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RECURSIVE GENERALIZATION TRANSFORMER FOR
IMAGE SUPER-RESOLUTION

Zheng Chen1, Yulun Zhang1∗†, Jinjin Gu2,3, Linghe Kong1∗, Xiaokang Yang1
1Shanghai Jiao Tong University, 2Shanghai AI Laboratory, 3The University of Sydney

1 MORE VARIANTS OF RGT

We provide more versions of RGT. (1) We adopt the same window attention (size: 8×8) as
SwinIR (Liang et al., 2021) and provide RGT-sw. (2) We provide a parallel variant of our method,
RGT-parallel, which applies the parallel arrangement of RG-SA and L-SA.

Set5 Set14 B100 Urban100 Manga109Method Params FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR (Liang et al., 2021) 11.75M 205.31G 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
RGT-sw 11.60M 187.73G 38.46 0.9624 34.54 0.9257 32.54 0.9043 33.90 0.9433 40.12 0.9802

Table 1: Quantitative comparison (×2). The input size is 3×128×128 to calculate FLOPs.

1.1 RGT-SW: 8×8 WINDOW SIZE

Our method applies Rwin-SA as the local self-attention (L-SA) by default. To further demonstrate
the effectiveness of our method, we adopt the same window attention as SwinIR (Liang et al., 2021).
For a fair comparison, we set the window size to 8×8, the same as SwinIR.

Implementation Details. We still utilize the structure of our RGT. We set the window size in the
L-SA block as 8×8. We denote the new version of RGT as RGT-sw. We set the residual group
number (RG) and the Transformer block number in each RG as 7 and 6, respectively. We set the
channel dimension number, multi-head number, and mlp expansion ratio as 180, 6, and 2 for each
Transformer block. We set stride size sr as 4 and adjustment factor cr as 0.5 for RG-SA.

Training Settings. We train RGT-sw on DIV2K (Timofte et al., 2017) and Flickr2K (Lim et al.,
2017), and test it on five datasets: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010),
B100 (Martin et al., 2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017).
We conduct experiments on the scale factor: ×2. The training settings are the same as for RGT-S
and RGT. More details are shown in the main paper.

Quantitative results. We compare our RGT-sw with SwinIR (Liang et al., 2021). The results
are listed in Tab. 1. When we calculate FLOPs, the input size is set as 3×128×128. Our RGT-
sw outperforms SwinIR on all datasets, while the Params and FLOPs are lower than SwinIR. In
particular, RGT surpassed SwinIR by 0.2 dB on the Manga109 dataset.

1.2 RGT-PARALLEL: PARALLEL ARRANGEMENT

We adopt the serial arrangement of RG-SA and L-SA in RGT. We also attempt the parallel arrange-
ment. Specifically, we split the input feature into two parts evenly along the channel dimension.
One part is for RG-SA, and another part is for L-SA. Then we concatenate the outputs of the two
attention modules, and use the linear projection to fuse the features.

Implementation Details. We apply the same architecture as RGT-S to RGT-parallel, and adopt
the parallel arrangement in all Transformer blocks. And the implementation details (e.g., channel
dimension number and window size) of RGT-parallel are the same as RGT-S.

∗Corresponding authors: Yulun Zhang, yulun100@gmail.com; Linghe Kong, linghe.kong@sjtu.edu.cn.
†The work was mainly done when Yulun Zhang was at ETH Zurich.
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Set5 Set14 B100 Urban100 Manga109Method Params FLOPs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR (Liang et al., 2021) 11.75M 205.31G 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
RGT-parallel 9.03M 183.64G 38.55 0.9626 34.64 0.9259 32.56 0.9045 34.23 0.9452 40.13 0.9804
RGT-S 10.20M 193.08G 38.56 0.9627 34.77 0.9270 32.59 0.9050 34.32 0.9457 40.18 0.9805

Table 2: Quantitative comparison (×2). The input size is 3×128×128 to calculate FLOPs.

Training Settings. We train RGT-sw on DIV2K (Timofte et al., 2017) and Flickr2K (Lim et al.,
2017). The training settings are consistent with RGT-S and RGT. The main paper has more details.

Quantitative results. We compare the RGT-parallel with SwinIR (Liang et al., 2021) and RGT-S.
The results are listed in Tab. 2. (1) Our RGT-parallel outperforms SwinIR on all datasets, while the
Params and FLOPs are similar or lower than SwinIR. (2) Compared with RGT-S, the performance
of RGT-parallel slightly decreases. For instance, the PSNR value drops 0.09 dB on Urban100. How-
ever, the overall performance difference between RGT-S and RGT-parallel is not great. It indicates
that parallel arrangement can serve as another subsequent exploration direction.

LA
M

 
At

tri
bu

tio
n

Ar
ea

 o
f 

C
on

tri
bu

tio
n

HR

LA
M

 
At

tri
bu

tio
n

Ar
ea

 o
f 

C
on

tri
bu

tio
n

HR

SwinIR CAT-A RGTSwinIR CAT-A RGT

Figure 1: LAM (Gu & Dong, 2021) comparison between SwinIR (Liang et al., 2021), CAT-A (Chen
et al., 2022), and RGT. LAM attribution maps represent the utilized pixels in the input LR image
when reconstructing the red box region in the HR image. We also illustrate the area of contribution.

2 LAM RESULTS

We apply LAM (Gu & Dong, 2021) to visualize the receptive fields of SwinIR, CAT-A, and our
RGT in Fig. 1. The LAM attribution maps represent the utilized pixels in the input LR image when
reconstructing the red box region in the HR image. The utilized pixels are marked in red. Therefore,
the more pixels are used to recover, the wider the distribution of red points is in the LAM attribution
map, and the larger the receptive field of the model. And we illustrate the area of contribution.

As shown in Fig. 1, the marked pixels of our RGT in LAM attribution maps extended to almost
complete images. However, the compared methods, SwinIR and CAT, only utilize a limited range
of pixels. It indicates that our method can more effectively utilize global information for image SR,
compared to previous local attention methods. These results are also consistent with quantitative
and visual comparisons, showing the effectiveness of our method.

3 MORE CKA VISUALIZATIONS

In this part, we calculate centered kernel alignment (CKA) (Cortes et al., 2012; Kornblith et al.,
2019; Raghu et al., 2021) similarities between all pairs of Transformer blocks in completed trained
RGT-S and RGT. Meanwhile, to further analyze the effects of HAI, we directly remove the learnable
adapter α in RGT-S (RGT), denoted as RGT-S (RGT) rm alpha. Also, we remove the HAI in RGT-S
(RGT), denoted as RGT-S (RGT) rm HAI. Please note that, unlike the RGT-S w/o HAI in Fig. 4 in
the main paper, for RGT-S (RGT) rm alpha and RGT-S (RGT) rm HAI, we do not train them from
scratch. The results are shown as heatmaps in Fig. 2.

First, models of different sizes exhibit similar structures. Comparing the CKA results of RGT-S
and RGT, we find that their network structures are similar, although the number of blocks differs.

Second, the learnable adapter promotes module integration. We observe that the representation
similarity between different residual groups (RGs, each RG contains 6 blocks) has significant dif-
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Figure 2: CKA similarity between all pairs of Transformer blocks. For RGT-S (RGT) rm alpha and
RGT-S (RGT) rm HAI, unlike RGT w/o HAI in the main paper, we directly remove the learnable
adapter α and HAI in the completed trained RGT-S (RGT). The model RGT-S w/o HAI in the main
paper is constructed by removing HAI in RGT-S and trained from scratch.
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Figure 3: Visualization of features in RGT. We provide more features of Transformer blocks located
at different positions in RGT. Each block is indexed as nR-mB: the mth Transformer block in the
nth residual group (RG). Both the index number of the RG and the index number of the Transformer
block in each RG start from 1. Please zoom in for a better view.

ferences, when removing α (RGT-S rm alpha and RGT rm alpha). In contrast, the CKA results
between the RGs of the complete model (RGT-S and RGT) are closer.

Third, the HAI improves the information flow. From RGT-S rm HAI and RGT rm HAI, we dis-
cover that the similarity between initial blocks (0th~2nd) and subsequent blocks is very low. On the
contrary, with HAI, the information in shallow layers can effectively flow to the deep layers, thereby
enhancing the similarity of blocks (0th~2nd) to other blocks.

4 MORE FEATURE VISUALIZATIONS

We further visualize feature maps of more Transformer blocks in RGT as a supplement to the visual-
ization in the main paper. The results are shown in Fig. 3. We can discover that in the shallow block,
the difference between input and output is large, which is consistent with the CKA results in Fig. 2.
In addition, by directly adding input and output, feature fusion is not effective. Especially in deep
layer blocks (e.g., 6R-2B), when the input is similar to the output, the vanilla skip connection (He
et al., 2016) has little effect. In contrast, the results of HAI change obviously compared to other
features and present richer details. These results further demonstrate the effectiveness of HAI.

5 MORE QUANTITATIVE RESULTS

We compare our RGT-S with SwinIR (Liang et al., 2021) on high-resolution datasets:
Tset2K/4K/8K (Kong et al., 2021). The results are listed in Tab. 3. When we calculate FLOPs,
the input size is set as 3×128×128. Our RGT-S outperforms SwinIR on all datasets with lower
Params and FLOPs. For instance, RGT-S obtains 0.17 dB gains on very large images, i.e., Test8K.
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Test2K Test4K Test8KMethod Params FLOPs PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR (Liang et al., 2021) 11.75M 205.31G 27.99 0.7898 29.48 0.8349 35.57 0.9034
RGT-S 10.20M 193.08G 28.10 0.7920 29.60 0.8368 35.74 0.9051

Table 3: Quantitative comparison on high-resolution datasets: Tset2K/4K/8K (Kong et al., 2021).

6 MORE VISUAL COMPARISONS

In Figs. 5 and 6, we provide more visual comparisons on the Urban100 and Manga109 datasets. Our
RGT handles several challenging cases better and recovers more details than compared methods.
For instance, in img_044 of the Urban100, most compared methods fail to restore the horizontal
textures, while our RGT produces much sharper details. In DualJustice of the Manga109, our RGT
recovers the white lines clearly. In construct, most compared methods suffer blurring artifacts.
Similar observations can be found in other cases. These results can be used as a supplement to the
visual comparison of the main paper, and further demonstrate the superiority of our methods.

Set14: barbara (×4)

HR Bicubic EDSR RCAN SAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

B100: 78004 (×4)

HR Bicubic EDSR RCAN SAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Figure 4: Visual comparison for image SR (×4) on Set14 and B100.

7 MORE VISUAL COMPARISONS ON SET14 AND B100

In Fig. 4, we provide more visual comparisons on the Set14 (Zeyde et al., 2010) and B100 (Martin
et al., 2001) datasets. Our RGT also demonstrates superior visual results on these datasets. For
instance, in barbara of the Set14, our RGT successfully recovers more distinct texture features than
compared methods. These results further showcase the effectiveness of our approach.

8 LIMITATIONS AND FUTURE WORK

Due to the global information modeling ability, our Recursive Generalization Transformer (RGT)
achieves state-of-the-art performance on image SR. However, we have not applied RGT to more im-
age SR tasks, such as real-world image SR and blind image SR. Furthermore, for the design of the
hybrid adaptive integration (HAI), we adopt the learnable adapter and skip connection. We could in-
vestigate more fusion methods in further work. For example, adjust input and output simultaneously,
or utilize concatenation operation to fuse input and output.

REFERENCES

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-
complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC,
2012.

Zheng Chen, Yulun Zhang, Jinjin Gu, Yongbing Zhang, Linghe Kong, and Xin Yuan. Cross aggre-
gation transformer for image restoration. In NeurIPS, 2022.

4



Published as a conference paper at ICLR 2024

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based
on centered alignment. JMLR, 2012.

Jinjin Gu and Chao Dong. Interpreting super-resolution networks with local attribution maps. In
CVPR, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from trans-
formed self-exemplars. In CVPR, 2015.

Xiangtao Kong, Hengyuan Zhao, Yu Qiao, and Chao Dong. Classsr: A general framework to
accelerate super-resolution networks by data characteristic. In CVPR, 2021.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In NeurIPS, 2019.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In ICCVW, 2021.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep resid-
ual networks for single image super-resolution. In CVPRW, 2017.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In ICCV, 2001.

Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and
Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and
Applications, 2017.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? In NeurIPS, 2021.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang, Bee Lim, Sanghyun
Son, Heewon Kim, Seungjun Nah, Kyoung Mu Lee, et al. Ntire 2017 challenge on single image
super-resolution: Methods and results. In CVPRW, 2017.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In Proc. 7th Int. Conf. Curves Surf., 2010.

5



Published as a conference paper at ICLR 2024

Urban100: img_001 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Urban100: img_004 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Urban100: img_012 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Urban100: img_015 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Urban100: img_024 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Urban100: img_044 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Urban100: img_049 (×4)

HR Bicubic RCAN SAN HAN

CSNLN DFSA SwinIR CAT-A RGT (ours)

Figure 5: Visual comparison for image SR (×4) in some challenging cases.
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Figure 6: Visual comparison for image SR (×4) in some challenging cases.
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