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Towards Open-vocabulary HOI Detection with Calibrated
Vision-language Models and Locality-awareQueries

Anonymous Author(s)∗

ABSTRACT
The open-vocabulary human-object interaction (Ov-HOI) detec-
tion aims to identify both base and novel categories of human-
object interactions while only base categories are available during
training. Existing Ov-HOI methods commonly leverage knowledge
distilled from CLIP to extend their ability to detect previously un-
seen interaction categories. However, our empirical observations
indicate that the inherent noise present in CLIP has a detrimental
effect on HOI prediction. Moreover, the absence of novel human-
object position distributions often leads to overfitting on the base
categories within their learned queries. To address these issues,
we propose a two-step framework named, CaM-LQ, Calibrating
visual-languageModels, (e.g., CLIP) for open-vocabulary HOI de-
tection with Locality-aware Queries. By injecting the fine-grained
HOI supervision from the calibrated CLIP into the HOI decoder,
our model can achieve the goal of predicting novel interactions.
Extensive experimental results demonstrate that our approach per-
forms well in open-vocabulary human-object interaction detec-
tion, surpassing state-of-the-art methods across multiple metrics
on mainstream datasets and showing superior open-vocabulary
HOI detection performance, e.g., with 4.54 points improvement on
the HICO-DET dataset over the SoTA CLIP4HOI on the UV task
with the same backbone ResNet-50. Our codes are available at:
https://anonymous.4open.science/r/cam_lq.

KEYWORDS
Human-object Interaction Detection, Open-vocabulary Learning,
Vision-Language Models
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1 INTRODUCTION
Human-object Interaction (HOI) detection, a fundamental task of
human-centered scene understanding, has gained considerable at-
tention across diverse domains, such as Image Captioning [27],
Visual Question Answering (VQA) [33], and video analysis [5].
Notably, prevailing methods [28, 40] have demonstrated stunning
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Figure 1: Noise of V&L mode comparison. We investigate
three different V&Lmodels on RTM, UC, UV, UO tasks, which
denotes the region text matching and HOI detection under
settings where compositions, verbs, and objects are unseen,
respectively. CaCLIP denotes our calibrated CLIP.

performance within the confines of closed-set scenarios. Neverthe-
less, the inherent complexity of real-world interactions between
humans and objects gives rise to a multitude of interaction cate-
gories that are not comprehensively encapsulated by existing HOI
datasets, such as V-COCO [8] and HICO-DET [2]. Hence, there is a
compelling necessity to shift attention toward the exploration of
Open-vocabulary Human-object Interaction (Ov-HOI) detection.

With the widespread adoption of large-scale pretrained vision-
language models (VLMs), such as CLIP [29], prior works [20, 32, 34]
have showcased the impressive generalization capabilities of VLMs
in open-vocabulary scenarios [7, 42]. However, these models en-
counter three primary limitations: (1) struggling in fine-grained
HOI detection, especially for local regions, due to their adoption of a
global image-level knowledge distillation strategy [20, 32] to guide
their image encoders towards learning CLIP-like embeddings; (2)
prone to overfitting on the spatial features of base categories, mak-
ing them incapable of handling scenarios with substantial spatial
distribution disparities between seen and unseen HOI categories;
(3) misalignment of HOI visual and language knowledge, attributed
to intrinsic noise introduced by pretrained multimodal models like
CLIP. To empirically assess these limitations, Figure 1 illustrates
the performance evaluation of three multimodal features: CLIP, Re-
gionCLIP [42], and our calibrated CLIP, in HOI classification tasks
under various scenarios. The former two features exhibit obviously
inferior performance compared to our calibrated CLIP. For more
analysis, please refer to Sec. 5.4.

To overcome the aforementioned issues, we propose a novel
model, denoted as CaM-LQ, aimed at calibrating visual language
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models with fine-grained HOI priors and then training an open-
vocabulary HOI detector with locality-aware queries. More con-
cretely, we develop a two-step training mechanism: (1) calibrating
CLIP with HOI priors, and (2) performing open-vocabulary HOI
detection. In the first step, we suppress the intrinsic noise in visual
language models, such as CLIP, by calibrating CLIP features with
HOI knowledge through training two parallel adapters [6]. This cal-
ibration ensures that the learned visual-semantic space is equipped
with corrective HOI concepts, thereby enhancing its compatibility
for HOI detection.

Moving on to the second step, we initially employ a pre-trained
object detector, e.g., DETR [1], to identify objects and construct pair-
wise queries for feasible human-object pairs. Specifically, we utilize
spatial embeddings of human-object pairs to refine human and
object visual features and employ human-object queries to decode
the global image feature with spatial priors. Subsequently, for each
detected pair, we encode union box embeddings and compute their
similarities with pre-defined text embeddings using our calibrated
pre-trained model at the first stage. These similarities serve as fine-
grained supervision to guide the training of the open-vocabulary
HOI detection network through a logit distillation mechanism.

In summary, our contributions can be outlined as follows:
• Through comprehensive empirical experiments of V&L

models, we observe the presence of significant intrinsic
noise in their embeddings, which proves to be detrimental
to open-vocabulary HOI detection.

• We devise an approach to calibrate CLIP with HOI priors,
coupled with a fine-grained logit distillation strategy, to
alleviate the impact of intrinsic noise in the embeddings.

• We propose to inject spatial priors into HOI queries to de-
code pairwise HOI features, which will help the mode focus
on the interaction point and capture a nuanced relationship.

• Our model surpasses state-of-the-art approaches with a
large margin on many metrics of Ov-HOI detection, e.g.,
surpassing the SoTACLIP4HOIwith 4.54mAP on theHICO-
DET dataset on the UV task with the backbone ResNet-50.

2 RELATEDWORK
In this section, wewill carefully review literature from the aspects of
HOI detection, open-vocabulary HOI detection and HOI detection
with CLIP.

2.1 HOI Detection
The current mainstream HOI detection methods can be categorized
into two paradigms: one-stage and two-stage. One-stage approaches
[14, 17, 30] treat HOI detection as a set prediction problem, adopting
parallel prediction methods to locate objects and predict interaction
categories. This requires a decoder to extract effective interaction
information from the learned query. However, these methods are
often constrained by excessive noise in the learned queries, leading
to an inability to decode the correct interaction categories. Addi-
tionally, as the query learns from the training set, it may result in
over-fitting to the position distribution of human and base object
[25]. On the other hand, two-stage methods [18, 28] often utilize a
pre-trained detector to locate objects and predict categories. There-
fore, they can leverage off-the-shelf features to construct the query,

imbuing it with sufficient interaction information. Our approach
adopts a two-stage step, based on a pre-trained detector [1], to
enhance interaction prediction capabilities.

2.2 Open-vocabulary HOI Detection
Open-vocabulary HOI detection [10, 38] aims to predict base and
novel HOI categories with only base HOI labels during training.
Due to the complexity of the composition of human and object
interaction, it is almost impossible to construct all HOI categories.
Therefore, open-vocabulary HOI detection can be more effectively
applied in real-world scenarios. The task currently has three main
scenarios: Unseen Composition(UC), Unseen Object(UO), Unseen
Verb(UV). Recently, ConsNet [23] employed explicit and implicit
knowledge of HOI from consistency graphs and word embeddings.
However, these methods are constrained by the limitations of HOI
datasets and cannot fully explore the capability of open-vocabulary
HOI detection. In light of this, recent methods [20, 25] extract
knowledge from vision-language pre-trained model [29] to improve
open-vocabulary performance and have achieved promising scores.

2.3 HOI Detection with CLIP
Recently, CLIP has successfully implemented contrastive learning
with large-scale image-text pair data gathered from the internet
and achieved powerful zero-shot performance. The approaches to
leverage CLIP knowledge in HOI tasks can be divided into two
groups. The first group utilizes CLIP to extract global features.
For example, GEN-VLKT [20] encodes the entire image with CLIP
and applies supervised learning on the global image features to
the image encoder in the network. HOICLIP [26], integrates CLIP
global embeddings with backbone features, followed by a decoder
to predict interaction categories. CLIP4HOI [25] employs the global
feature from CLIP to introduce prior knowledge to aid the final
prediction of interaction categories. The other group, however,
involves utilizing CLIP to extract region features. For instance, EoID
[34] proposed to inject more regional supervision information into
the predictions by union box features. Similarly, we borrow the
idea of EoID to inject fine-grained supervision into the decoder.

However, none of the aforementioned methods consider the
noise brought by CLIPwhich is trained on large-scale image-caption
datasets, leading the bias towards the object category, rather than
HOI category. It is necessary to calibrate CLIP features with HOI
priors and eliminate noise. In light of this, we propose a pre-training
step to calibrate CLIP with HOI priors, enabling a visual semantic
space with rich HOI priors.

3 PROBLEM STATEMENT
In this section, we introduce the setting of HOI detection in both
fully supervised and open-vocabulary settings. Denote O = {𝑜1, 𝑜2,
..., 𝑜𝑁𝑜

} be the object category,V = {𝑣1, 𝑣2, ..., 𝑣𝑁𝑣
} be the interac-

tion verbs and C denote all the feasible composition of verb-object
pairs, i.e., C = {(𝑣𝑖 , 𝑜 𝑗 ) |𝑣𝑖 ∈ V;𝑜 𝑗 ∈ O}. Let I denote an input
image, with corresponding labels 𝑇 = {B,Y} where B is a set
of bounding boxes including human bounding boxes Bℎ and ob-
ject bounding boxes B𝑜 , and Y denote a set of HOI triplets. Each
⟨𝑏ℎ, 𝑏𝑜 , 𝑐𝑖 ⟩ in Y is a HOI triplet, where 𝑐𝑖 ∈ C.
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Figure 2: Our proposed open-vocabulary HOI model CaM-LQ. Top: the pre-training procedure for fine-tuning CLIP with HOI
priors to get CaCLIP with rich HOI knowledge. Bottom: our two-stage open-vocabulary HOI detector. Firstly, we detect all
humans and objects with a pre-trained object detector. Then we encode pairwise queries with visual features and spatial priors.
Finally, the pairwise queries are fed into the decoder and further refined in each layer with spatial embeddings.

In a fully supervised scenario, all the feasible verb-object pairs
⟨𝑣𝑖 , 𝑜𝑖 ⟩ are included in the training set. However, for open-vocabulary
settings, only base verb-object pairs are seen during training and the
model needs to process novel pairs during testing. Let 𝑉𝑏𝑎𝑠𝑒 ⊂ V ,
𝑂𝑏𝑎𝑠𝑒 ⊂ O and 𝐶𝑏𝑎𝑠𝑒 ⊂ C \ C𝑛𝑜𝑣𝑒𝑙 . According to whether verbs
and objects are available during training, there are three different
settings: (1) Unseen Object (UO), where for all ⟨𝑣𝑖 , 𝑜𝑖 ⟩ ∈ C𝑛𝑜𝑣𝑒𝑙 ,
we have 𝑣𝑖 ∈ V𝑏𝑎𝑠𝑒 and 𝑜 𝑗 ∈ O𝑛𝑜𝑣𝑒𝑙 (2) Unseen verb (UV), where
for all ⟨𝑣𝑖 , 𝑜𝑖 ⟩ ∈ C𝑛𝑜𝑣𝑒𝑙 , we have 𝑣𝑖 ∈ V𝑛𝑜𝑣𝑒𝑙 and 𝑜 𝑗 ∈ O𝑏𝑎𝑠𝑒

(3) Unseen Composition (UC), where for all ⟨𝑣𝑖 , 𝑜𝑖 ⟩ ∈ C, we have
𝑣𝑖 ∈ V𝑏𝑎𝑠𝑒 and 𝑜 𝑗 ∈ O𝑏𝑎𝑠𝑒 .

4 METHOD
In this section, we introduce our proposed CaM-LQ, Calibrating
visual-language Models, and training an open-vocabulary HOI
detector with Locality-aware Queries for open-vocabulary HOI
detection. As illustrated in Figure 2, our CaM-LQ employs a two-
step training framework, encompassing four primary components:
the teacher model CaCLIP, a pre-trained object detector, an HOI
encoder, and a pairwise interaction decoder. Firstly, we conduct
fine-tuning of the CLIP model, incorporating HOI priors to imbue
HOI-specific knowledge and yielding a specialized V&L teacher
model denoted as CaCLIP. The HOI transformer-based encoder is
employed, utilizing query embeddings and box coordinates as in-
puts, integrating visual and spatial features to construct HOI queries.
Subsequently, the interaction decoder integrates these queries with
box spatial priors, and backbone features serving as key-value pairs,
to predict the action in each HOI triplet. Ultimately, we compute co-
sine similarities between visual features and HOI text embeddings.

These similarity scores are utilized as soft labels to guide the action
prediction, facilitating knowledge transfer to the HOI decoder.

4.1 Calibrating CLIP with HOI priors
Our empirical observations (seeing Sec.5.4 for more detail.) indicate
that the raw CLIP feature can not handle HOI prediction well,
primarily due to intrinsic noise stemming from the training on
extensive web image-caption pairs. To address this limitation, we
propose a calibration strategy to imbue CLIP with HOI-specific
knowledge and align HOI visual and text information at a finer
granularity, specifically at the region level.

However, due to the limited data availability, direct fine-tuning
of all parameters of CLIP proves challenging. Inspired by [6], we
adopt a more lightweight fine-tuning strategy by introducing two
adapters, for the image and text encoders. In default, our adapters
are implemented by MLPs and are positioned subsequent to the
original CLIP image and text encoders. In practice, we also test
other alternative adapter architectures, and for more details, please
refer to the supplementary materials.

We employ human-annotated HOI labels to calculate the union
box coordinates for each human-object pair, i.e., the minimum
bounding rectangle. These union boxes are utilized to crop the
image as:

I𝑐𝑟𝑜𝑝 = Φ𝑐𝑟𝑜𝑝 (I,Φ𝑢𝑛𝑖𝑜𝑛 (𝑏ℎ, 𝑏𝑜 )) (1)

𝑣 ′𝑖 = Adapter𝑖𝑚𝑔 (CLIP𝑖𝑚𝑔 (I𝑐𝑟𝑜𝑝 )) (2)

Where 𝑣 ′
𝑖
denotes the embedding of the union region, Φ𝑢𝑛𝑖𝑜𝑛 repre-

sents the operation computing the union box for the human-object
pair, Φ𝑐𝑟𝑜𝑝 signifies the operation of cropping the bounding box

3
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region from the image, CLIP𝑖𝑚𝑔 is the function responsible for en-
coding the image using the CLIP visual encoder and Adapter𝑖𝑚𝑔

denotes the image adapter.
As for the text branch, we utilize CLIP to encode a predefined

set of HOI texts, by a template, e.g., “a photo of a person verb
object," where “verb" and “object" represent labels in an HOI triplet.
Subsequently, we establish an HOI knowledge bank denoted as
𝑾 = [𝑤1,𝑤2, ...,𝑤 |𝐶 | ], which serves as a classifier. By feeding text
features into the HOI adapter, we derive a refined HOI knowledge
bank𝑾 ′. The cosine similarity between the obtained human-object
region feature and predefined text features is then computed:

𝑠 = Softmax( [𝑠𝑖𝑚(𝑣 ′𝑖 ,𝑤
′
1), ..., 𝑠𝑖𝑚(𝑣 ′𝑖 ,𝑤

′
| C | )]) (3)

Where 𝑠𝑖𝑚(𝑣 ′
𝑖
,𝑤 ′

𝑗
) = (𝑣 ′

𝑖
·𝑤 ′

𝑖
)/(| |𝑣 ′

𝑖
| | · | |𝑤 ′

𝑖
| |). Finally, a binary cross-

entropy loss is employed for multi-label classification, aligning
pairwise region features with corresponding HOI texts. Following
this calibration process, we acquire a calibrated CLIP endowed
with HOI priors, dubbed CaCLIP, which attains proficiency in a
specialized HOI visual-semantic space, rendering it amenable for
subsequent applications in open-vocabulary HOI detection.

4.2 Visual and Spatial-priors Encoding
In this section, we present how we encode visual features and in-
ject spatial priors into the HOI queries. Following [39], we adopt a
two-stage paradigm for HOI detection. Specifically, we first input
an image into DETR [1] and obtain the global visual features and
a set of region proposals. As [39], we post-process the region pro-
posals with non-maximum suppression (NMS) and filter the DETR
queries with confidence scores lower than a threshold. The post-
processed results are denoted as (�̂�, 𝑆, �̂�, 𝐻 ), where �̂� ∈ 𝑅𝑁𝑝𝑟𝑒𝑑×4,
𝑆 ∈ [0, 1]𝑁𝑝𝑟𝑒𝑑 , �̂� ∈ {0, 1, ..., |O| − 1}𝑁𝑝𝑟𝑒𝑑 and 𝐻 ∈ 𝑅𝑁𝑝𝑟𝑒𝑑×𝐶𝑑

refer to predicted boxes, confidence scores, object categories and
query features respectively, where 𝑁𝑝𝑟𝑒𝑑 denotes the number of
queries after filtering.

Since the queries obtained from a pre-trained object detector
[1] are designed for localization and classification, directly employ-
ing them as interaction queries can not obtain ideal results, due
to the fact that they typically focus on object-level information
rather than the pairwise interactive concepts. Hence, to further
adapt them to represent HOI visual embeddings, we employ a self-
attention mechanism to refine them. The objective of self-attention
mechanism is to enable human and object queries to focus on each
other’s features and complement each other.

Concretely, we compute the sinusoidal embeddings [31] of box
center 𝑐𝑥 , 𝑐𝑦 , width 𝑐𝑤 and height 𝑐ℎ , by Θ : 𝑅 → 𝑅𝑑

Θ(𝑥)2𝑖 = 𝑠𝑖𝑛( 𝑥

𝜏2𝑖/𝑑
),Θ(𝑥)2𝑖−1 = 𝑐𝑜𝑠 ( 𝑥

𝜏2𝑖/𝑑
) (4)

where 𝑑 is half of the 𝐶𝑑 , 𝑖 = 1, 2, ..., 𝑑/2 and 𝜏 is a temperature
parameter.

With the coordinates embeddings, we concatenate them to form
the spatial embeddings 𝐸𝑠𝑝 ∈ 𝑅𝑁𝑝𝑟𝑒𝑑×2𝐶𝑑 and the object features
are refined through self-attention layers as follows:

𝐻 ′ = Self_Attn(𝐻, Proj(𝐸𝑠𝑝 )) (5)

where𝐻 ′ ∈ 𝑅𝑁𝑝𝑟𝑒𝑑×𝐶𝑑 , SelfAttn and Proj denote box spatial embed-
dings, refined object features, self-attention layers and projection
layers respectively.

Subsequently, we keep all viable pairs, i.e., excluding those where
the subject category is not human. Thus, human-object queries
𝑄ℎ𝑜 ∈ R𝑁pair×𝐶𝑟 for feasible pairs are constructed through concate-
nation and a two-layers MLP to fuse human and object features by
the following operations:

𝑄ℎ𝑜 = MLP(CAT(𝐻 ′
human, 𝐻

′
object)) (6)

where 𝐻 ′
human and 𝐻 ′

object represent the human and object features
of feasible pairs in the spatially refined features 𝐻 ′. So far, 𝑄ℎ𝑜 ∈
R𝑁pair×𝐶𝑟 is enriched with detailed spatial information, which can
facilitate the HOI decoder to pay more attention to the objects close
to a human.

4.3 Locality-aware Interaction Decoder
In this section, we seek to use refined interaction queries to predict
HOIs from visual features via a locality-aware interaction decoder.
Following [40], we apply the backbone ResNet C5 [9] features in de-
fault and further refine it with lightweight window attention layers
[24], where the refined features are denoted as 𝐹 ′ ∈ Rℎ×𝑤×𝐶𝑑 .

One-stage HOI approaches [20, 26] widely incorporate learnable
position embeddings to ensure that the initialized queries capture
interaction pairs at different locations. However, for a two-stage
counterpart, since objects have already been localized and form
human-object pairs, adding learnable vectors to capture position
information becomes less meaningful. Inspired by this, we argue
that the localization information of humans and objects helps the
decoder in learning the interaction between human-object pairs.
Hence, we concatenate the sinusoidal spatial information of humans
and objects in feasible pairs to obtain pairwise spatial embeddings
𝐸′𝑠𝑝 ∈ R𝑁𝑝𝑎𝑖𝑟 ×4𝐶𝑑 . Each pairwise spatial embedding 𝑒′𝑠𝑝 is calcu-
lated as follows:

𝑒′𝑠𝑝 = CAT(𝑒human, 𝑒object) (7)

where 𝑒human, 𝑒object ∈ 𝐸𝑠𝑝 denote spatial embedding of human
and object in each feasible pair.

Subsequently, we develop a spatial prior enhancement module
in each decoder layer by the sinusoidal embeddings (Eq.4) again.
Concretely, we inject the box spatial priors 𝐸′𝑠𝑝 from Eq.(7) and
sinusoidal positional embeddings 𝐸′𝑝𝑠 into each decoder layer to
augment the query 𝑄ℎ𝑜 and image features F ′ respectively. Tak-
ing the query in the 𝑙-th layer as an example, the augmentation
operation is calculated as follows:

𝑄 ′
𝑙
= LN1 (MHSA(𝑄𝑙 + 𝐸′𝑠𝑝 ) +𝑄𝑙 )

𝑄 ′′
𝑙
= MHCA(𝐶𝐴𝑇 (𝑄𝑙 , 𝐸

′
𝑠𝑝 ),𝐶𝐴𝑇 (𝐹 ′, 𝐸′𝑝𝑠 ), 𝐹 ′)
𝑄 ′′′
𝑙

= LN2 (𝑄 ′
𝑙
+𝑄 ′′

𝑙
)

𝑄𝑙+1 = LN3 (𝑄 ′′′
𝑙

+ 𝐹𝐹𝑁 (𝑄 ′′′
𝑙
))

(8)

where LN, MHSA, MHCA, CAT, FFN denotes layer normalization,
multi-head self-attention, multi-head cross attention, concatena-
tion and feed-forward network, respectively. Projection layers and
dropout operations are omitted for simplicity. It is worth noting that
the first layer 𝑙 = 0, 𝑄0 is set to 𝑄ℎ𝑜 from Eq.(6). Finally, the output
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hidden state embedding of the last layer, i.e., 𝑄𝑁 should incorpo-
rates interactive feature information of human-object pairs and is
employed to predict interactions via a binary classifier, yielding
𝑆𝑣 ∈ R𝑁𝑝𝑎𝑖𝑟 ×|V | .

4.4 Calibrated CLIP for Ov-HOI Detection
Owing to the unavailability of novel categories during training,
we turn to CaCLIP, serving as a teacher model, to exploit its open-
vocabulary HOI knowledge. With the huge discrepancy of the fea-
tures between the teacher and the HOI decoder, we adopt the logits
from CaCLIP as the guidance knowledge instead of its V&L features,
to avoid the noise feature in the V&L teacher. Note that though
EoID [34] adopts the similar strategy to inject CLIP signals as super-
visory information, the significant noise presented in CLIP severely
impedes the accurate alignment between image regions and their
corresponding HOI texts. This results in the supervision scores
providing less satisfactory guidance than ours provided by CaCLIP.

In implementation, we use the union box of each feasible pair
to crop the input image and compute visual embedding through
CaCLIP. Afterward, the cosine similarities with the predefined HOI
texts, i.e., (verb, object), are normalized by a softmax operation.
Subsequently, those similarity scores are mapped to action logits
𝑆𝑐𝑙𝑖𝑝 ∈ R𝑁𝑝𝑎𝑖𝑟 ×|V | where invalid actions are masked out with the
priors provided from DETR. Then, we treat the logits 𝑆𝑐𝑙𝑖𝑝 from
CaCLIP as a soft label to guide the interaction prediction. Note
that 𝑆𝑐𝑙𝑖𝑝 only influences categories not covered by the ground
truth. We conduct a mask operation to choose the CLIP logit for
computing losses:

SoftMask(𝑖, 𝑗 ) =

{
1 if𝑆𝑐𝑙𝑖𝑝 (𝑖, 𝑗 ) ≠ 0 and 𝑆𝑔𝑡 (𝑖, 𝑗 ) ≠ 1
0 otherwise

(9)

where 𝑆𝑔𝑡 ∈ [0, 1]𝑁𝑝𝑎𝑖𝑟 ×|V | denote ground truth labels of action
categories. In practice, we use SoftMask(𝑖, 𝑗 ) to multiply losses cal-
culated by the soft CLIP label.

4.5 Training and Inference
Training: Given action logits, the total loss comes from two parts:
the hard loss with ground truth labels and the soft loss with CLIP
supervision labels. We apply focal loss [21] to mitigate the impact
of imbalanced data distribution and hyper-parameter 𝜆 to balance
the two terms:

L𝑡𝑜𝑡𝑎𝑙 = Lℎ𝑎𝑟𝑑 + 𝜆L𝑠𝑜 𝑓 𝑡 (10)

Inference: We combine the confidence scores (𝑆ℎ, 𝑆𝑜 ) from DETR
as prior knowledge to obtain the final prediction scores following
[40]:

𝑆𝑝 = (𝑆ℎ𝑆𝑜 ) (1−𝜑 )𝑆
𝜑
𝑣 (11)

where 𝑆𝑝 ∈ 𝑁𝑝𝑎𝑖𝑟×|V | and 𝜑 ∈ [0, 1] is a hyperparameter and 𝑆𝑣
is the predicted action score by the HOI decoder.

5 EXPERIMENTS
In this section, we will carefully elaborate our comprehensive ex-
perimental evaluation on three benchmark datasets. More results
can be found in the supplementary materials.

5.1 Experimental setup
Datasets: we conduct downstream experiments on two popular
benchmarks: HICO-DET [2] and V-COCO [8]. Specifically, HICO-
DET comprises 37,633 training images, 9,546 testing images, with
80 object categories, 117 action categories, and a total of 600 interac-
tion relationship combinations. V-COCO consists of 2,533 training
images, 2,876 validation images, 4,946 testing images, featuring 80
object categories and 26 action categories.
Metrics:We use mean average precision (mAP) as the evaluation
metric. For a feasible pair, we consider it as a positive sample only
if the Intersection over Union (IOU) between the bounding boxes
of the person and object and the ground truth label exceeds the
threshold and the corresponding label is assigned to positive sample.
Otherwise, it is treated as a negative sample.
Open-vocabulary Setups:As described in Section 3, we conducted
experiments based on the UO, UV, and UC settings. Additionally,
the UC setting is extended to RF-UC, where tail HOI categories are
selected as the novel, and NF-UC setting, which contains head HOI
categories as the novel. For HICO-DET, the division between base
and novel classes for all the Ov-HOI tasks follows the EoID [34]
protocol. As for V-COCO, we are the first to report the UV results,
please refer to the appendix for more details.

5.2 Implementations
We use the fine-tuned DETR with the backbone ResNet-50 [9]
as our small model CaM-LQ𝑠 in default and a large counterpart
CaM-LQ𝑙 with more powerful object detector DETR [15] of Swin-L
[24] backbone. Following [39], we adopt the same filtering scheme
only keeping the detections with a confidence score higher than 0.2.
Besides, the distillation is built upon the CLIP, which takes ViT-B/16
[4] as its backbone. The CLIP adapters are instantialized as a two-
layer MLP for both image and text branch. The hyper-parameter
𝜆 and 𝜑 are set to 400 and 0.26 respectively. For the selection of 𝜏 ,
we follow [22] and set it to 20 to make the sinusoidal encoding in
the Transformer more suitable for vision tasks. We use 𝛼 = 0.5 and
𝛾 = 0.1 in our focal loss, the same as previous work [40]. The object
hidden features from DETR have a dimension of 𝐶𝑑 of 256, and the
query features of the decoder are set to 𝐶𝑟 of 384. For more details,
please refer to the appendix.

5.3 Comparison with the state-of-the-arts
5.3.1 Effectiveness for Open-vocabulary HOI detection. In Table
2, we report the results on HICO-DET under five different set-
tings as [25]: UC (Unseen Composition), RF-UC (Rare First Unseen
Combination), NF-UC (Non-rare First Unseen Combination), UO
(Unseen Object), UV (Unseen Verb). On the UC setting, our ap-
proach achieves SoTA for small version and even gain an mAP gain
of 10.05, 10.84 and 10.89 for unseen, seen, and full results with a
larger backbone. As for the RF-UC setting, we demonstrate the
robust generalization capability of our approach to achieve a re-
markable improvement of 3.82 and 6.99 points on unseen categories
with different backbones. When it turns to the NF-UC setting, our
CaM-LQ can also outperform all the previous models. Besides, our
model also shows considerable improvements on the UO and UV,
confirming its strong generalizability to novel objects and actions.
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Method Backbone Type
UC RF-UC NF-UC UO

Unseen Seen Full Unseen Seen Full Unseen Seen Full Unseen Seen Full

One-stage methods
ATL [12] R50 - - - 9.18 24.67 21.57 18.25 18.78 18.67 15.11 21.54 20.47
GEN-VLKT† [20] R101+ViT-32 21.36 32.91 30.56 21.36 32.91 30.56 25.05 23.38 23.71 10.51 28.92 25.63
CDT [43] R50 18.06 23.34 20.72 - - - - - - - - -
EoID [34] R50+R50 23.01 30.39 28.91 22.04 31.39 29.52 26.77 26.66 26.69 26.77 26.66 26.69
HOICLIP [26] R50+ViT-16 23.15 31.65 29.93 25.53 34.85 32.99 26.39 28.10 27.75 16.20 30.99 28.53
DiffHOI-S [36] R50 - - - 24.13 32.93 31.08 26.57 25.55 25.75 9.42 29.79 26.22
LOGICHOI [19] R50 25.97 34.93 33.17 25.97 34.93 33.17 26.84 27.86 27.95 26.84 27.86 27.95
RLIPv2 [37] R50 - - - 21.45 35.85 32.97 22.81 29.52 28.18 - - -
Two-stage methods
VCL [11] R50 - - - 10.06 24.28 21.43 16.22 18.52 18.06 - - -
FCL [13] R50 - - - 13.16 24.23 22.01 18.66 19.55 19.37 15.54 20.74 19.87
ConsNet [23] R50 16.99 20.51 19.81 - - - - - - 19.27 20.99 20.71
ADA-CM [18] R50+ViT-16 - - - 27.63 34.35 33.01 32.41 31.13 31.39 - - -
OpenCat* [41] R101+ViT-16 - - - 21.46 33.86 31.38 23.25 28.04 27.08 23.84 28.49 27.72
CLIP4HOI [25] R50+ViT-16 27.71 33.25 32.11 28.47 35.48 34.08 31.79 28.26 28.90 27.71 33.25 32.11
DHD [35] R101 - - - 23.32 30.09 28.53 27.35 22.09 23.14 27.05 27.87 27.73
CaM-LQ𝑠 (ours) R50+ViT-16 29.93 35.84 34.66 32.29 36.57 35.59 36.92 31.22 31.56 31.44 32.73 32.58

QAHOI† [3] Swin-L 21.93 27.84 26.66 19.35 29.37 27.06 28.28 20.19 21.81 23.54 28.74 27.87
PViC† [40] Swin-L 23.34 28.06 27.11 19.47 29.47 27.17 32.08 25.50 26.82 24.11 30.54 29.46
DiffHOI-L [36] Swin-L - - - 28.76 38.01 36.16 29.45 31.68 31.24 5.75 35.08 30.11
CaM-LQ𝑙 (ours) Swin-L+ViT-16 34.39 38.90 38.00 35.75 41.06 36.81 42.22 31.81 33.89 36.36 36.65 36.61

Table 1: Open-vocabulary results on HICO-DET. UC, UO denote unseen composition and unseen object settings. RF-UC and
NF-UC refer to rare-first UC and non-rare-first UC respectively. The † denotes our implementation based on their released code.

Method Backbone Type Unseen Seen Full

One-stage methods
GEN-VLKT [20] R101+ViT-32 UV 20.96 30.23 28.74
CDT [43] R50 UV 19.68 21.45 15.17
EoID [34] R50+R50 UV 22.71 30.73 29.61
HOICLIP [26] R50+ViT-32 UV 24.30 32.19 31.09
DiffHOI-S [36] R50 UV 23.10 30.91 29.72
LOGICHOI [19] R50 UV 24.57 31.88 30.77
Two-stage methods
ConsNet [23] R50 UV 14.12 20.02 19.04
OpenCat* [41] R101+ViT-16 UV 19.48 29.02 27.43
CLIP4HOI [25] R50+ViT-16 UV 26.02 31.14 30.42
DHD [35] R101 UV 17.92 28.13 26.43
CaM-LQ𝑠 (ours) R50+ViT-16 UV 30.56 32.27 31.98

QA-HOI† [3] Swin-L UV 10.64 28.19 25.26
PViC† [40] Swin-L UV 12.18 28.03 25.39
DiffHOI-L [36] Swin-L UV 24.20 36.81 35.04
CaM-LQ𝑙 (ours) Swin-L+ViT-16 UV 31.16 36.89 36.16

Table 2: Open-vocabulary results on HICO-DET under the
unseen verb (UV) setting. The † denotes our implementation
based on their released code.

5.3.2 Fully-supervised HOI detection. A robust open-vocabulary
HOI model should exhibit strong generalizability while maintaining
excellent performance in a closed-set setting. To evaluate this, we
conduct experiments in a fully supervised setting. As shown in
Table 3, our models with small backbone outperforms all previous
methods on the full setting and obtain competitive performance
compared to delicately designed models with Swin-L backbone.

Method Backbone HICO-DET V-COCO

Full Rare Non-Rare 𝐴𝑃𝑆1
𝑟𝑜𝑙𝑒

𝐴𝑃𝑆2
𝑟𝑜𝑙𝑒

GEN-VLKT [20] R101+ViT-32 34.95 31.18 36.08 63.6 65.9
HOICLIP [26] R50+ViT-32 34.69 31.12 35.74 63.5 64.8
LOGICHOI [19] R50 35.47 32.03 36.22 64.4 65.6
DiffHOI-S [36] R50 34.41 31.07 35.40 61.1 63.5
OpenCat* [41] R101+ViT-16 32.68 28.42 33.75 61.9 66.3
RLIPv2 [37] R50 33.32 27.01 35.21 63.0 65.1
DEFR [16] ViT-16 32.35 33.45 - -
UPT [39] R101 32.62 28.62 33.81 61.3 67.1
ViPLO [28] ViT-32 34.95 33.83 35.28 61.0 66.6
ADA-CM [18] R50+ViT-16 33.80 31.72 34.42 56.1 61.5
CLIP4HOI [25] R50+ViT-16 35.33 33.95 35.74 - 66.3
CaM-LQ𝑠 R50+ViT-16 35.67 31.90 36.80 66.4 69.8

QAHOI [3] Swin-L 35.78 29.80 37.56 - -
DiffHOI-L [36] Swin-L 40.63 38.10 41.38 63.9 65.0
PViC [40] Swin-L 44.32 44.61 44.24 64.1 70.2
CaM-LQ𝑙 Swin-L+ViT-16 44.03 44.71 43.83 67.2 72.0

Table 3: Performance comparison in fully-supervised setting
on the HICO-DET and V-COCO datasets. For a fair compar-
ison, we report the results of two-stage methods using an
object detector fine-tuned on the training dataset. ‘*’ means
using extra data for pre-training. Note that the results of
HICO-DET are based on the Default setting.

5.4 Ablation Study
In this section, we conduct ablation experiments on the UC setting
of the HICO-DET dataset, using Swin-L as the default backbone
unless otherwise specified.

5.4.1 Effectiveness of Network Architecture. Firstly, we conducted
ablation experiments on the network components as in Table 4.
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Method Full Seen Unseen

Base 23.55 23.62 23.31
+𝐸𝑛𝑐𝑠𝑝 24.64 24.94 23.46
+𝐷𝑒𝑐𝑠𝑝 25.29 25.76 23.41
+𝐸𝑛𝑐𝑠𝑝+𝐷𝑒𝑐𝑠𝑝 28.38 28.51 27.89
+𝐸𝑛𝑐𝑠𝑝+𝐷𝑒𝑐𝑠𝑝+CaCLIP 38.00 38.90 34.39

Table 4: Effectiveness of our architecture on Ov-HOI detec-
tion. “+sp” means adding spatial embedding into the specific
module.

Method backbone Full Seen Unseen

CLIP R50 30.84 30.50 32.21
CLIP ViT-16 31.52 31.06 33.35
RegionCLIP R50 34.44 34.50 34.19
CaCLIP R50 37.47 38.45 33.54
CaCLIP ViT-16 38.00 38.90 34.39

Table 5: The performance between different CLIP variants
under UC task on HICO-DET.

We defined a base network, i.e., without the addition of any spa-
tial prior information in the encoder or decoder and V&L Teacher.
By introducing spatial priors to the queries, the full performance
improves by 1.09 points, validating the effectiveness of spatial pri-
ors in shaping the features adapted to HOI detection. We further
investigate the role of spatial information in the cross-attention
mechanism. It can be observed that the full score increases by 1.74
points. Notably, adding the spatial embeddings in the encoder and
decoder simultaneously can contribute more mAP gain of 4.83,
demonstrating the efficacy of the spatial information.

Finally, we perform ablation on the CaCLIP structure. With the
guidance of V&L Teacher, our model exhibits a substantial improve-
ment of 9.62 points in the performance, affirming the significance
of our calibrated CLIP for open-vocabulary HOI detection task.

5.4.2 Noise Introduced by V&L Models. To investigate the poten-
tial noise introduced by V&L models in HOI tasks, we conduct
alignment ability experiments on V&L models. RegionCLIP [42]
is designed to train a region-level image-text alignment network,
with a similarity to our HOI task. Figure 1 illustrates the compar-
ative results of the three models on RTM, UC, UV and UO. RTM
denotes region-text matching tasks where we compute the classi-
fication precision of region embeddings. It can be observed that
RegionCLIP’s performance is slightly better than CLIP. However,
our CaCLIP significantly outperforms the other two models in HOI
classification tasks and open vocabulary tasks, demonstrating the
presence of noise in V&L models.

Besides, we also compare different CLIP variants and their cali-
brated version under UC tasks on the HICO-DET, adding Region-
CLIP as well, referring to Table 5. It is noteworthy that we use the
weights from pre-trained Region-CLIP to initialize CLIP. Experi-
mental results demonstrate that using ViT-B/16 as the backbone
achieves the best performance after fine-tuning. Furthermore, it
surpasses Region-CLIP by a large margin of 3.56 points under UC

Method Backbone 𝐴𝑃𝑆1
𝑟𝑜𝑙𝑒

𝐴𝑃𝑆2
𝑟𝑜𝑙𝑒

Full Seen Unseen Full Seen Unseen

CLIP R50 41.49 48.62 22.21 45.92 54.66 27.04
CLIP ViT-16 42.10 49.32 22.53 48.59 55.45 27.44
RegionCLIP R50 43.85 51.38 23.47 48.53 57.76 28.58
CaCLIP R50 44.14 52.46 22.40 48.96 63.39 27.58
CaCLIP ViT-16 45.98 54.65 23.33 51.00 66.03 28.73

Table 6: The performance between different CLIP variants
under the UV task on V-COCO.

𝜆𝑐𝑙𝑖𝑝 Full Seen Unseen

1 30.40 30.45 30.18
100 31.36 31.50 30.84
200 34.52 34.54 34.47
300 36.28 36.84 34.02
400 38.00 38.90 34.39
700 37.23 38.03 34.03

Table 7: The performance with different CLIP loss weight
𝜆𝑐𝑙𝑖𝑝 under UC settings.

setting. Plus, we extend our analysis to the V-COCO dataset to pro-
vide additional evidence of misalignment in large models regarding
HOI visual-semantic information. We provide, for the first time,
an Ov-HOI metric on V-COCO and conduct experiments under
the UV setting. Specifically, we select 10 out of 24 interaction cat-
egories as novel classes, unseen during training, while the model
is required to predict both base and novel classes during inference.
The experimental results are presented in Table 6. Our CaM-LQ the
best performance in both scenarios of 𝐴𝑃𝑆1

𝑟𝑜𝑙𝑒
and 𝐴𝑃𝑆2

𝑟𝑜𝑙𝑒
, demon-

strating the existence of noise in V&L models and the necessity of
calibration and the superiority of our methods in handling Ov-HOI
detection.

5.4.3 Eliminating Noise for CLIP. To visually demonstrate the im-
provement in the performance of the refined V&L models on Ov-
HOI tasks, we conduct pre-training for varying numbers of epochs.
Subsequently, we apply the obtained CaCLIP model to the UC task
on the HICO-DET dataset and UV task on the V-COCO, with the
results presented in Figure 3 and Figure 4. As the refinement process
progresses, it is evident that the performance of the HOI detector
utilizing the V&L model gradually improves and hit the peak when
training with about 20 epochs and 27 epoch for HICO-DET and
V-COCO respectively. This affirms that eliminating noise from V&L
models facilitates progress in HOI tasks. Finally, we choose the
checkpoints of 20 and 27 epochs as our CLIP models for HICO-DET
and V-COCO dataset respectively to deal with all Ov-HOI tasks
mentioned above.

5.4.4 CLIP Loss Weight. Although we fine-tune CLIP during the
pre-training phase, the quality of soft labels is still not as robust as
their corresponding hard labels, due to limitations in data scale and
significant noise in CLIP’s training data. However, soft labels can
introduce novel HOI features, which is crucial for Ov-HOI detection
tasks. We believe that different loss weights guide the model’s
attention to different extents for soft labels L𝑠𝑜 𝑓 𝑡 and hard labels
Lℎ𝑎𝑟𝑑 . We compare the network performance under different loss
weight 𝜆𝑐𝑙𝑖𝑝 for CLIP, as shown in Table 7. CLIP achieves 30.40 full
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gain with the process of calibrating CLIP
under UV task on V-COCO.

mAP when the weight is set to 1 and the score grows continuously
as loss weight increases, finally hitting the peak at 38.00 mAP
as 𝜆𝑐𝑙𝑖𝑝 equals to 400. In the case of 700 points, the performance
degrades a little bit. Experimental results indicate that under a
loss weight of 400, the model can inject the most beneficial open-
vocabulary information to aid learning while ensuring effective
guidance from hard labels.

5.4.5 Logits Distillation vs Embedding distillation. To exploit gen-
eral knowledge from V&L models, we employ the logits distillation
instead of embedding distillation. We conduct preliminary experi-
ments to compare the performance of the two distillation methods
in Ov-HOI detection. For logits distillation, we utilize the approach
described Sec. 4.4. Regarding embedding distillation, we use the
way of GEN-VLKT [20]. Specifically, for an image, we apply CLIP to
encode the entire image I and supervise the average of the query
features of the decoder’s last layer, i.e.,𝑄𝑁 ∈ 𝑅𝑁𝑝𝑎𝑖𝑟 ×𝐶𝑟 , calculating
the L1 loss L𝑚𝑖𝑚𝑖𝑐 as follows:

L𝑚𝑖𝑚𝑖𝑐 = |𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑖𝑚𝑔 (𝐶𝐿𝐼𝑃𝑖𝑚𝑔 (I)) −
1

𝑁𝑝𝑎𝑖𝑟

𝑁𝑝𝑎𝑖𝑟∑︁
𝑖=1

𝑞𝑖 | (12)

where 𝐴𝑑𝑎𝑝𝑡𝑒𝑟𝑖𝑚𝑔 , 𝐶𝐿𝐼𝑃𝑖𝑚𝑔 , 𝑁𝑝𝑎𝑖𝑟 denote CLIP image adapter,
CLIP image encoder and number of feasible pairs, and 𝑞𝑖 ∈ 𝑄𝑁 is
the query feature of each pair.

Method Full Seen Unseen
Logits Distillation 38.00 38.90 34.39
Embedding Distillation 32.25 (-5.75) 33.06 (-5.84) 29.62 (-4.77)

Table 8: The performance with different distillation schemes:
embedding distillation and logits distillation.
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(c)

Pred: <hold/carry…,  tennis racket>Pred: <hold/carry…,  tennis racket> Pred: <eat/hold/pick_up…,  donut>Pred: <eat/hold/pick_up…,  donut>Pred: <hold/open/read…,  book>Pred: <hold/open/read…,  book>

(a)

(b)

(c)

Pred: <hold/carry…,  tennis racket> Pred: <eat/hold/pick_up…,  donut>Pred: <hold/open/read…,  book>

Figure 5: Qualitative results of our CaM-LQ. (a) localization
results. (b) Attention maps of the decoder without spatial pri-
ors. (c) Attention maps of our full model with spatial priors.
Green: correctly detected base category. Orange: correctly
detected novel category.

5.5 Qualitative Analysis
Figure 5 presents some visualization results of CaM-LQ. We show-
case the localization map and average attention maps from the
pairwise decoder, demonstrating CaM-LQ’s accurate object local-
ization. By incorporating spatial priors, our attention maps better
capture the interaction points between human-object pairs. In terms
of category predictions, CaM-LQ can forecast novel categories not
present in the training set and even predict reasonable interaction
predicates not included in the data labels. This highlights the robust
Ov-HOI detection capability of our CaM-LQ.

6 CONCLUSION
In this work, we propose an open-vocabulary human-object interac-
tion detection network, CaM-LQ. We identify potential noise issues
in the V&L model that negatively influence the HOI task. To this
end, we propose a two step open-vocabulary HOI detection model.
Firstly, we suppress the intrinsic noise in the CLIP by calibrating
the visual-language space of CLIP with HOI priors. Secondly, we
inject fine-grained supervision as soft labels deriving from our
calibrated CLIP and leverage spatial priors to enhance the target
detector’s query and assist in extracting feature map information
for pairwise queries. Our approach achieves SoTA results on the
Ov-HOI setting on the V-COCO and HICO-DET datasets across a
wide range of evaluation metrics. For future work, we will focus on
integrating the knowledge from large language models (LLM) to
provide more explicit cues for CLIP. This endeavor aims to further
optimize Ov-HOI tasks, contributing to their enhancement.
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