2 R2N⇥3 as
the matrix whose i-th 2⇥ 3 block contains (xi,yi)T and let Vx, Vy, Vz be its 3 columns. Let A be
a 2N ⇥ 2N symmetric matrix representing the normalized graph Connection Laplacian associated
with the representation ⇢ of H and the graph G. Then, the objective above can be expressed as

L({(xi,yi)}i) = Tr
�
V TAV

�
= V T

x
AVx + V T

y
AVy + V T

z
AVz .

One recognizes the similarity between maximizing L({(xi,yi)}i) and the eigenvalues problem.
Indeed, if we drop the condition that xi and yi need to be orthogonal unit vectors, this objective
is maximized by any choice of Vx, Vy, Vz in the top eigenspace of A. This is the idea behind the
spectral relaxation of the problem.

Convergence of the spectral relaxation to the true poses In practice, we know from Appendix B
that the top eigenspace of A is precisely 3 dimensional. Moreover, we know from Eq. 13 that this
eigenspace is spanned (up to a normalizing factor) by the three eigenvectors

B1

1
=

n
v1,a : V ! R2, i 7!

p
3 ID11  1(g

�1

i
)ea | a = 1, 2, 3

o
(18)

where  1 : SO(3) ! R3⇥3 is the frequency 1 irrep of SO(3) which is isomorphic to the Wigner D
Matrix of frequency 1 as well as the standard representation of SO(3) are 3⇥ 3 rotation matrices.
Recall that the matrix ID11 contains the rows of the change of basis ID1 in the decomposition
ResSO(3)

H
 1(h) = (ID1)T (⇢(h) � det(⇢(h))) ID1 . Moreover, ⇢(h) � det(⇢(h)) is also the repre-

sentation of H acting on the standard representation of the elements of SO(3) as a 3 ⇥ 3 rotation
matrix (x,y, z). Hence, ID1  1(gi)(ID

1)T = (xi,yi, zi).

However, the eigenvalues decomposition can converge to any orthogonal basis for this space. More
precisely, let v : V ! R2⇥3 the stack of the three elements in B1

1
and let '1 : V ! R2⇥3 the top

three eigenvectors found. Then, there is an, unknown, matrix O 2 O(3) such that '1(i) = v(i)O
and, therefore, '1(i) =

p
3(xi,y1)TO. This guarantees the recovery of the frames, and so, of the

poses {gi}i up to a global O(3) ambiguity whenever the graph Connection Laplacian converges to
the Laplacian operator over PR2.

This global O(3) ambiguity is related to the intrinsic O(3) ambiguity in cryo-EM. Indeed, let
O = r ic 2 O(3), where r 2 SO(3) and c 2 {0, 1} indicates whether O includes the inversion
i = �1I . Note that ix = �x and det(O) = 1� 2c and det(O)O = r. By using

Ox(i)⇥Oy(i) = det(O) O (x(i)⇥ y(i)) = r (x(i)⇥ y(i)) ,

one can verify that O maps a solution

{bgi = (x(i), y(i), z(i))}i
to

{rbgircz = (ic rx(i), ic ry(i), rz(i))}i .

C.1 Failure with SO(2) relative poses

Finally, we emphasize the necessity of using O(2) rather than SO(2) relative poses. Let ⇢ 2 [O(2) be
again the 2-dimensional real irrep of O(2) of frequency k > 0 and recall that ResSO(2)

O(2)
⇢ ⇠= � � �,

where � : r✓ ! eik✓ is the frequency k complex irrep of SO(2); see Eq. 15. As argued in Apx. B,
for  2 \SO(3), an eigenspace V of a parallel transport operator TPR2

h
over ⇢-vector fields on the

projective plane is a subspace of V +

 
� V �

 
, which are the corresponding eigenspaces of the operator

TS2

h
over � and � vector fields over the sphere. In case the synchronization graph only contains

SO(2) relative poses, the operator TPR2

h
over ⇢-vector fields on the projective plane decomposes into

two independent copies of TS2

h
acting over the two subspaces containing � and � vector fields on the

sphere. In Apx. B, we have also proved that V +

 
and V �

 
share the same eigenvalues. It follows that

these eigenspaces can not be discriminated by the eigenvalues decomposition and the top eigenspace
of the synchronization matrix A will be 6 rather than 3 dimensional. This prevents the identification
of the absolute poses, which we have proved to live in the 3-dimensional subspace V .
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D Proof of Theorem 3.1

Assume the eigenvectors of graph connection Laplacian matrices converged to the eigenfunctions of
the vector diffusion operators on the projective plane. Let ⇢ 2 [O(2) be the 2-dimensional real irrep
of O(2) of frequency k. Then, the top eigen-space of cAk is 2k + 1 dimensional with eigenvectors
equal to the eigenfunctions defined in Eq. 13 up to an orthogonal change of basis M 2 R2k+1⇥2k+1.
In other words, let Yk : SO(3) ! R2o2k+1 the stack of all 2k + 1 eigenfunctions in Eq. 13; then the
top 2k + 1 eigenvectors will have form:

'k

i
= 'k(gi) = Yk(gi)M =

p
2k + 1 IDkk  (g�1

i
)M 2 R2⇥2k+1 (19)

for each image oi with pose gi 2 SO(3).

Then, the 2⇥ 2 block cAk(i, j) is equal to

cAk(i, j) = 'k

j
('k

i
)T

= (2k + 1) IDkk  (g�1

j
)MMT (gi)(ID

kk)T

= (2k + 1) IDkk  (g�1

j
gi)(ID

kk)T

= (2k + 1) IDkk  (gij)(ID
kk)T

It is now convenient to express the irrep  in a complex basis. Let g = (↵, ✓, �) 2 SO(3) expressed
in terms of Euler angles and let dl

mn
: [0,⇡] ! C be Wigner’s small d function. Then, if  is the

frequency l irrep of SO(3),  is isomorphic to the Wigner D matrix Dl defined as:

Dl

mn
(↵, ✓, �) = e�im↵dl

mn
(✓)e�in�

where m,n = �l, . . . ,�1, 0, 1, . . . , l index the entries of Dl. Let B be the change of basis such that
 = BDlB† and let C be the change of basis matrix defined in Eq. 14.

Since both the Frobenious norm and the determinant are invariant to unitary change of basis, we can
consider the block cAk(i, j) = C†cAk(i, j)C instead. Using the changes of basis above:

cAk(i, j) = C†cAk(i, j)C

= (2k + 1)C† IDkk BDk(gij)B
†(IDkk)TC

Note that the matrix B†(IDkk)TC contains the rows of the irreps decomposition of ResSO(3)

H
Dk

corresponding to the irrep C⇢C†. Recall that
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Hence, C⇢C† acts directly on the columns n = ±k of Dl. This implies that B†(IDkk)TC simply
indexes these two columns; then
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Let gij = (↵, ✓, �), where cos ✓ = hzi, zji (see Eq. 55 in [13]). Then:
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By expanding the definition of the Wigner small d functions dk, one can show that:

dk
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(✓) = (cos
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and, therefore:
���cAk(i, j)

���
2

F

= 2(cos
✓

2
)4k + 2(sin

✓

2
)4k

det
⇣
cAk(i, j)

⌘
= (cos

✓

2
)4k � (sin

✓

2
)4k

Finally, by using the trigonometric identities sin2 ↵
2
= 1�cos↵

2
and cos2 ↵

2
= 1+cos↵

2
, one reaches

the identities in Theorem 3.1.

E Similarity as dot product for fast K-NN search

In Sec. 3, the way the estimator bs±
ij

aggregates the multi-frequency information was inspired from
[13]. Instead, here, we use an estimator for the similarities similar to the one adopted in [12]:

s̄±
ij
=

LX

k=1

Sk±
ij

s̄ij = sign(s̄+
ij
� s̄�

ij
) ·max(s̄+

ij
, s̄�

ij
)

i.e., we just sum the estimators associated with each frequency. The benefit of this solution is that
this estimation can be written as an inner product, enabling faster K-NN search.

Indeed, the quantity Sk±
ij

itself can be expressed as the inner product of some features �i and �j
associated with the images i and j. This enables the use of a faster method to identify the K nearest
neighbors of each image i, without computing the similarity of all pairs.

Recall that we defined 'k(i) =
p
2

k'k(i)kF
'k(i) 2 R2k+1⇥2 and cAk(i, j) = 'k(i)T'k(j) 2 R2⇥2.

Theorem 3.1 and Eq. 8 require the Frobenius norm
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and the determinant det
⇣
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⌘

of this matrix. As discussed in Sec. 3, in practice, more eigenvectors can be used; in this case
'k(i) 2 Rdk⇥2, with dk > 2k + 1.

To simplify our notation, we denote with xki and y
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Figure 6: Correlation of the estimated cosine similarities sij in different variations of the synthetic
vector dataset.

Hence, for frequency k, we define a query vector as qki = 1p
2

�
xkixTki + y

ki
yT
ki

�
�
�
xkiyTki

�
and a

key vector as k±
ki

= 1p
2

�
xkixTki + y

ki
yT
ki

�
�

�
±xkiyTki ⌥ y

ki
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�
. The final query and key vectors

are obtained by stacking the ones built for each frequency, i.e. qi =
L

L

k
qki and k±

i
=

L
L

k
v±
ki

. The
indexes j of the key vectors k±

j
closest to qi correspond to the indexes with highest similarity s̄±

ij
.

Our final estimator is the maximum of the two similarities above (indicated by ±), i.e. w̄ij = |s̄ij | =
max(s̄+

ij
, s̄�

ij
), where the sign ± indicates whether the images i and j are related by a reflection.

Hence, once can just run K-NN on the augmented keys set, containing both k+

j
and k�

j
.

Finally, the complexity of K-NN is O(NKd logN), where d is the dimensionality of queries and
keys and N the number of points. In this case, assuming at most M eigenvectors are used for any
frequency (i.e. for each k, dk < M ), the dimensionality d is at most 2LM2. Hence, the cost of this
search is O(NKLM2 logN).

F Additional Experiments and Details

F.1 Synthetic Vector Dataset

In this section, we provide further details and results on the datasets used in Sec. 5.1.

Figure 6 shows the correlation between the estimated cosine similarities {s̃ij}ij and the real ones
{sij}ij for the same set of experiments shown in Figure 4. The same observations hold here. In these
experiments, we used L = 6.

In Figure 7, we compare the correlation between the estimated and ground truth SO(3) poses in
different experimental settings at a SNR = 0.16. While the noise is too large to achieve perfect
correlation with the number of samples considered, we see that there is a regime where considering
more frequencies significantly improves the performance. A similar effect is observed on the
estimation of the cosine similarity in Figure 8. Note that in these experiments, as well as in Sec. 5.1
and Figure 5, we used the estimator s̃ij from Eq. 9 rather than bsij from Eq. 10 since s̃ij directly
estimates sij , while bsij is equal to either bs+

ij
or �bs�

ij
and matches sij well only when |sij | is close to

1.

F.2 Further details on the experiments with ASPIRE and RELION in Sec. 5.2

Here, we provide more details about the cryo-EM experiments in Sec. 5.2.
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Figure 7: Effect of different choices of maximum frequency L on the performance with SNR = 0.16.

Figure 8: Effect of different choices of maximum frequency L on the estimated cosine similarities.
Including higher frequencies improves the estimation. Here, we used 2000 samples and SNR = 0.25.
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In our experiments, we include our method in the pipeline of Python ASPIRE. Consider a dataset
of N images of resolution D = 97 pixels. First, the pipeline estimates the amount of noise in the
images and performs a first denoising. The resulting images are used to compute a O(2)-steerable
PCA. The steerable features extracted from each image are used to compute SO(2)-invariant vectors
via bispectrum [15]. These invariant features are further reduced via a randomized PCA. Then, we
perform a K-nearest neighbor search on an augmented dataset, containing mirrored copies of each
image. This provides the connectivity of the synchronization graph, together with an estimation of
the relative reflections. Note that the use of an augmented dataset is necessary since the bispectrum
computed is only SO(2) invariant; this augmentation is only needed to compute the edges associated
with a reflection but does not result in a larger number of nodes in the graph. For each edge retrieved,
the optimal rotation is found efficiently by combining a Polar transform and a Fast Fourier Transform.
We refer to ASPIRE’s documentation for more details.

Next, the relative poses found can be denoised by using the MFVDM methods, i.e. with SO(2) or
O(2) and with different values of the maximum frequency L. Optionally, a subset of n < N images
can be selected and denoised by averaging their nearest neighbors.

We consider the common line synchronization (CL) [7, 23, 24] as a baseline to compare our VDM-
based method. Once the poses are estimated, we perform a first 3D reconstruction by using the
variational method Version 2 described in Apx. F.3. We first fit a Gaussian posterior on the density by
using the poses estimated in the previous phase and, in a second step, we fine tune both the posterior
and the poses. We use the noise variance estimated by ASPIRE from the data to define the generative
process of the render and the variance of the images (corrected by the noise variance) to define a
Gaussian prior on the 3D density. In particular, the first step uses a batch size of 32, a learning rate of
1e� 2 and 500 iterations. The second fine-tuning step, instead, uses a batch size of 96, a learning rate
of 1e� 3 and 500 iterations. Finally, we use this low-resolution reconstruction as an initialization for
the 3D Refine method in RELION.

F.3 Additional details about the initial reconstruction method in Sec. 5.2 and other

experiments on simulated Cryo-EM dataset

In this section, we provide more details about the method used for initial reconstruction in Sec. 5.2
and some additional experiments with variations of it.

In our experiments, we followed an approach similar to [31] based on variational inference to perform
the 3D density estimation. The method is based on an differentiable render - based on the Fourier
Slice Theorem - which allows to generate projections from a 3D density and back-propagate the
errors of the rendered images to the parameters of the density. Like [31], we ignore the contrast
transfer function (CTF) in the rendering step for simplicity.

We describe the three versions we implemented in the following three paragraphs. In Sec. 5.2,
we used the Version 2, initialized with the poses provided by the previous synchronization stage.
In Apx. F.3.1, we also experimented with Version 2 and Version 3, combined with different pose
initializations.

Version 1: 3D density estimation First, we review the basic version of the method, which only
performs reconstruction and assumes the poses to be known. As in on [31], we optimize the mean
and the variance parameters of a Gaussian distribution over the 3D density. While [31] parameterize
the distribution in the Fourier domain (a mean and a variance parameter per frequency), we do so in
the image domain. This enables us to leverage a Gaussian prior in the image domain and enforce
the 3D density to be zero beyond a diameter of 60% of the image’s resolution. The parameters are
estimated by minimizing an upper bound on a KL divergence between the estimated and the real
posterior distributions on the raw images via stochastic gradient descent (SGD). More precisely, at
each iteration, we sample a batch of images and their respective poses, we sample a 3D density from
the parameterized Gaussian distribution and project it according to each image’s pose. Assuming a
fixed Gaussian noise on the images, we compute a KL divergence between Gaussian distributions
centered at each image and the projection. The loss also includes the divergence between the 3D
density’s learnt distribution and a Gaussian prior. Finally, we minimize this loss by back-propagating
it on the density’s parameters and performing gradient descent. We estimate the noise variance in
the images with ASPIRE by looking at the raw images’ statistics in their outer rings. Similarly, we
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Table 4: Pose Correlation (and Negative Log-Likelihood) on test images with different poses initialization.
n. samples 1000 1000 1000 3000 3000 8000 8000

SNR clean 2.7 0.67 0.67 0.3 0.09 0.02

Gumbel-Softmax 0.01 (35.3) 0.01 (50.9)

MFVDM-SO(2) 34.4 (23.6) 33.9 (33.8) 33.1 (50.3) 33.1 (46.4) 25.2 (27.8) 18.4 (44.0) 18.0 (45.0)

MFVDM-O(2) 100.0 (2.7) 99.6 (10.3) 99.3 (33.7) 99.6 (11.0) 99.0 (27.8) 88.8 (52.6) 57.7 (74.4)

Ground Truth � (2.0) � (10.4) � (28.7) � (11.7) � (20.9) � (30.2) � (55.8)

estimate the prior variance by looking at the raw images’ statistics in the central area (and correcting
by the noise variance). We keep the mean of the estimated Gaussian distribution as reconstruction.

Version 2: Fine-tuning the poses Moreover, since the renderer is also differentiable with respect
to the images’ poses, we also adapted it to either estimate or fine-tune the poses. We parameterize
poses in SO(3) by using quaternions to guarantee a continuous parameterization. In Apx. F.3.1
and Tab. 4, we experiment with three different initializations: the Ground-Truth or the output of
MFVDM-SO(2) or MFVDM-O(2).

Version 3: Pose Marginalization via Gumbel-Softmax Conversely, in the Gumbel-Softmax
method, for each image, we learn a generic distribution over a finite subset G ⇢ SO(3) of the poses.
In practice, for each image, we would like to store the log-likelihood of each element in G; this vector
should be turned into a probability by using the softmax function. At each iteration, we sample a
pose gi 2 G for each image according to its own distribution and use that to project the 3D density.
Unfortunately, because this sampling step is not differentiable, we can not directly back-propagate
the gradient to the log-likelihood vectors. Hence, instead of naively applying softmax, we sample
gi 2 G by using the Gumbel-Softmax [33], which offers a reparameterization trick to compute the
gradient of the parameters of a categorical distribution. Additionally, because the discrete set G
loses all geometrical information about the similarity between poses, we diffuse the log-likelihoods
over neighboring points in G before using the Gumbel-Softmax by using a Gaussian kernel defined
in the quaternion space. The final poses are estimated by taking the element gi 2 G with highest
log-likelihood. The set G is found by optimizing the location of |G| in SO(3) via gradient descent to
minimize a potential energy.

F.3.1 Other experiments on simulated Cryo-EM dataset

Here, we include a few additional experiments with the models described above. In particular, we
compare three different initializations of the poses for Version 2 - with the ground truth, with the
estimation produced by our method and with estimations produced via SO(2) alignment - and the
Gumbel-Softmax based method Version 3 In the SO(2) alignment case, we use the similarity metric
recovered by MFVDM to build a diffusion operator on S2, whose top eigenvectors estimate zi; we
initialize (xi,yi) to random orthogonal frames.

To evaluate the reconstruction, we compute the likelihood of a number of new clean images. We
estimate the test images’ poses by, first, estimating the optimal alignment g 2 O(3) between the
training images’ ground truth and estimated poses and, then, correcting the test images’ poses by g.
We also fine-tune these estimate poses before computing their final likelihood.

To evaluate the methods, we notice that the probabilistic approach also allows us to estimate the
quality of a reconstruction in terms of the likelihood of a set of new images.

Evaluating the reconstruction To evaluate a reconstruction, we compute the negative log-
likelihood of a number of clean images given the estimated 3D density. Since we assume Gaussian
noise, this loss is essentially a MSE between the test images and the density’s projections. To estimate
a test image’s pose, we need to estimate the density’s rotation with respect to the ground truth poses
used to generate the test data. To find the element g 2 SO(3) which aligns the 3D density with the
test images, we search for the element g which aligns the estimated training images’ poses and their
ground truth. Then, g�1 is close to the optimal alignment of the test images’ ground truth poses to
the current 3D density. Once this correction is performed, we also fine tune the test poses via gradient
descent as in Version 2, while keeping the 3D density fixed. Finally, once the test poses are estimated,
we report the negative log-likelihood computed with respect to the density’s projections.
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Figure 9: Random projections of recon-
structions. Rows: 3000, 8000 and 8000

training samples with SNR 0.3, 0.09 and
0.02. Columns: Gumbel-Softmax, MFVDM-
SO(2), MFVDM-O(2) and GT methods.

Experiments details and parameters For each method
and dataset, we perform a small search over the hyper-
parameters by looking at the negative log-likelihood of the
training images. The reconstruction with the smallest loss
is then evaluated on the clean test images. We use ADAM
to optimize the reconstruction parameters and the poses.
We use images of resolution 129 ⇥ 129, a batch size of
8, learning rates in the range 10�3 � 5 · 10�1 to optimize
the density and 1000 to 6000 iterations. In the Version

2 methods, we used a learning rate in the range 10�4 �
5 · 10�1 to optimize the poses. In the Gumbel-Softmax
method, we first used Version 3 with a learning rate in
the range 10�4 � 5 · 10�1 to optimize the distributions
over the poses for 1000 to 6000 iterations, followed by a
Version 2 phase of 200 iterations with a learning rate of
10�6 � 5 · 10�1 to refine the maximum-likelihood poses
previously found. In the MFVDM methods, we use a
maximum frequency L = 6 and pick the 0.1� 15% nearest neighbors of each node.

Table 4 reports the correlation of the training images’ poses and the negative log-likelihood (NLL)
of 500 clean test images in different training settings. Our MFVDM-O(2) method can accurately
recover the poses, yielding reconstruction quality close to the one obtained using ground truth poses
(GT). Conversely, we do not find initializing the poses with the spherical embeddings recovered by
MFVDM-SO(2) useful. Unfortunately, we find that the NLL - essentially, a mean-squared error - does
not reflect the reconstruction quality in the lowest SNR regimes (e.g., the baselines have losses lower
than the GT model). Still, the sample projections of the produced densities in Fig. 9 demonstrate that
our method (MFVDM-O(2)) achieves similar visual quality to the ground-truth. Instead, the baseline
models did not converge to meaningful structures, emphasizing the importance of pose initialization.
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