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ABSTRACT

Transformer architectures have exhibited remarkable performance in image super-
resolution (SR). Since the quadratic computational complexity of the self-
attention (SA) in Transformer, existing methods tend to adopt SA in a local re-
gion to reduce overheads. However, the local design restricts the global context
exploitation, which is crucial for accurate image reconstruction. In this work, we
propose the Recursive Generalization Transformer (RGT) for image SR, which
can capture global spatial information and is suitable for high-resolution images.
Specifically, we propose the recursive-generalization self-attention (RG-SA). It
recursively aggregates input features into representative feature maps, and then
utilizes cross-attention to extract global information. Meanwhile, the channel di-
mensions of attention matrices (query, key, and value) are further scaled to miti-
gate the redundancy in the channel domain. Furthermore, we combine the RG-SA
with local self-attention to enhance the exploitation of the global context, and
propose the hybrid adaptive integration (HAI) for module integration. The HAI
allows the direct and effective fusion between features at different levels (local
or global). Extensive experiments demonstrate that our RGT outperforms recent
state-of-the-art methods quantitatively and qualitatively. Code and pre-trained
models are available at https://github.com/zhengchen1999/RGT.

1 INTRODUCTION

Image super-resolution (SR) aims to recover a high-resolution (HR) images from its low-resolution
(LR) counterpart. Image SR is an ill-posed problem, as there are multiple solutions that can map to
any given LR input. To tackle this challenging inverse problem, researchers have proposed numerous
deep convolutional neural networks (CNNs) (Dong et al., 2014; Lim et al., 2017; Zhang et al., 2018b;
Mei et al., 2020) in the past few years. Thanks to their impressive performance against conventional
approaches, CNNs have almost dominated the field of SR.

However, deep CNNs still suffer from a limitation in global context awareness, due to the local
processing principle of the convolution operator. Recently, an alternative method, Transformer,
has exhibited considerable performance compared with CNN-based methods on multiple high-level
computer vision tasks (Dosovitskiy et al., 2021; Liu et al., 2021; Wang et al., 2021; Chu et al., 2021;
Yang et al., 2022). Transformer is first developed in the natural language processing (NLP) field, and
its core component is the self-attention (SA) mechanism. This mechanism can directly model long-
range dependencies by capturing the interaction between all input data. However, the computational
complexity of the vanilla self-attention grows quadratically with image size, limiting its application
in high-resolution scenarios, especially low-level vision tasks (e.g., image SR).

To apply Transformer in image SR, several methods have been proposed to reduce the computational
cost of self-attention. Some researchers apply local (window) self-attention, which divides the fea-
ture maps into sub-regions to limit the scope of self-attention. Meanwhile, they utilize the shift
mechanism (Liang et al., 2021), overlapping windows (Chen et al., 2022b), or the cross-aggregation
operation (Chen et al., 2022c), to enhance the interaction between windows. These methods achieve
linear complexity with respect to image size and outperform previous CNN-based methods. How-
ever, compared with global attention, the local design needs to stack many blocks to establish global
dependencies. Furthermore, some methods propose “transposed” self-attention (Zamir et al., 2022)
that operates across the channel dimension instead of the spatial dimension. Although this method
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can implicitly capture global information, it hinders modeling spatial dependencies, which is cru-
cial to image SR. Therefore, there is a need to develop a method for image SR that can effectively
capture global spatial information with low computational cost on high-resolution images.

In this paper, we propose the Recursive Generalization Transformer (RGT) for image SR, which
can model global spatial information and is suitable for high-resolution images. Specifically, we
propose the recursive-generalization self-attention (RG-SA) to explore global information directly
in linear computational complexity. The RG-SA first generalizes the input features of arbitrary
resolution into representative feature maps with a small, constant size, via the recursive general-
ization module (RGM). Intuitively, the global information is aggregated into representative maps.
Then cross-attention is utilized between input features and representative maps to exchange global
information. Since the size of representative maps is much smaller than input features, the whole
process is at a low computational cost. Moreover, the RG-SA further adjusts the channel dimension
of query, key, and value matrices in SA to mitigate the redundancy in the channel domain.

Furthermore, considering that the RG-SA aggregates the image features via the RGM, it is inevitable
to lose some local details. Thus, we combine the RG-SA with the local self-attention (L-SA) in
an alternate arrangement to better utilize the global context. To enhance the integration of two
different SA modules, we propose the hybrid adaptive integration (HAI), which acts on the outside
of each Transformer block. The HAI directly fuses features at different levels (local or global)
before and after the block. Besides, HAI adaptively adjusts the input features through a learnable
adaptor for feature alignment. Overall, equipped with the above designs, our RGT can capture global
information for accurate image SR while the complexity is manageable.

Our contributions can be summarized as follows:

• We propose the Recursive Generalization Transformer (RGT) for image SR. The RGT is
capable of capturing global spatial information and is suitable for high-resolution images.
Our RGT obtains notable SR performance quantitatively and visually.

• We propose the recursive-generalization self-attention (RG-SA), utilizing the recursive ag-
gregation module and cross-attention to model global dependency with linear complexity.

• We further combine RG-SA with local self-attention to better exploit the global context,
and propose the hybrid adaptive integration (HAI) for module integration.

2 RELATED WORK

Image Super-Resolution. In recent years, CNN-based methods have shown superior performance
over conventional SR approaches. SRCNN (Dong et al., 2014) is the pioneering work, that in-
troduces three convolutional layers for image SR. Following this attempt, many works deepen the
architecture to improve performance (Zhang et al., 2019; Magid et al., 2021; Dai et al., 2019).
VDSR (Kim et al., 2016) introduces residual learning to build a network with 20 layers. EDSR (Lim
et al., 2017) further simplifies residual block, which allows deeper networks. RCAN (Zhang et al.,
2018a) proposes a residual-in-residual structure to train a model over 400 layers. Moreover, numer-
ous spatial and channel attention mechanisms (Zhang et al., 2019; Liu et al., 2020; Zhou et al., 2020)
are proposed to improve the reconstruction quality. For instance, HAN (Niu et al., 2020) proposes a
layer attention module and channel-spatial attention. Although these CNN-based methods produce
remarkable results, they still suffer from a limitation in global modeling capability.

Vision Transformer. Transformer is proposed in natural language processing (NLP) and has been
adapted to multiple high-level vision tasks, such as image classification (Dosovitskiy et al., 2021;
Liu et al., 2021; Dong et al., 2022), semantic segmentation (Xie et al., 2021), and object detec-
tion (Yang et al., 2022; Tu et al., 2022). Due to the impressive performance in high-level tasks,
Transformer has also been introduced to low-level vision tasks (Liang et al., 2021; Zamir et al.,
2022; Wang et al., 2022; Tsai et al., 2022; Chen et al., 2022c; 2023; Li et al., 2023), including im-
age SR. SwinIR (Liang et al., 2021), following the design of Swin Transformer (Liu et al., 2021),
utilizes local window self-attention and shift mechanism. ELAN (Zhang et al., 2022) proposes
multi-scale self-attention to reduce the computational cost. CAT (Chen et al., 2022c) designs the
rectangle-window self-attention to aggregate the features across different windows. These methods
all reduce computational complexity by applying self-attention within local regions. However, the
local designs restrict the exploitation of global information that is crucial to image SR.
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Figure 1: The architecture of the Recursive Generalization Transformer (RGT). The local self-
attention (L-SA) blocks, and recursive-generalization self-attention (RG-SA) blocks are alternately
arranged. αl is a learnable adaptor in the hybrid adaptive integration (HAI) of the lth block.

Global Attention. To reduce the computational complexity of vanilla self-attention, in addition
to local design, several works attempt to propose global attention with low overheads (Wang et al.,
2021; Tu et al., 2022; Yang et al., 2022; Chen et al., 2022a; Ali et al., 2021). PVT (Wang et al., 2021)
designs a spatial-reduction module to merge tokens of key and value. MaxViT (Tu et al., 2022)
proposes the grid attention to gain sparse global attention. ScalableViT (Yang et al., 2022) scales
attention matrices from both spatial and channel dimensions. Although these methods reduce the
computational complexity to a certain extent, the theoretical complexity remains quadratic, which
hinders their effective application on high-resolution images. RegionViT Chen et al. (2022a) cap-
tures global information among regional tokens to alleviate the overhead of global attention. More-
over, XCiT (Ali et al., 2021) proposes a “transposed” version of self-attention that operates across
channels dimension rather than the spatial dimension to achieve linear complexity. However, it can-
not explicitly model the spatial relationship. In contrast, we propose the recursive-generalization
self-attention (RG-SA), which can explore global spatial information in linear complexity.

3 METHOD

We propose the Recursive Generalization Transformer (RGT) for image SR, which is capable of
capturing global context and handling high-resolution images effectively. In this section, we first
introduce the architecture of RGT. Then, we focus on our proposed recursive-generalization self-
attention (RG-SA) and hybrid adaptive integration (HAI).

3.1 OVERALL ARCHITECTURE

The overall architecture of our proposed RGT is illustrated in Fig. 1, consisting of three modules:
shallow feature extraction, deep feature extraction, and image reconstruction. Given a low-resolution
(LR) image ILR∈RH×W×3, RGT first leverages a convolutional layer as the shallow feature extrac-
tion to get the low-level feature F0∈RH×W×C , where H , W , and C represent the image height,
width, and channel number. F0 is used for the deep feature extraction module, which is composed
of N1 residual groups (RGs) and a convolutional layer. Through this module, the F0 is trans-
formed into the deep feature Fd∈RH×W×C . Finally, the F0 and Fd are fused through a residual
connection, and processed by the reconstruction module to generate the high-resolution (HR) im-
age IHR∈RĤ×Ŵ×3, where Ĥ and Ŵ are the output height and width. The reconstruction module
consists of pixel-shuffle (Shi et al., 2016) and convolutional layers.

Each RG contains N2 Transformer blocks and a convolutional layer. And the residual connection is
employed to ensure training stability. As shown in Fig. 1, there are two types of Transformer blocks:
Local Self-Attention (L-SA) blocks and RG-SA blocks. The two types of blocks are arranged al-
ternately to organize the topological structure. Each Transformer block is composed of two layer
normalization (LN), self-attention, and multilayer perceptron (MLP) (Vaswani et al., 2017). Mean-
while, the HAI acts outside each Transformer block with a learnable adaptor α. In this work, we
apply the recently proposed rectangle-window self-attention (Rwin-SA) (Chen et al., 2022c) as local
self-attention by default. Next, we pay more attention to our proposed RG-SA and HAI.
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Figure 2: The illustration of the recursive-generalization self-attention (RG-SA). The RG-SA first
generates the representative feature maps with constant size (h×w), through the recursive general-
ization module (RGM). Then, the cross-attention between input features and representative maps is
performed to capture global information. ⊗ denotes matrix multiplication.

3.2 RECURSIVE-GENERALIZATION SELF-ATTENTION

The vanilla self-attention (SA) mechanism establishes connections between all input tokens. Al-
though it can capture global context, the SA suffers the quadratic computational complexity with
image size, limiting its the application of SA in high-resolution scenarios, including image SR.
To tackle this problem, we propose the recursive-generalization self-attention (RG-SA), shown in
Fig. 2, that can maintain linear computational complexity while capturing global information.

The RG-SA first aggregates input image features of arbitrary resolution into compressed maps (de-
noted as representative feature maps), through the recursive generalization module (RGM). Intu-
itively, the representative maps aggregate the information of the whole image features, providing a
global view of the image. Then, the cross-attention is calculated between input features and repre-
sentative maps. Therefore, each token in the input image features can obtain a global receptive field.
Meanwhile, we further scale the channel dimension of query, key, and value matrices in attention
to mitigate the channel redundancy. It improves the performance and reduces consumption.

Recursive Generalization Module. For simplicity, our RGM only consists of depth-wise and pixel-
wise convolutions, shown in Fig. 2. Given an input Xin∈RH×W×C , we first compress spatial size of
the features by recursively reusing a single depth-wise convolution T=⌊logsr

H
h ⌋ times to obtain the

rough aggregation maps X̂∈Rh×w×C , where sr is the convolution stride size, h is a constant, and
w=W× h

H . Without loss of generality, we assume W≤H , then w ≤h. Next, we refine the rough
aggregation maps to generate the representative maps Xr∈Rh×w×Cr , through a 3×3 depth-wise
convolution and a 1×1 point-wise convolution. The RGM is formulated as:

X̂ = WK
r (Xin) = Wr(Wr(. . . (Wr(Xin)))),

Xr = WpWd(X̂),
(1)

where Wr is the depth-wise convolution with sr stride, Wd is the 3×3 depth-wise convolution, and
Wp is the 1×1 point-wise convolution. Also, the 1×1 point-wise convolution scales the channels
from C to Cr=C×cr, where cr is the adjustment factor. Through RGM, we can aggregate the global
information of the input image features. Meanwhile, the recursive design is flexible for processing
inputs with varying sizes (common in image SR) by dynamically choosing the recursion times T .

Cross-Attention. Subsequently, we reshape and project the input features Xin as the Q∈RHW×Cr

(query) and the representative maps as the K∈Rhw×Cr (key), and V∈Rhw×C (value) to compute
the cross-attention. The attention matrix A∈RHW×hw is calculated from the dot-product interaction
of query and key. Note that we further scale the channel dimensions of query, key, and value.
Overall, the whole cross-attention process is defined as:

Q = WQXin,K = WKXr,V = WV Xr,

A = SoftMax(QKT /
√

Cr),

Cross-Attention(Xin,Xr) = Wm(A ·V),

(2)

where WQ∈RC×Cr , WK∈RCr×Cr , and WV ∈RCr×C are learnable parameters and biases are
omitted for simplification; Wm∈RC×C is the projection matrix for feature fusion. Similar to
vanilla self-attention (Vaswani et al., 2017; Dosovitskiy et al., 2021), we divide the channels into

4



Published as a conference paper at ICLR 2024

multiple “heads” and execute the attention operation in parallel. Finally, we reshape the result of
cross-attention to obtain the output features Xout∈RH×W×C . Through RGM, cross-attention, and
channel adjustment, our RG-SA can capture global spatial information while maintaining low com-
putational overheads. Next, we analyze the complexity of the RG-SA in detail.

Complexity Analysis. Our RG-SA can be divided into two components: RGM and cross-attention.
For RGM, the computational complexity is O(HWC). For cross-attention, the computational com-
plexity is O(hwHW (C+Cr)+HWC(C+Cr)+hwCr(C+Cr)). Here, we analyze the single-head
self-attention for simplicity. Since h and w are constants, and Cr=C×cr, the complexity of cross-
attention is O(HWC2). In general, The total computational complexity of our RG-SA is linear with
the input features size (H×W ). Additionally, by applying the small (<1) adjustment factor cr, we
can mitigate the channel redundancy, thus further reducing complexity.

3.3 HYBRID ADAPTIVE INTEGRATION

Alternate Arrangement. In RG-SA, the global information is captured through the cross-attention
between input features and representative maps, ensuring low computational overheads. However,
the RGM in RG-SA is a coarse-grained design, which leads to losing some local details and ul-
timately limits modeling global information. To improve the exploitation of the global context,
we introduce local self-attention (L-SA) and combine it with our proposed RG-SA. Two attention
modules are alternately arranged in each residual group (RG), as illustrated in Fig. 1.

Analysis and Motivation. Although the two blocks are integrated, the linear arrangement lacks
direct interaction between features at different levels (global or local), thus still cannot exploit global
information effectively. For further analysis, under the alternating topology, the input and output of
each Transformer block are different level features. Specifically, the input of the RG-SA block is the
local features generated from L-SA, while the output is the global features. Correspondingly, the
input and output of L-SA are global and local features, respectively. This observation inspires us to
enhance information fusion by combining the input and output features of each block.

Specific Design. The intuitive idea is directly integrating the input and output features via the
vanilla skip connection (He et al., 2016). Nevertheless, since the misalignment between global and
local features, simple addition cannot fuse features effectively. To overcome the above issues, we
propose hybrid adaptive integration (HAI). As shown in Fig. 1, our HAI acts on the outside of each
Transformer block. The input features are adaptively adjusted by a learnable adaptor α, and added
to the output features. The process of the lth Transformer block Bl equipped with HAI is:

Zl = Bl(Zl−1) + αl · Zl−1, (3)

where Zl−1 and Zl represent the input and the output of the lth Transformer block, αl∈RC is
the learnable parameter in the lth block. Overall, the HAI is able to enhance the integration of
different SA modules on the basis of the alternate arrangement, which advances the modeling of
global information. Moreover, similar to the regular residual connection, our HIA encourages more
information flows to the deep network layers, resulting in better performance.
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Figure 3: Visualization of the features in RGT. a) Block
input. (b) Block output before connection. (c) Vanilla
skip connection result: directly add input to output. (d)
HAI result: adjust input with α before adding to output.
Please zoom in for a better visualization.

Visual Results. To intuitively show the ef-
fectiveness of HAI, we visualize the rel-
evant features of one RG-SA block (first
row, 2nd block in 1st RG) and one L-SA
block (second row, 5td block in 1st RG)
of RGT in Fig. 3. The deeper color in-
dicates larger weights. First, by observ-
ing columns (a) and (b), we can find great
differences in the input and output of SA
modules in some cases. It reveals the mis-
alignment between global and local fea-
tures. Secondly, directly fused by the
vanilla skip connection, the features are
over-integrated (top of (c) column), or not changed obviously (bottom of (c) column). In contrast,
through HAI, the features shown in column (d) are adaptively changed according to different blocks.
It indicates that the input and output features are fused effectively. More discussions on the role of
HAI and the value distribution of learnable adaptors α are given in Sec. 4.2.
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L-SA RG-SA HAI Params(M) FLOPs(G) PSNR(dB) SSIM

✓ 10.69 229.42 33.43 0.9396
✓ ✓ 10.04 183.08 33.52 0.9405
✓ ✓ ✓ 10.05 183.08 33.68 0.9414

(a) Break-down ablation on each component.

Method Recursion cr Params(M) FLOPs(G) PSNR(dB) SSIM

w/o Recur 0.5 10.05 274.54 33.57 0.9412
w/o Scale ✓ 1 11.37 189.62 33.54 0.9404
RGT-S ✓ 0.5 10.05 183.08 33.68 0.9414

(b) Ablation study on RG-SA.
Method Vanilla Skip α Params (M) FLOPs (G) PSNR (dB) SSIM

w/o HAI 10.04 183.08 33.52 0.9405
w/ Skip ✓ 10.04 183.08 32.71 0.9339
w/ HAI ✓ ✓ 10.05 183.08 33.68 0.9414

(c) Ablation study on HAI.

Method Params(M) FLOPs(G) PSNR(dB) SSIM

L-SA only 10.69 229.42 33.43 0.9396
L-SA w/ HAI 10.69 229.42 33.44 0.9400

(d) Further ablation study on HAI.

Table 1: Ablation studies. We train models on DIV2K and Flickr2K, and test on Urban100 (×2).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Data and Evaluation. Following recent works (Zhang et al., 2021; Magid et al., 2021; Liang et al.,
2021), we choose DIV2K (Timofte et al., 2017) and Flickr2K (Lim et al., 2017) as the training data.
For testing, we use five standard benchmark datasets: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde
et al., 2010), B100 (Martin et al., 2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui
et al., 2017). We conduct experiments with three upscaling factors: ×2, ×3, and ×4. The low-
resolution images are generated by Bicubic (BI) downsampling. To evaluate our method, we use the
metrics PSNR and SSIM (Wang et al., 2004) on the Y channel of the YCbCr space.

Implementation Details. We set two version models, RGT-S and RGT, with different computational
complexity. For RGT-S, we set the residual group (RG) number N1 as 6 and the Transformer block
number N2 for each RG as 6 for L-SA. The channel dimension number, attention head number, and
mlp expansion ratio (Dosovitskiy et al., 2021) are set as 180, 6, and 2, respectively. The window
size is set as 8×32. The sr (stride size) and cr (adjustment factor) are set as 4 and 0.5 for RG-SA.
The representative map size h is set as 4 for training, and 16 for testing. For RGT, we increase the
number of RG from 6 to 8, while other settings remain the same as RGT-S.

Training Settings. We train our models with batch size 32, where each input image is randomly
cropped to 64×64 size, and the total training iterations are 500K. Training patches are augmented
using random horizontal flips and rotations with 90◦, 180◦, and 270◦. To keep fair comparisons,
we adopt Adam optimizer (Kingma & Ba, 2015) with β1=0.9 and β2=0.99 to minimize the L1 loss
function following previous works (Zhang et al., 2018a; Dai et al., 2019; Liang et al., 2021). The
initial learning rate is set as 2×10−4 and reduced by half at the milestone [250K,400K,450K,475K].
We use PyTorch (Paszke et al., 2019) to implement our models with 4 Nvidia A100 GPUs.

4.2 ABLATION STUDY

In this section, we study the effects of different components of our method. For fair comparisons,
all models adopt the same basic architecture and settings as RGT-S. We conduct experiments on the
×2 factor. We adopt the dataset DIV2K (Timofte et al., 2017) and Flickr2K (Lim et al., 2017) to
train models, and the iterations are 200K. The dataset Urban100 (Huang et al., 2015) is applied for
testing. When we calculate the FLOPs, the input size is 3×128×128.

Effects of each component. We conduct a break-down ablation experiment to investigate the effects
of each component on SR performance. The results are listed in Tab. 1a. First, baseline. The
baseline model is derived by replacing all Transformer blocks in RGT-S with local self-attention (L-
SA) (Liang et al., 2021; Chen et al., 2022b) block and removing HAI. We set the window size of L-
SA as 8×32, which is consistent with RGT-S. Second, applying RG-SA. We introduce the recursive-
generalization self-attention (RG-SA) into the baseline, and alternately arrange L-SA and RG-SA in
successive Transformer blocks. Without changing the structure of the network, the model achieves
a 0.09 dB improvement. Meanwhile, compared with the baseline, the FLOPs and parameters of the
model are slightly reduced. It shows that our proposed RG-SA is effective regarding parameters and
computational complexity. Third, applying HAI. We further adopt the hybrid adaptive integration
(HAI) and get the final version of our RGT-S. The model obtains the best performance of 33.68 dB.
These results demonstrate the effectiveness of the RG-SA and HAI.
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Effects of RG-SA. We investigate the design of our recursive-generalization self-attention (RG-SA).
We implement ablation experiments on the recursive operation and channel adjustment factor. The
results are reported in Tab. 1b. First, the impact of recursive operation. We build the model without
recursion (w/o Recur) by removing the recursive operation of RGM in RGT-S. Namely, the stride
depth-wise convolution is only utilized once to generate the representative maps. We keep sr=4 and
cr=0.5 unchanged. Compared with RGT-S, it can be observed that the usage of recursive operation
can effectively reduce the FLOPs by 30%, while achieving better performance. Second, the impact
of the channel adjustment factor cr. We build and train the model without channel scaling (w/o
Scale) by setting the adjustment factor cr in RGT-S as 1 (0.5 by default). Compared with RGT-S,
we discover that scaling the channel dimension yields 0.14 dB performance gain, since the smaller
cr mitigates the redundancy between channels, thus enhancing the feature expression.

Effects of HAI. We show the influence of the hybrid adaptive integration (HAI) in Tab. 1c. We
compared three models: without HAI (w/o HAI), with vanilla skip connection (He et al., 2016) (w/
Skip), and with HAI (w/ HAI). Both skip connection and HAI act on the outside of each Transformer
block. First, the impact of vanilla skip connection. Comparing the model w/o HAI and the model
w/ Skip, we can find that the simple application of skip connection seriously degrades the model
performance by 0.81 dB. This may be due to the misalignment between different level (global or
local) features, which prevents their direct fusion. Second, the impact of HAI. In contrast, our
proposed HAI adaptively adjusts the input features through a learnable adaptor α, thus achieving
valid feature integration. With the HAI, the model obtains 0.16 dB gain.

We also apply HAI only models only with L-SA in Tab. 1d. Since there is no feature misalignment,
the performance does not change much with HAI. These results are consistent with analysis in
Sec. 3.3 and demonstrates the effectiveness of HAI in solving feature misalignment.

Furthermore, we further introduce centered kernel alignment (CKA) (Cortes et al., 2012; Kornblith
et al., 2019; Raghu et al., 2021) to study the internal representation structure of the model. The higher
the CKA score, the higher the representation similarity. We calculate CKA similarities between all
Transformer blocks in RGT-S without and with HAI. The results are shown as heatmaps in Fig. 4.
First, enhance module integration. There are obvious differences before and after the 30th block,
in the model without HAI. On the contrary, equipping with HAI, it can be found that the transition is
more gradual, which indicates that the integration between the modules is more effective. Second,
encourage information flow. We observe that there is still a high similarity between the initial
blocks (0th~2nd) and the very deep blocks (28th~29th) in the model with HAI. It means that through
HAI, more information can flow to the deep layers of the network.

We also visualize the value distribution of α of RGT-S in Fig. 5. We find that α is diverse based on
different blocks, indicating its adaptability. Meanwhile, the value of α increases at the end block in
each RG, i.e., blocks 5th, 11th, 17th, and 23th. It indicates that HAI integrates different modules.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare our two models, RGT-S and RGT, with recent state-of-the-art methods: EDSR (Lim
et al., 2017), RCAN (Zhang et al., 2018a), SRFBN (Li et al., 2019), SAN (Dai et al., 2019),
HAN (Niu et al., 2020), CSNLN (Mei et al., 2020), NLSA (Mei et al., 2021), CRAN (Zhang et al.,
2021), DFSA (Magid et al., 2021), ELAN (Zhang et al., 2022), SwinIR (Liang et al., 2021), and
CAT-A (Chen et al., 2022c). Similar to previous works (Lim et al., 2017; Zhang et al., 2018a), we
use self-ensemble strategy in testing and mark the model with the symbol “+”.
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Set5 Set14 B100 Urban100 Manga109Method Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR (Lim et al., 2017) ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN (Zhang et al., 2018a) ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SRFBN (Li et al., 2019) ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
SAN (Dai et al., 2019) ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN (Niu et al., 2020) ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
CSNLN (Mei et al., 2020) ×2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
NLSA (Mei et al., 2021) ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
CRAN (Zhang et al., 2021) ×2 38.31 0.9617 34.22 0.9232 32.44 0.9029 33.43 0.9394 39.75 0.9793
DFSA (Magid et al., 2021) ×2 38.38 0.9620 34.33 0.9232 32.50 0.9036 33.66 0.9412 39.98 0.9798
ELAN (Zhang et al., 2022) ×2 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
SwinIR (Liang et al., 2021) ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
CAT-A (Chen et al., 2022c) ×2 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
RGT-S (ours) ×2 38.56 0.9627 34.77 0.9270 32.59 0.9050 34.32 0.9457 40.18 0.9805
RGT (ours) ×2 38.59 0.9628 34.83 0.9272 32.62 0.9050 34.47 0.9467 40.34 0.9808
RGT+ (ours) ×2 38.62 0.9629 34.88 0.9275 32.64 0.9053 34.63 0.9474 40.45 0.9810

EDSR (Lim et al., 2017) ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RCAN (Zhang et al., 2018a) ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SRFBN (Li et al., 2019) ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
SAN (Dai et al., 2019) ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
HAN (Niu et al., 2020) ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
CSNLN (Mei et al., 2020) ×3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
NLSA (Mei et al., 2021) ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
CRAN (Zhang et al., 2021) ×3 34.80 0.9304 30.73 0.8498 29.38 0.8124 29.33 0.8745 34.84 0.9515
DFSA (Magid et al., 2021) ×3 34.92 0.9312 30.83 0.8507 29.42 0.8128 29.44 0.8761 35.07 0.9525
ELAN (Zhang et al., 2022) ×3 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517
SwinIR (Liang et al., 2021) ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
CAT-A (Chen et al., 2022c) ×3 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546
RGT-S (ours) ×3 35.11 0.9328 31.05 0.8548 29.53 0.8164 30.18 0.8884 35.39 0.9548
RGT (ours) ×3 35.15 0.9329 31.13 0.8550 29.55 0.8165 30.28 0.8899 35.55 0.9553
RGT+ (ours) ×3 35.18 0.9331 31.16 0.8558 29.57 0.8170 30.40 0.8914 35.69 0.9559

EDSR (Lim et al., 2017) ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN (Zhang et al., 2018a) ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SRFBN (Li et al., 2019) ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
SAN (Dai et al., 2019) ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN (Niu et al., 2020) ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
CSNLN (Mei et al., 2020) ×4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
NLSA (Mei et al., 2021) ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
CRAN (Zhang et al., 2021) ×4 32.72 0.9012 29.01 0.7918 27.86 0.7460 27.13 0.8167 31.75 0.9219
DFSA (Magid et al., 2021) ×4 32.79 0.9019 29.06 0.7922 27.87 0.7458 27.17 0.8163 31.88 0.9266
ELAN (Zhang et al., 2022) ×4 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226
SwinIR (Liang et al., 2021) ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
CAT-A (Chen et al., 2022c) ×4 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
RGT-S (ours) ×4 32.98 0.9047 29.18 0.7966 27.98 0.7509 27.89 0.8347 32.38 0.9281
RGT (ours) ×4 33.12 0.9060 29.23 0.7972 28.00 0.7513 27.98 0.8369 32.50 0.9291
RGT+ (ours) ×4 33.16 0.9066 29.28 0.7979 28.03 0.7520 28.09 0.8388 32.68 0.9303

Table 2: Quantitative comparison (PSNR/SSIM) with state-of-the-art methods. Best and second best
results are colored with red and blue. Our methods outperforms other competitors.

Quantitative results. We show the quantitative comparisons for ×2, ×3, and ×4 image SR in
Tab. 2. We also report the comparisons of computational complexity (e.g., FLOPs), and parame-
ter numbers in Tab. 3. As we can see, our proposed RGT significantly outperforms other methods
on all datasets with all scaling factors. Compared with recent Transformer-based methods, such as
SwinIR (Liang et al., 2021) and CAT-A (Chen et al., 2022c), our proposed RGT achieves better
results, particularly on the Urban100 and Manga109 datasets. For instance, on the Urban100 dataset
(×2), RGT outperforms CAT-A by 0.21 dB. Meanwhile, the model size and computational com-
plexity are lower than CAT-A. Even the small vision model, RGT-S, obtains comparable or better
results than compared methods. These comparisons indicate that our proposed RGT can capture
more global information compared with previous CNN-based and Transformer-based methods.

Visual Results. We show visual comparisons (×4) in Fig. 6. We can observe that most compared
methods suffer from blurring artifacts and cannot recover accurate textures in some representative
challenging cases. In contrast, our RGT can alleviate the blurring artifacts better and recover more
image details. For instance, in image img_059, some methods fail to reconstruct most of the strips
correctly (e.g., SAN and DFSA), while some only restore part stripes (e.g., SwinIR and CAT-A). In
contrast, our method recovers more precise structures. These visual comparisons demonstrate that
our RGT is capable of reconstructing high-quality images by modeling global information. Com-
bining with the quantitative comparisons, we further demonstrate the effectiveness of our method.
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Urban100: img_059 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Urban100: img_098 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Manga109: Momoyama. (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Figure 6: Visual comparison for image SR (×4) in some challenging cases.

Method EDSR RCAN HAN CSNLN SwinIR CAT-A RGT-S (ours) RGT (ours)

Params(M) 43.09 15.59 16.07 6.57 11.90 16.60 10.20 13.37
FLOPs(G) 823.34 261.01 269.1 84,155.24 215.32 360.67 193.08 251.07
Urban100 26.64 26.82 26.85 27.22 27.45 27.89 27.89 27.98
Manga109 31.02 31.22 31.42 31.43 32.03 32.39 32.38 32.50

Table 3: Comparison of parameters, FLOPs, and PSNR (dB) values on Urban100 and Manga109
with scaling factor ×4. When we calculate FLOPs, the output size is 3×512×512.

4.4 MODEL SIZE ANALYSES

We further show the comparison of parameter numbers, FLOPs, and performance with recent image
SR methods in Tab. 3. FLOPs are measured when the output size is set as 3×512×512, and PSNR
values are tested on Urban100 and Manga109 (×4). Our RGT has lower computational complexity
and model size than CNN-based methods, EDSR (Lim et al., 2017) and RCAN (Zhang et al., 2018a).
Compared with CSNLN (Mei et al., 2020), our RGT only requires 0.3% computational complexity
(i.e., FLOPs). Meanwhile, compared with the recent Transformer-based model, CAT-A, our RGT
performs better, while FLOPs decreased by 30.39% (109.6G) and parameters decreased by 19.46%
(3.23M). Compared with SwinIR (Liang et al., 2021), RGT has comparable computational complex-
ity and model size. Furthermore, to further demonstrate the effectiveness of our method, we provide
another version of the model, RGT-S, with lower FLOPs and parameters than SwinIR. Our RGT-
S still obtains notable SR performance gains compared with other methods. These comparisons
indicate that our method achieves a better trade-off between model complexity and performance.

5 CONCLUSION

We propose a new Transformer model, named Recursive Generalization Transformer (RGT), for
accurate image SR. Our RGT is capable of modeling global spatial information while maintaining
low computational costs. Specifically, we design the recursive-generalization self-attention (RG-
SA) to extract global information effectively in linear complexity. The RG-SA computes cross-
attention between the input features and the representative maps recursively aggregated from the
input. Meanwhile, the channel dimensions of attention matrices are further scaled to mitigate the
redundancy in the channel domain. Furthermore, to improve the exploitation of the global context,
we combine RG-SA with local self-attention, and propose the hybrid adaptive integration (HAI)
for module integration. The HAI acts on the outside of each Transformer block to directly fuse
features at different levels (local or global). Extensive experiments on image SR demonstrate that
our proposed RGT achieves superior performance over recent state-of-the-art methods.
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