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1 Datasets19

For our experiments, we consider three datasets: the Tropical Cyclone Driven Data Challenge dataset20

(TC) [43], the Digital Typhoon (DT) dataset [31], and the SKy Images and Photovoltaic Power21

Generation Dataset (SKIPP’D) [50]. An overview of the datasets is given in Table 1.22

Table 1: Dataset Overview.
Dataset Image source/Satellite Spatial Res. Temporal Res. Train Samples Val. Samples Test Samples

Tropical Cyclone GOES 2 km 15 min 53k 11k 43k
Digital Typhoon Himawari 5 km 60 min 64.5k 14k 20k
SKIPP’D Fisheye camera - 1 min 280k 63k 14k

(a) Label distribution and storm categories. (b) Label distribution and storm categories.

(c) Samples from the Tropical Cyclon Dataset. (d) Samples from the Digital Typhoon Dataset.

Figure 1: Visualization of the Tropical Cyclon (left) and the Digital Typhoon Dataset (right).

Cyclone and Typhoon Dataset: The TC and DT datasets consist of infrared measurements that23

capture the spatial structure of storms. Corresponding wind speed targets are matched based on24

hurricane databases. There are varying sources of uncertainty in the inputs, such as missing pixels due25

to the swath of the satellites, and in the targets, such as measurement uncertainties and interpolations26

over time with respect to non-uniform time steps. As such, these datasets exemplify real world27

stochastic phenomena, where predictive uncertainties are essential for decision-making due to the28

inherent risk associated with these potentially extreme events.29

In more detail, the TC imagery represents channel long-wave infrared measurements from the30

GEOS satellite at 10.3 microns that capture the spatial structure of the storm, as seen in Figure 1c.31

Corresponding wind speed targets in knots (kts) are matched based on the HURDAT2 database [37].32

For details, we refer the reader to the methodology section of [44]. The DT imagery also contains33

channel long-wave infrared measurements from the Himawari satellite at 11 microns, with best track34

estimates from the Japanese Meteorological Agency [31]. According to [31] images labeled with zero35

wind speed can stem of lower and higher storm categories for which no exact wind speed estimate36

is available, and therefore, we exclude those samples in our experiments. This is reflected in the37

wind speed range in Figure 1b. For details, we refer the reader to Appendix B and C of [31]. For38

both TC and DT datasets, we resize the images to 224 × 224 pixels and use 0-1 normalization as39

suggested by the authors. For the TC dataset, we follow the train-test data split by storm ID of40

the challenge and use the same strategy for the DT dataset. Data loading for both datasets is made41

available through the TorchGeo library [64]. As Figure 1a and 1b show, the distribution of wind42

speed is highly skewed. For both datasets, the majority of samples fall beneath hurricane categories43

defined by the Saffir-Simpson Scale [62].44

The magnitude of rapid intensification events has been increasing [5], thus causing more damage if45

not properly detected and predicted. One such recent example is Hurricane Otis in October 2023,46

where existing models had to disproportionally rely on satellite data, due to limited in-situ data, which47

lead to erroneous forecasts [33]. Given the extensive availability of satellite imagery, research efforts48

using this modality are a promising avenue to enhance existing forecasts.49
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(a) Statistics of SKIPP’D test and train set [50]. (b) Example Image of the SKIPP’D dataset.

Figure 2: Visualization of SKIPP’D Dataset.

Photovoltaic Dataset: The SKIPP’D imagery consists of 64× 64× 3 images from a ground-based50

fish-eye RGB camera of the sky over 3 years (2017-2019). The targets are power output measurements51

from a 30 − kW rooftop PV array approximately 125 meters away from the camera at Stanford52

Campus, both of which are logged in 1-min frequency [50]. The dataset is intended to aid research53

on the large-scale integration of PV into electricity grids, where the main problem is to manage the54

not constant and intermittent power source [50]. We follow their suggested experiment setup for the55

"nowcasting" task where that aim is to predict power output of individual images. For more details of56

this dataset see here.57
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2 Additional Figures and Tables58

2.1 SKIPP’D: Photovoltaic Dataset59

Table 2: Evaluation of Regression Results on the SKIPP’D cloudy and sunny test set splits.

UQ group Method RMSE ↓ NLL ↓ CRPS ↓ MACE ↓
cloudy sunny cloudy sunny cloudy sunny cloudy sunny

None Deterministic 3.856 2.356 NaN NaN NaN NaN NaN NaN

Deterministic DER 4.405 2.873 3.38 2.925 3.261 2.06 0.237 0.219
MVE 4.539 3.022 2.985 2.712 2.633 1.863 0.093 0.268

Quantile CQR 3.579 0.575 2.534 0.926 1.825 0.332 0.01 0.1
QR 3.579 0.575 2.541 0.897 1.826 0.328 0.009 0.078

Bayesian

BNN VI ELBO 4.086 1.926 8.005 2.432 2.564 1.155 0.254 0.135
BNN VI 4.542 2.928 5.044 2.775 2.91 1.805 0.251 0.224
DKL 3.387 1.125 2.639 2.327 1.849 1.044 0.107 0.304
DUE 3.416 0.818 2.838 1.835 1.797 0.66 0.046 0.273
Laplace 3.856 2.356 3.88 3.867 4.731 4.536 0.367 0.412
MC Dropout 3.424 0.444 2.513 1.65 1.741 0.517 0.159 0.365
SNGP 3.727 1.087 10.532 1.662 2.251 0.641 0.251 0.044
SWAG 4.162 2.746 2.855 2.393 2.38 1.546 0.034 0.079
VBLL 3.859 1.52 3.793 1.864 2.234 0.863 0.188 0.068

Ensemble Deep Ensemble 3.729 1.071 2.708 2.078 2.027 0.85 0.119 0.283

Diffusion CARD 4.048 2.789 4.658 2.992 2.583 1.754 0.263 0.22
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(a) Sunny Day.

(b) Cloudy Day.

Figure 3: Nowcasting predictions of Quantile Regression on individual days from the SKIPP’D test
dataset. We observe higher error and uncertainty in predictions on cloudy days.

2.2 Digital Typhoon Dataset60
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Table 3: Evaluation of Regression Results on the Digital Typhoon Dataset test set. RMSE ∆ shows
the improvement after selective prediction, while Coverage denotes the fraction of remaining samples
that were not omitted. Selective prediction is based on the 0.8 quantile of predictive uncertainties on
a validation set.

UQ group Method RMSE ↓ RMSE ∆ ↑ Coverage ↑ CRPS ↓ NLL ↓ MACE ↓
None Deterministic 9.64 0.00 1.00 NaN NaN NaN

Deterministic
MVE 10.10 0.64 0.80 5.58 3.74 0.06
DER 9.59 1.07 0.79 7.86 4.32 0.30

Quantile QR 9.54 1.03 0.79 5.25 3.64 0.05
CQR 9.54 1.03 0.79 5.40 3.72 0.10

Ensemble Deep Ensemble 14.37 0.77 0.78 7.90 4.05 0.01

Bayesian

MC Dropout 9.77 1.03 0.80 5.55 3.75 0.10
SWAG 9.10 0.97 0.80 5.12 3.67 0.12
Laplace 9.64 0.44 0.82 5.32 3.69 0.03
BNN VI ELBO 9.15 0.17 0.81 6.08 15.82 0.35
BNN VI Regression 10.74 0.94 0.79 5.84 3.76 0.03
SNGP 9.33 -0.05 0.83 6.35 14.00 0.36
VBLL 9.72 0.06 0.79 5.41 3.70 0.03
DKL 10.35 -0.31 0.82 5.67 3.77 0.01
DUE 9.46 -0.10 0.84 5.22 3.68 0.01

Diffusion CARD 9.57 0.09 0.89 6.03 9.35 0.30

Table 4: Evaluation of Classification Results on the test set of the Digital Typhoon dataset. RMSE ∆
shows the improvement after selective prediction, while Coverage denotes the fraction of remaining
samples that were not omitted. Selective prediction is based on the 0.8 quantile of predictive
uncertainties on a held-out validation set.

UQ group Method RMSE ↓ RMSE ∆ ↑ ECE ↓
None Deterministic 10.65 0.99 0.10

Posthoc TempScaling 10.65 1.00 0.03
RAPS 10.65 0.99 0.04

Bayesian

MC Dropout 11.62 0.51 0.19
SWAG 10.44 1.21 0.03
Laplace 10.64 1.03 0.20
BNN VI ELBO 10.17 1.01 0.04
DKL 9.95 0.81 0.22
DUE 9.97 0.74 0.21

Ensemble Deep Ensemble 16.10 2.44 0.07
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(a) Classification.

(b) Regression.

Figure 4: Selective Prediction RMSE improvement per category on the Digital Typhoon Dataset.
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(a) Regression.

(b) Classification.

Figure 5: Selective Prediction RMSE improvements over Quantiles for the Digital Typhoon Dataset.
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Figure 6: Classification vs Regression among methods with dotted bars showing the effect of applied
selective prediction on the Digital Typhoon Dataset.

Figure 7: Uncertainty Metrics over different storm categories on the Digital Typhoon dataset for the
regression task.
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Figure 8: Uncertainty Metrics over different storm categories on the Digital Typhoon dataset for the
classification task. For the computation of empirical coverage the RAPS prediction sets of variable
size are used, while we use the top 5 softmax scores as a prediction set for all other methods.
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2.3 Tropical Cyclone Dataset61

Table 5: Evaluation of Regression Results on the Tropical Cyclone Dataset test set. RMSE ∆ shows
the improvement after selective prediction, while Coverage denotes the fraction of remaining samples
that were not omitted. Selective prediction is based on the 0.8 quantile of predictive uncertainties on
a validation set.

UQ group Method RMSE ↓ RMSE ∆ ↑ Coverage ↑ CRPS ↓ NLL ↓ MACE ↓
None Deterministic 10.50 0.00 1.00 NaN NaN NaN

Deterministic MVE 9.95 1.15 0.80 5.31 3.64 0.04
DER 10.14 1.17 0.81 10.07 4.60 0.35

Quantile QR 10.95 1.05 0.84 5.82 3.73 0.01
CQR 10.95 1.05 0.84 5.98 3.79 0.10

Ensemble Deep Ensemble 16.19 3.30 0.63 8.83 4.15 0.05

Bayesian

MC Dropout 10.23 0.87 0.85 5.78 3.81 0.16
SWAG 9.78 1.13 0.80 5.40 3.71 0.13
Laplace 10.53 0.60 0.83 7.96 4.31 0.28
BNN VI ELBO 11.82 1.56 0.73 6.28 5.57 0.23
BNN VI Regression 11.20 1.45 0.84 5.83 3.74 0.02
SNGP 12.01 0.28 0.80 7.22 5.53 0.18
VBLL 10.79 0.51 0.82 5.96 3.80 0.07
DKL 12.59 0.21 0.78 6.84 3.95 0.06
DUE 9.95 -0.21 0.88 5.43 3.73 0.08

Diffusion CARD 10.86 0.45 0.86 5.84 3.92 0.05

Table 6: Evaluation of Classification Results on the test set of the Tropical Cyclone dataset. RMSE ∆
shows the improvement after selective prediction, while Coverage denotes the fraction of remaining
samples that were not omitted. Selective prediction is based on the 0.8 quantile of predictive
uncertainties on a held-out validation set.

UQ group Method RMSE ↓ RMSE ∆ ↑ ECE ↓
Deterministic 11.49 1.49 0.09

Posthoc TempScaling 11.49 1.48 0.02
RAPS 11.49 1.50 0.04

Bayesian

MC Dropout 12.63 1.59 0.19
SWAG 10.44 1.56 0.05
Laplace 11.48 1.49 0.22
BNN VI ELBO 14.47 3.60 0.09
DKL 9.71 0.87 0.26
DUE 9.87 1.13 0.25

Ensemble Deep Ensemble 18.51 5.02 0.11
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(a) Classification.

(b) Regression.

Figure 9: Selective Prediction RMSE improvement per category on the Tropical Cyclone Dataset.
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(a) Classification.

(b) Regression.

Figure 10: Selective Prediction Results across Quantiles for the Tropical Cyclone Dataset.
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Figure 11: Classification vs Regression among methods with dotted bars showing the effect of applied
selective prediction on the Tropical Cyclone Dataset.

Figure 12: Uncertainty Metrics over different storm categories on the Tropical Cyclone dataset for
the regression task.

Figure 13: Uncertainty Metrics over different storm categories on the Tropical Cyclone dataset for the
classification task. For the computation of empirical coverage the RAPS prediction sets of variable
size are used, while we use the top 5 softmax scores as a prediction set for all other methods.
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3 Description of UQ Methods62

Lightning UQ Box provides the most comprehensive collection of the extensive and versatile63

landscape of UQ methods for DL. The following section gives an overview of these different64

UQ methods, which are listed in Table 7. For comprehensive explanations, we refer to existing65

reviews [1, 16].66

67

For regression tasks DNNs fθ : X → Y are trained to predict a continuous 1-dimensional target68

y⋆ ∈ Y . Currently, the toolbox supports six classes of UQ methods for 1d regression: deterministic,69

quantile, ensemble, Bayesian, Gaussian Process, and diffusion-based methods.70

1. Deterministic methods: use a DNN, fθ : X → P(Y ), that map inputs x to the parameters of71

a probability distribution fθ(x
⋆) = pθ(x

⋆) ∈ P(Y ), and include methods like Deep Evidential72

Regression (DER) [2] and Mean Variance Estimation (MVE) [51]. The latter, for example, outputs73

the mean and standard deviation of a Gaussian distribution fMVE
θ (x⋆) = (µθ(x

⋆), σθ(x
⋆)).74

2. Quantile based models: use a DNN, fθ : X → Y n, that map to n quantiles, fθ(x
⋆) =75

(q1(x
⋆), ..., qn(x

⋆)) ∈ Y n, and include Quantile Regression [32] (Quantile Regression) and the76

conformalized version thereof (ConformalQR) [57].77

3. Ensembles: Deep Ensembles [36], which utilize an ensemble over MVE networks.78

4. Bayesian methods: aim to model a distribution over the network parameters and are commonly79

used to approximate the first and second moment of a marginalized distribution. Here the network80

parameters are modelled as random variables. Multiple principles and techniques to approximate81

BNNs have been introduced. We include BNNs with Variational Inference (VI) (BNN VI82

ELBO) [7], BNNs with VI and alpha divergence (BNN VI) [12], Variational Bayesian Last Layers83

(VBLL) [22], MC-Dropout (MCDropout) [14], the Laplace Approximation (Laplace) [56][9]84

and SWAG [41] with partially stochastic variants [61].85

5. Gaussian Process-based methods: these model a joint distribution over a set of functions in a86

data-driven manner that approximates the first and second moment of the marginalized distribution.87

These include Deep Kernel Learning (DKL) [70], an extension thereof Deterministic Uncertainty88

Estimation (DUE) [66, 67], and Spectral Normalized Gaussian Process (SNGP) [38].89

6. Conditional Generative model: Classification and Regression Diffusion (CARD) [21].90

For classification, the toolbox currently supports six classes of UQ methods. The DNN f c
θ : X →91

CAT (c) is trained to predict a c class categorical distribution. Vanilla softmax probabilities can be92

directly used to obtain predictive uncertainties. However, they are often miscalibrated and have lead93

to post-hoc recalibration methods being proposed [19]. For most of the classification UQ methods the94

entropy of the softmax values or predicted class wise probabilities is commonly used as a measure of95

predictive uncertainty. Note that the entropy is maximal for a uniform distribution, which means that96

each class is equally likely to be predicted.97

1. Deep Ensembles (DeepEnsembles) [36]: utilize an ensemble over independent standard classifi-98

cation networks.99

2. Bayesian methods: BNN VI ELBO [7], VBLL [22], MCDropout [14], Laplace [56][9],100

SWAG [41].101

3. Gaussian Process based methods: model a distribution over functions that also approximate the102

fist and second moment of the marginalized predictive distribution. DKL [70], DUE [66] and103

Spectral-normalized Neural Gaussian Processes (SNGP) [38].104

4. Conformal Prediction: [57], Regularized Adaptive Prediction Sets (RAPS) [3] based on conformal105

prediction.106

5. Other: Test-time Augmentation (TTA) [39], Temperature Scaling [19] which is based on a107

post-hoc calibration of classifiers.108

Additionally to the general purpose tasks of regression and classification, Lightning UQ Box109

supports UQ methods for vision-specific tasks. These include segmentation and pixel-wise regression,110

where an extensive overview of supported UQ methods can be found on our documentation page.111
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Table 7: The methods provided with Lightning UQ Box compared to other available frameworks
and reviews, which partially contain more methods. The full table can be found in the main paper.
The table represents the status at the time of publication. All currently available methods can be
found in the provided repository.

Publication [20] [58] [13] [27] [60] [53] [49] [35] Lightning
UQ Box

Deterministic Methods
Gaussian (MVE) ✓ ✓ ✓

Deep Evidential Networks (DER) ✓ ✓

Neural Network Ensembles ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bayesian Neural Networks
MC Dropout (GMM) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BNN with VI ELBO ✓ ✓ ✓ ✓ ✓

BNN with VI (alpha divergence) ✓
VBLL ✓

Laplace Approximation ✓ ✓
SWAG ✓ ✓ ✓

Gaussian Process based
Deep Kernel Learning (DKL) ✓
Det. Unc. Estimation (DUE) ✓

Spectral Normalized GPs (SNGP) ✓ ✓ ✓

Quantile based
Quantile Regression (QR) ✓ ✓ ✓

Conformal Prediction (CQR) ✓ ✓ ✓

Diffusion Model
CARD ✓

Post-hoc Calibration
RAPS ✓

TempScaling ✓ ✓ ✓

4 UQ Methods Theory Guide112

We define neural networks as a function from an input space X to a target space Y ,113

fθ : X → Y (1)

where θ represent the network parameters that are optimized during the training procedure. These114

parameters are optimized on a training dataset, that consists of n input-target pairs,115

Dtrain = {(xi, yi)}ni=1, (2)

and with respect to a given loss function116

L : Y × Y → R. (3)

The loss function usually is some score, measure or quantity describing how well the network’s117

predictions fit the given targets.118

Baselines:119

For regression tasks simple baseline models give a prediction of the 1-dimensional target value for a120

given input x∗, evaluated based with the squared error loss,121

L(θ, (x⋆, y⋆)) = (fθ(x
⋆)− y⋆)2, (4)

which is aggregated by the mean over batches.122

123

For standard multi-class classification, baseline models predict vanilla soft-max probabilities124

f c
θ (x

⋆) ∈ CAT (c), where CAT (c) describes the space of categorical distributions over c classes.125

Throughout this theory guide and where needed for clarification, we state networks that output a class126

probability by f c
θ . Further, we reference to the network output before the soft-max transformation as127

the network logits, lθ(x⋆), i.e. f c
θ (x

⋆) = softmax (lθ(x⋆)).128

The standard loss for classification is given by the standard Cross-Entropy,129
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L(θ, (x⋆, y⋆)) = −
c∑

q=1

1y⋆
q
log (f c

θ (x
⋆)q) , (5)

where this applies to one-hot labels and the function 1y⋆
q

is given by130

1y⋆
q
=

{
1 if y⋆q = 1

0 else.
(6)

Moreover, f c
θ (x

⋆)q denotes the q-th component of f c
θ (x

⋆) ∈ CAT (c), i.e., the predicted probability131

for class q. Similar, y⋆q denotes the q-th component of y⋆ ∈ CAT (c).132

4.1 Deterministic UQ Methods133

In the following we list the deterministic UQ methods considered in this work. These methods134

provide UQ estimates within a single forward pass by predicting the parameters of a probability135

distribution.136

Gaussian/MVE: The Gaussian model for regression, also referred to as Mean Variance Estimation,137

first studied in [51] and further used in [63], is a deterministic model that predicts the parameters of a138

Gaussian distribution139

fθ(x
⋆) = (µθ(x

⋆), σθ(x
⋆)) (7)

in a single forward pass, where standard deviations σθ(x
⋆) can be used as a measure of data140

uncertainty. To this end, the network now outputs two parameters and is trained with the Gaussian141

negative log-likelihood (NLL) as a loss objective [29], that is given by142

L(θ, (x⋆, y⋆)) =
1

2
ln
(
2πσθ(x

⋆)2
)
+

1

2σθ(x⋆)2
(µθ(x

⋆)− y⋆)
2
. (8)

Correspondingly, the model prediction consists of a predictive mean, µθ(x
⋆), and the predictive143

uncertainty, in this case the standard deviation σθ(x
⋆).144

Deep Evidential Regression (DER): DER [2] is a single forward pass UQ method that aims to145

disentangle aleatoric and epistemic uncertainty. DER entails a four headed network output146

fθ(x
⋆) = (γθ(x

⋆), νθ(x
⋆), αθ(x

⋆), βθ(x
⋆)). (9)

These four outputs are used to compute the predictive t-distribution with 2α(x⋆) degrees of freedom,147

[2]:148

p(y(x⋆)|fθ(x⋆)) = St2αθ(x⋆)

(
y⋆
∣∣∣∣γθ(x⋆),

βθ(x
⋆)(1 + νθ(x

⋆))

νθ(x⋆)αθ(x⋆)

)
. (10)

In [2] the network weights are obtained by minimizing the loss objective that is the negative log-149

likelihood of the predictive distribution and a regularization term. However, due to several drawbacks150

of DER, [46] propose the following adapted loss objective that we also utilise,151

L(θ, (x⋆, y⋆)) = log σ2
θ(x

⋆) + (1 + λνθ(x
⋆))

(y⋆ − γθ(x
⋆))2

σ2
θ(x

⋆)
(11)

where σ2
θ(x

⋆) = βθ(x
⋆)/νθ(x

⋆). The mean prediction is given as,152

µθ(x
⋆) = γθ(x

⋆). (12)
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Further following [46], we use their reformulation of the uncertainty decomposition. The aleatoric153

uncertainty is given by154

ualeatoric(x
⋆) =

√
β(x⋆)

α(x⋆)− 1
, (13)

and the epistemic uncertainy by,155

uepistemic(x
⋆) =

1√
ν(x⋆)

. (14)

The predictive uncertainty is then, given by156

u(x⋆) =
√
uepistemic(x⋆)2 + ualeatoric(x⋆)2. (15)

4.2 Ensemble Based UQ Methods157

Deep Ensembles: As introduced in [36], Deep Ensembles approximate a posterior distribution158

over the model weights. For Deep Ensembles GMM, this is done with a Gaussian mixture model159

over the output of separately initialized and trained networks. In [69] the authors showed that Deep160

Ensembles can be interpreted as a Bayesian method.161

162

Deep Ensembles Regression: For regression the Deep Ensembles model predictive mean is given by163

the mean taken over the outputs fθi(x
⋆) of N ∈ N baseline models with different weights {θi}Ni=1.164

The weights are obtained by individually training N networks with the MSE aggregated over batches.165

The weights of the ensemble members are in general different, as the loss objective is non-convex166

with respect to the network parameters and due the stochasticity of gradient descent methods. The167

ensemble prediction is given by,168

µ(x⋆) =
1

N

N∑
i=1

fθi(x
⋆). (16)

The predictive uncertainty is given by the standard deviation of the predictions of the N different169

networks, the so called ensemble members,170

σ(x⋆) =

√√√√ 1

N

N∑
i=1

(fθi(x
⋆)− µ(x⋆))

2
. (17)

Deep Ensembles GMM: For regression the Deep Ensembles GMM model predictive mean is given171

by the mean taken over N ∈ N models fθi(x
⋆) = (µθi(x

⋆), σθi(x
⋆)) with different weights {θi}Ni=1,172

µg(x
⋆) =

1

N

N∑
i=1

µθi(x
⋆). (18)

The predictive uncertainty is given by the standard deviation of the Gaussian mixture model consisting173

of the N different networks, Gaussian ensemble members,174

σg(x
⋆) =

√√√√ 1

N

N∑
i=1

(µθi(x
⋆)− µg(x⋆))

2
+

1

N

N∑
i=1

σ2
θi
(x⋆). (19)

18



Note that the difference between "Deep Ensembles" and "Deep Ensembles GMM" is that in the latter175

we also consider the predictive uncertainty output of each individual ensemble member, whereas in176

the former we only consider the means and the variance of the mean predictions of the ensemble177

members.178

Because each ensemble member has a probabilistic predictive distribution fθi(x
⋆) =179

(µθi(x
⋆), σθi(x

⋆)), we can also perform a decomposition into epistemic and aleatoric components:180

uepistemic(x
⋆) =

√√√√ 1

N

N∑
i=1

(µg(x⋆)− µθi(x
⋆))

2
, (20)

ualeatoric(x
⋆) =

√√√√ 1

N

N∑
i=1

σ2
θi
(x⋆) . (21)

Deep Ensembles Classification: As introduced in [36], Deep Ensembles approximate a posterior181

distribution over the model weights with a mixture model over the output of separately initialized and182

trained networks. In particular, for classification the Deep Ensembles model prediction is chosen to183

be the softmax of the class-wise mean over the N ∈ N models’ logit predictions lθi(x
⋆) ∈ Rc (we184

refer to logits as the model output before the soft-max activation), with different weights {θi}Ni=1,185

µ(x⋆) = softmax

(
1

N

N∑
i=1

lθi(x
⋆)

)
∈ CAT (c). (22)

The loss is the standard Cross-Entropy as in (5). The predictive uncertainty is given by the standard186

Cross-Entropy, yet the true labels in (5) are substituted by the network predictions.187

188

Hyperparameter Overview for Deep Ensembles:189

Summary of hyperparameters for the Deep Ensembles models
Hyperparameter value range hints
Number of ensemble members N ≈ [5, 20] do an ablation study on N .

4.3 Bayesian UQ Methods190

The general aim of Bayesian UQ methods is to obtain the predictive distribution by marginalization191

over the model weights θ,192

p(y⋆|x⋆, D) =

∫
p(y⋆|x⋆, θ)p(θ|D)dθ. (23)

The posterior distribution over the weights p(θ|D) can be approximated by utilizing Bayes’ theorem193

for194

p(θ|D) = p(Y |θ,X)p(θ)

p(Y |X)
, (24)

or, for example, by a variational approach. However, the predictive distribution, (23), is usually195

intractable and, in the following various approaches of approximation are presented (most of which196

rely on sampling over the posterior).197

MC-Dropout: Is an approximate Bayesian method with sampling. A fixed dropout rate p ∈ [0, 1) is198

used, meaning that random weights are set to zero during each forward pass with the probability p.199

This models the network weights and biases as a Bernoulli distribution with dropout probability200
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p. While commonly used as a regularization method, [14] showed that activating dropout during201

inference over multiple forward passes yields an approximation to the posterior over the network202

weights. Due to its simplicity it is widely adopted in practical applications, but MC-Dropout and203

variants thereof have also been criticized for their theoretical shortcomings [25], [52].204

205

MC-Dropout Regression: the MC Dropout model predicts a target value and a predictive uncertainty.206

The target is predicted by the mean of m ∈ N forward passes through the network fp,θ with a fixed207

dropout rate p, resulting in masked weights {θi}mi=1 = {θ ◦ r}mi=1 with Bernoulli distributed mask r208

with each entry samples form Ber(1− p). The mean prediction is given by209

fp(x
⋆) =

1

m

m∑
i=1

fp,θi(x
⋆). (25)

The predictive uncertainty is given by the standard deviation of the predictions over m forward passes,210

σp(x
⋆) =

√√√√ 1

m

m∑
i=1

(fp,θi(x
⋆)− fp(x⋆))

2
. (26)

MC Dropout GMM: We also consider combining this method with the previous model Gaussian211

network, as in [29], aiming at disentangling the data and model uncertainties, abbreviated as MC212

Dropout GMM. For the MC Dropout GMM model, the prediction again consists of a predictive mean213

and a predictive uncertainty fp,θ(x
⋆) = (µp,θ(x

⋆), σp,θ(x
⋆)). Here the predictive mean is given by214

the mean taken over m forward passes through the Gaussian network mean predictions µp,θ with a215

fixed dropout rate p, resulting in different weights {θi}mi=1, given by216

µp(x
⋆) =

1

m

m∑
i=1

µp,θi(x
⋆). (27)

The predictive uncertainty is given by the standard deviation of the Gaussian mixture model obtained217

by the predictions over m forward passes,218

σp(x
⋆) =

√√√√ 1

m

m∑
i=1

(µp,θi(x
⋆)− µp(x⋆))

2
+

1

m

m∑
i=1

σ2
p,θi

(x⋆). (28)

A decomposition of uncertainty then can be performed in a similar way as to with deep ensembles.219

220

MC Dropout Classification: For classification the MC Dropout model prediction is given by the221

softmax of the class-wise mean over m ∈ N forward passes through the network up until the the logit222

output lcθi with a fixed dropout rate p, resulting in different (masked) weights {θi}mi=1, given by,223

µ(x⋆) = softmax

(
1

N

N∑
i=1

lθi(x
⋆)

)
∈ CAT (c). (29)

The loss is the standard Cross-Entropy as in (5). The predictive uncertainty is given by the standard224

Cross-Entropy, yet computed with respect to the predictions only that are substituted for the true225

labels in (5).226

Hyperparameter Overview for MC Dropout models:227

Summary of hyperparameters for the MC Dropout models. The HP burn-in-epochs is only available for MC Dropout GMM.
Hyperparameter value range hints
Number of burn-in-epochs ≈ [0, 100] after burn-in-epochs train variance and mean outputs.
Drop out rate p ∈ [0, 1) start with p = 0.2.
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BNN with VI ELBO: Bayesian Neural Networks (BNNs) with variational inference (VI) are an228

approximate Bayesian method. Here, we follow the mean-field assumption, meaning that the229

variational distribution is factorized as a product of individual Gaussian distributions. This results in230

a diagonal Gaussian approximation of the posterior distribution over the model parameters231

The most common approach is to maximize the evidence lower bound (ELBO). We note that there232

are other, alternative approaches for variational inference, such as α-divergence minimization [24].233

Uitilizing standard stochastic gradient descent by using the reparameterization trick [30] one can234

backpropagate with a necessary sampling procedure, a process called Monte Carlo variational Bayes235

[55].236

237

The predictive likelihood is given by a factorized as a product of individual Gaussian distributions238

per weight,239

p(Y |θ,X) =

N∏
i=1

p(yi|θ, xi) =

N∏
i=1

N (yi|fθ(xi),Σ). (30)

The prior on the weights is given by,240

p(θ) =

L∏
l=1

Vl∏
h=1

Vl−1+1∏
j=1

N (whj,l|0, λ) (31)

where whj,l is the h-th row and the j-th column of weight matrix θL at layer index L and λ is the241

prior variance. Note that as we use partially stochastic networks, (31) may contain less factors242

N (whj,l|0, λ) depending on how many layers are stochastic. Then, the posterior distribution of the243

weights is obtained by Bayes’ rule as244

p(θ|D) = p(Y |θ,X)p(θ)

p(Y |X)
. (32)

As the posterior distribution over the weights is intractable a variational approximation is used,245

q(θ) ≈ p(θ|D), (33)

that is a diagonal Gaussian. Now given an input x⋆, the predictive distribution can be obtained as246

p(y⋆|x⋆,D) =
∫

p(y⋆|θ, x⋆)p(θ|D)dθ. (34)

As (34) is intractable it is approximated by sampling form the approximation q(θ) in (33) to the247

posterior distribution in (32). The parameters of q(θ) are obtained by maximizing the evidence lower248

bound (ELBO) on the Kullback-Leibler (KL) divergence between the variational approximation and249

the posterior distribution over the weights.250

BNN with VI ELBO Regression: For regression, the negative ELBO is given by,251

L(θ, (x⋆, y⋆)) = βDKL(q(θ)||p(θ)) +
1

2
ln
(
2πσ2

)
+

1

2σ2
(fθ(x

⋆)− y⋆)
2
. (35)

The KL divergence can be computed analytically in the case of a Gaussian prior. The hyperparameter252

β can be used to weight the influence of the variational parameters relative to that of the data.253

Alternatively, in the case of a fixed dataset of size N this parameter is automatically set to 1
N . The254

hyperparameter σ can be either fixed or set to be an additional parameter to be tuned by including it255

in the objective function Eq. (35), a process called type-II maximum likelihood.256

The predictive mean is obtained as the mean of the network output fθ with S weight samples from257

the variational approximation θs ∼ q(θ),258
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fm(x⋆) =
1

S

S∑
i=1

fθs(x
⋆). (36)

The predictive uncertainty is given by the standard deviation thereof, including the (possibly estimated)259

constant output noise σ:260

σp(x
⋆) =

√√√√ 1

S

S∑
i=1

(fθs(x
⋆)− fm(x⋆))

2
+ σ2. (37)

If one uses the NLL and adapts the BNN to output a mean and standard deviation of a Gaussian261

fθs(x
⋆) = (µθs(x

⋆), σθs(x
⋆)), the mean prediction is given by262

fm(x⋆) =
1

S

S∑
s=1

µθs(x
⋆). (38)

and the predictive uncertainty is obtained as the standard deviation of the corresponding Gaussian263

mixture model obtained by the weight samples,264

σp(x
⋆) =

√√√√ 1

S

S∑
s=1

(µθs(x
⋆)− fm(x⋆))

2
+

S∑
s=1

σ2
θs
(x⋆). (39)

BNN with VI ELBO Classification: For classification the negative loss objective is given by,265

L(θ, (x⋆, y⋆)) = βDKL(q(θ)||p(θ))−
c∑

q=1

1y⋆
q
log (f c

θ (x
⋆)q) . (40)

The KL divergence can be computed analytically in the case of a Gaussian prior. The hyperparameter266

β can be used to weight the influence of the variational parameters relative to that of the data.267

Alternatively, in the case of a fixed dataset of size N this parameter is automatically set to 1
N .268

The prediction is obtained as the softmax of the mean of logit outputs lθ with S weight samples from269

the variational approximation θs ∼ q(θ),270

µc
m(x⋆) = softmax

(
1

S

S∑
i=1

lθs(x
⋆)

)
∈ CAT (c). (41)

The predictive uncertainty is given by the standard cross entropy:271

σp(x
⋆) = −

c∑
q=1

1y⋆
q
log (µc

m(x⋆)q) . (42)

Hyper Parameter Overview for BNN with VI ELBO models:272

Summary of hyperparameters for the BNN with VI ELBO models
Hyperparameter value range hints
Number burn-in-epochs ≈ [0, n] after burn-in-epochs train variance and mean outputs.
Loss scale factor β β ≈ [100, 500] should depend on parameter and train set size.
Samples during training Str Str ≈ [5, 20] depending on network size and computing resources.
Samples during tests and prediction Ste Ste ≈ [5, 50] depending on network size and computing resources.
Output noise scale σ σ ≈ [1.0, 5.0] depending on label noise.
Prior mean µp for stochastic parameters µp ≈ [0, 1.0] start with 0.
Prior variance σp for stochastic parameters σp ≈ [0, 3.0] start with 1.0.
Mean initialization for posterior µpr µpr ≈ [0, 1.0] approximate posterior over parameters
Variance initialization for posterior ρpr ρpr ≈ [−6.0, 0.0] variance through σ = log(1 + exp(ρ)), approximate posterior over parameters
Bayesian layer type "flipout" or "reparameterization"
Stochastic module names list of module names or a list of module numbers Transform module to be stochastic.
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BNN+LV: BNNs with latent variables (LVs) extend BNNs with VI to encompass LVs that model273

aleatoric uncertainty. The BNN+LV model is proposed in [12].274

The likelihood is given by275

p(Y |θ, z,X) =

K∏
i=1

p(yi|θ, zi, xi) =

K∏
i=1

N (yi|fθ(xi, zi),Σ). (43)

The prior on the weights by (31) as for BNNs with VI. The prior distribution of the latent variables z276

is given by277

p(z) =

K∏
i=1

N (zi|0, γ) (44)

where γ is the prior variance.278

Then, with the assumed likelihood function and prior, a posterior over the weights θ and latent279

variables z is obtained via Bayes’ rule:280

p(θ, z|D) = p(Y |θ, z,X)p(θ)p(z)

p(Y |X)
(45)

The approximate the posterior is given by281

q(θ, z) =

 L∏
l=1

Vl∏
h=1

Vl−1+1∏
j=1

N (whj,l|mw
hj,l, v

w
hj,l)


︸ ︷︷ ︸

q(θ)

×

[
K∏
i=1

N (zi|mz
i , v

z
i )

]
︸ ︷︷ ︸

q(z)

. (46)

Now the parameters mw
hj,l,v

w
hj,l and mz

i , vzi can be obtained by minimizing a divergence between282

p(θ, z|D). Here the following approximation of the α divergence, as proposed in [24] and [11], is283

used,284

Eα(q) = − logZq −
1

α

N∑
n=1

logEΘ,zn∼ q

[(
p(yn|Θ,xn, zn,Σ)

f(Θ)fn(zn)

)α]
, (47)

where Zn is the normalising constant of the exponential form of (46) and f(Θ) and fn(zn) are285

functions depending on the parameters of the distributions (31) and (44), see [11] for details. In order286

to make this optimization problem scalable, SGD is used with mini-batches, and the expectation over287

q is approximated with an average over K samples drawn from q.288

The posterior predictive distribution is given by,289

p(y⋆|x⋆,D) =
∫ [∫

N (y⋆|fθ(x⋆, z⋆),Σ)N (z⋆|0, γ)dz⋆
]
p(θ, z|D)dθdz. (48)

The network prediction fθ(x⋆, z⋆) uses z⋆ sampled from the prior distribution N (z⋆|0, γ) because290

this is the only evidence we have about the latent variable for a new data point since all data points291

are assumed to be independent. However, the above posterior predictive distribution is intractable292

in this form. So instead we use sampling from the posterior distribution of the weights. The mean293

prediction is then given by the mean prediction of samples and the predictive uncertainty is obtained294

as standard deviation of samples from the approximation to (48).295

BNN VI Regression: The predictive mean is obtained as the mean of the network output fθ with296

S weight samples from the variational approximation θs ∼ q(θ) and samples of latent variables297

z ∼ N (0, γ),298
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fm(x⋆) =
1

SK

S∑
i=1

K∑
k=1

fθs(x
⋆, zk). (49)

The predictive uncertainty is given by the standard deviation thereof, including the (possibly estimated)299

constant output noise σ:300

σp(x
⋆) =

√√√√ 1

SK

S∑
i=1

K∑
k=1

(fθs(x
⋆, zk)− fm(x⋆))

2
+ σ2. (50)

If one uses the NLL and adapts the BNN LV to output a mean and standard deviation of a Gaussian301

fθs(x
⋆, z) = (µθs(x

⋆, z), σθs(x
⋆)), the mean prediction is given by302

fm(x⋆) =
1

SK

S∑
i=1

K∑
k=1

µθs(x
⋆, zk). (51)

and the predictive uncertainty is obtained as the standard deviation of the corresponding Gaussian303

mixture model obtained by the weight samples and latent variable samples,304

σp(x
⋆) =

√√√√ 1

SK

S∑
i=1

K∑
k=1

(µθs(x
⋆, zk)− fm(x⋆))

2
+

S∑
s=1

σ2
θs
(x⋆). (52)

Hyperparameter Overview for BNN LV:305

Summary of hyperparameters for the BNN with LV model
Hyperparameter value range hints
Number burn-in-epochs ≈ [0, n] after burn-in-epochs train variance and mean outputs.
Loss scale factor β β ≈ [100, 500] should depend on parameter and train set size.
Samples during training Str Str ≈ [5, 20] depending on network size and computing resources.
Samples during tests and prediction Ste Ste ≈ [5, 50] depending on network size and computing resources.
Output noise scale σ σ ≈ [1.0, 5.0] depending on label noise.
Prior mean µp for stochastic parameters µp ≈ [0, 1.0] start with 0.
Prior variance σp for stochastic parameters σp ≈ [0, 3.0] start with 1.0.
Mean initialization for posterior µpr µpr ≈ [0, 1.0] approximate posterior over parameters
Variance initialization for posterior ρpr ρpr ≈ [−6.0, 0.0] variance through σ = log(1 + exp(ρ)), approximate posterior over parameters
Prior mean for LV network usually 0.
Prior variance for LV network γ ≊

√
d d is dimension of inputs.

LV dimension dz = 1 usually chosen as 1.
Bayesian layer type "flipout" or "reparameterization"
Stochastic module names list of module names or a list of module numbers Transform module to be stochastic.

Laplace Approximation: Originally introduced by [40], the Laplace Approximation has been306

adapted to modern neural networks by [56] and [9] and is an approximate Bayesian method. The307

goal of the Laplace Approximation is to use a second-order Taylor expansion around the fitted MAP308

estimate and yield a posterior approximation over the model parameters via a full-rank, diagonal309

or Kronecker-factorized approach. In order for the Laplace Approximation to be computationally310

feasible for larger network architectures, we use the Laplace library to include approaches, such as311

subnetwork selection that have been for example proposed by [10].312

313

The general idea of the Laplace Approximation to obtain a distribution over the network parameters314

with a Gaussian distribution centered at the MAP estimate of the parameters [10]. In this setting,315

a prior distribution p(θ) is defined over our network parameters. Because modern neural networks316

consists of millions of parameters, obtaining a posterior distribution over the weights θ is intractable.317

The LA takes MAP estimate of the parameters θMAP from a trained network fθMAP
(x) = µθMAP

(x)318

and constructs a Gaussian distribution around it. The parameters θMAP are obtained by319

θMAP = argminL(θ;D), (53)

where L is the mean squared error or also referred to as the ℓ2 loss, L(θ;D) :=320

−
∑n

i=1 log(p(yi|fθ(xi))) and the posterior predictive distribution321
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p(yi|fθ(xi)). (54)

Then with Bayes Theorem, as in [10], one can relate the posterior to the loss,322

p(θ|D) = p(D|θ)p(θ)/p(D) =
1

Z
exp(−L(θ;D)), (55)

with Z =
∫
p(D|θ)p(θ)dθ. Now a second-order expansion of L around θMAP is used to construct a323

Gaussian approximation to the posterior p(θ|D):324

−L(θ;D) ≈ −L(θMAP ;D)− 1

2
(θ − θMAP )(∇2

θL(θ;D)|θMAP )(θ − θMAP ). (56)

The term with the first order derivative is zero as the loss is evaluated at a minimum θMAP [48], and,325

further, one assumes that the first term is neglible as the loss is evaluated at θ = θMAP . Then taking326

the expontential of both sides allows to identify, after normalization, the Laplace approximation,327

p(θ|D) ≈ N (θMAP ,Σ) with Σ = (∇2
θL(θ;D)|θMAP )

−1. (57)

As the covariance is just the inverse Hessian of the loss, with θMAP ∈ RW and H−1 ∈ RW×W ,328

with W being the number of weights, the posterior distribution is given by329

p(θ|D) ≈ N (θMAP , H
−1). (58)

The computation of the Hessian term is still expensive. Therefore, further approximations are330

introduced in practice, most commonly the Generalized Gauss-Newton matrix [42]. This takes the331

following form:332

H ≈ H̃ =

N∑
n=1

JT
n HnJn, (59)

where Jn ∈ RO×W is the Jacobian of the model outputs with respect to the parameters θ and333

Hn ∈ RO×O is the Hessian of the negative log-likelihood with respect to the model outputs, where334

O denotes the model output size and W the number of parameters.335

Given (58) during inference on unseen data, one cannot compute the full posterior predictive distribu-336

tion but instead resort to sampling θs ∼ p(θ|D) for s ∈ {1, ..., S} to approximate the predictions.337

Laplace Approximation Regression: for regression the posterior predictive distribution (54) is338

chosen to be a Gaussian with constant variance σ2, such that the loss is the mean squared error and a339

homoskedastic noise model is assumed. Then, the predictive mean is given by340

fm(x⋆) =
1

S

S∑
s=1

fθs(x
⋆), (60)

and obtain the predictive uncertainty by341

σ2(x⋆) =

√√√√ 1

S

S∑
s=1

(fθs(x
⋆)− ŷ(x⋆))

2
+ σ2. (61)

For the subnet strategy, we include the options from the Laplace library for selecting the stochastic342

parameters.343

344

Laplace Approximation Classification: for classification the posterior predictive distribution (54) is345

chosen to be a categorical distribution. The prediction of the Laplace Approximation classification346
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model is obtained as the softmax of the mean of logit outputs lθ with S weight samples from the347

approximation to the posterior distribution over the weights348

fm(x⋆) = softmax

(
1

S

S∑
i=1

lθs(x
⋆)

)
∈ CAT (c). (62)

The predictive uncertainty is given by the standard cross entropy:349

σp(x
⋆) = −

c∑
q=1

1y⋆
q
log (fm(x⋆)q) . (63)

Hyper Parameter Overview for Laplace Approximation models:350

Summary of hyperparameters for the BNN with VI model
Hyperparameter value range hints
Number burn-in-epochs ≈ [0, n] after burn-in-epochs train variance and mean outputs.
Loss scale factor β β ≈ [100, 500] should depend on parameter and train set size.
Samples during training Str Str ≈ [5, 20] depending on network size and computing resources.
Samples during tests and prediction Ste Ste ≈ [5, 50] depending on network size and computing resources.

SWAG: Is an approximate Bayesian method and uses a low-rank Gaussian distribution as an ap-351

proximation to the posterior over model parameters. The quality of approximation to the posterior352

over model parameters is based on using a high SGD learning rate that periodically stores weight353

parameters in the last few epochs of training [41]. SWAG is based on Stochastic Weight Averaging354

(SWA), as proposed in [26]. For SWA the weights are obtained by minimising the MSE loss with355

a variant of stochastic gradient descent. After, a number of burn-in epochs, t̃ = T −m, the last m356

weights are stored and averaged to obtain an approximation to the posterior, by357

θSWA =
1

m

T∑
t=t̃

θt. (64)

For SWAG we use the implementation as proposed by [41]. Here the posterior is approximated358

by a Gaussian distribution with the SWA mean, (64) and a covariance matrix over the stochastic359

parameters that consists of a low rank matrix plus a diagonal,360

p(θ|D) ≊ N
(
θSWA,

1

2
(Σdiag +Σlow−rank)

)
. (65)

The diagonal part of the covariance is given by361

Σdiag = diag(θ̄2 − θ2SWA) (66)

where,362

θ̄2 =
1

m

T∑
t=t̃

θ2t . (67)

The low rank part of the covariance is given by363

Σlow−rank =
1

m

T∑
t=t̃

(θt − θ̄t)(θt − θ̄t)
T , (68)

where θ̄t is the running estimate of the mean of the parameters from the first t epochs or also samples.364

In order to approximate the mean prediction, we again resort to sampling from the posterior (65).365

26



SWAG Regression: with θs ∼ p(θ|D) for s ∈ {1, ..., S}, the mean prediction is given by366

ŷ(x⋆) =
1

S

S∑
s=1

fθs(x
⋆), (69)

and obtain the predictive uncertainty by367

σ(x⋆) =

√√√√ 1

S

S∑
s=1

(fθs(x
⋆)− ŷ(x⋆))

2
. (70)

SWAG Classification: with θs ∼ p(θ|D) for s ∈ {1, ..., S}, the prediction is given by368

fm(x⋆) = softmax

(
1

S

S∑
i=1

lcθs(x
⋆)

)
∈ CAT (c). (71)

The predictive uncertainty is given by the standard cross entropy:369

σp(x
⋆) = −

c∑
q=1

1y⋆
q
log (fm(x⋆)q) . (72)

For the subnet strategy, we include selecting the parameters to be stochastic by module names.370

VBLL: variational Bayesian last layer is a Bayesian UQ method using the last layer neural network371

component introduced in [22]. The method uses a feature extractor gθ : X → Rdf with weight θ.372

VBLL Regression: for regression VBLL models the output layer as a linear Bayesian layer,373

y⋆ = ωT gθ(x
⋆) + ϵ, (73)

where ϵ ∈ N (0,Σ). Fixing an independent Gaussian prior, ω ∼ N (ω̄, S), yields a predictive374

posterior distribution for VBLL375

p(y⋆|x⋆, θ, ω̄, S,Σ) = N (ω̄T gθ(x
⋆), gθ(x

⋆)TSgθ(x
⋆) + Σ). (74)

The loss objective is given by376

L(θ, ω, S,Σ, (x⋆, y⋆))

= 2ln
(
2πσ(x⋆)2

)
+

1

2σ(x⋆)2
(
ωT gθ(x

⋆)− y⋆
)2 − 1

2
gθ(x

⋆)TSgθ(x
⋆)Σ−1. (75)

The mean prediction, is then given by377

fθ(x
⋆) = ωT gθ(x

⋆). (76)

The predictive uncertainty is given by378

σ(x⋆) = gθ(x
⋆)TSgθ(x

⋆) + Σ. (77)

VBLL Classification: for classification VBLL models the logit output layer as a linear Bayesian379

layer and the output as a categorical distribution. The predictive posterior distribution is given by380

p(y⋆|x⋆, θ, ω̄) = softmax(z), (78)
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with logits z = ωgθ(x
⋆) + ϵ, where a Gaussian prior is defined for ω ∼ N (ω̄, S). The loss objective381

is given as382

L(θ, ω, S,Σ, (x⋆, y⋆)) = y⋆Tωgθ(x
⋆)− LSEk

(
ωT
k gθ(x

⋆) +
1

2
(gθ(x

⋆)TSkgθ(x
⋆) + σ2

k)

)
, (79)

where LSEk(·) denotes the log-sum-exp function, with the sum over k. The prediction is given by383

(78) and the uncertainty by the standard cross entropy.384

SGLD: Stochastic gradient Langevin dynamics is an approximate sampling method, introduced in385

[68]. The posterior distribution over the weights is sampled by sampling from the parameter updates386

obtained by a variant of stochastic gradient descent. In SGLD Gaussian noise is injected into the387

parameter updates, such that the parameters θ do not collapse to just the MAP solution. The proposed388

update in [68] is389

∆θt =
ϵt
2

(
∇ log p(θt) +

N

n

n∑
i=1

∇ log p(xti|θt)

)
+ ηt

ηt ∼ N (0, ϵt). (80)

After, a number of burn-in epochs, t̃ = T −m, the last m weights are stored and averaged to obtain390

an approximation to the posterior. The mean prediction is then obtained as for a weighted ensemble,391

ŷ(x⋆) ≃
∑T

t=t̃ ϵtfθt(x
⋆)∑T

t=1 ϵt
. (81)

Another possibility is to resort to a simpler average as is usually done for MC sampling methods to392

obtain the mean prediction,393

ȳ(x⋆) ≃ 1

m

T∑
t=t̃

fθt(x
⋆). (82)

The predictive uncertainty is then obtained as,394

σ(x⋆) =

√√√√ 1

m

T∑
t=t̃

(fθt(x
⋆)− ȳ(x⋆))

2
. (83)

4.4 Gaussian Process Based UQ Methods395

Recap of Gaussian Processes (GPs): The goal of previously introduced methods was to find a396

distribution over the weights of a parameterized function i.e. a neural network. In contrast, the basic397

idea of a Gaussian Process (GP) is to instead consider a distribution over possible functions, that fit398

the data in some way. Formally,399

400

"A Gaussian process is a collection of random variables, any finite number of which have a joint401

Gaussian distribution." [59]402

403

Precisely, a GP can be described by a possibly infinite amount of function values404

f(x) ∼ GP(m(x), kγ(x)), (84)

such that any finite collection of function values f has a joint Gaussian distribution,405
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f = f(X) = [f(x1), . . . , f(xK)]⊤ ∼ N (mX ,KX,X) , (85)

with a mean vector, (mX)i = m(xi), and covariance matrix, (KX,X)ij = kγ(xi, xj), stemming from406

the mean function m and covariance kernel of the GP, kγ , that is parametrized by γ. A commonly407

used covariance function is the squared exponential, also referred to as Radial Basis Function (RBF)408

kernel, exponentiated quadratic or Gaussian kernel:409

kγ(x, x
′) = cov(f(x), f(x′)) = η2 exp

(
− 1

2l2
|x− x′|2

)
. (86)

Where γ = (η2, l) and η2 can be set to 1 or tuned as a hyperparameter. By default the lengthscale410

l = 1 but can also be optimized over. Now the GP, f(x) ∼ GP (m(x), k(x, x′)), as a distribution411

over functions can be used to solve a regression problem. Following [59], consider the simple412

case where the observations are noise free and you have training data Dtrain = {(xi, yi)}Ni=1 with413

X = (xi)
N
i=1 and Y = (yi)

N
i=1. The joint prior distribution of the training outputs, Y , and the test414

outputs f∗ = f∗(X∗) = (f(ik))
m
i=1 where X∗ = (xi)

m
i=1 are the test points, according to the prior is415

p(Y, f∗) = N
(
0,

[
KX,X KX,X∗
KX∗,X KX∗,X∗

])
. (87)

Here the mean function is assumed to be mX = 0 and KX,X∗ denotes the N ×m matrix of the416

covariances evaluated at all pairs of training and test points, and similarly for the other entries KX,X ,417

KX∗,X∗ andKX∗,X . To make predictions based on the knowledge of the training points, conditioning418

on the prior observations is used and yields,419

p(f∗|X∗, X, Y ) = N (KX∗,XK−1
X,XY,KX∗,X∗ −KX∗,X∗K−1

X,XKX,X∗)

= N (m(X,X∗, Y ), K̃X,X∗).

Now to generate function values on test points, one uses samples from the posterior distribution420

f∗(X∗) ∼ N (m(X,X∗, Y ), K̃(X,X∗)). To illustrate how we can obtain these samples from the421

posterior distribution, consider a Gaussian with arbitrary mean m and covariance K, i.e. f∗ ∼422

N (m,K). For this one can use a scalar Gaussian generator, which is available in many packages:423

1. Compute the Cholesky decomposition of K = LLT , where L is a lower triangular matrix.424

This works because K is symmetric by definition.425

2. Then, draw multiple u ∼ N (0, I).426

3. Now, compute the samples with f∗ = m+Lu. This has the desired mean, m and covariance427

LE(uuT )LT = LLT = K.428

The above can be extended to incorporate noisy measurements y → y + e, see [59], or noise on the429

inputs as in [28]. Both of these extensions require tuning of further hyperparameters, yet beneficially430

allow to incorporate a prediction of aleatoric uncertainty in a GP.431

432

For example, assume additive Gaussian noise on the distribution of the function values,433

p(y(x)|f(x)) = N (y(x); f(x), σ2). (88)

Then the predictive distribution of the GP evaluated at the K∗ test points, X∗, is given by434

p(f∗|X∗, X, Y, γ, σ2) = N (E[f∗], cov(f∗)) , (89)

E[f∗] = mX∗ +KX∗,X [KX,X + σ2I]−1Y ,

cov(f∗) = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗ .
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Here mX∗ is the K∗ × 1 mean vector, which is assumed to be zero in the previous case.435

436

In both cases, with and without additive noise on the function values, the GP is trained by learning437

interpretable kernel hyperparameters. The log marginal likelihood of the targets y - the probability of438

the data conditioned only on kernel hyperparameters γ - provides a principled probabilistic framework439

for kernel learning:440

log p(y|γ,X) ∝ −
(
y⊤(Kγ + σ2I)−1y + log |Kγ + σ2I|

)
, (90)

where Kγ is used for KX,X given γ. Kernel learning can be achieved by optimizing Eq. (90) with441

respect to γ.442

443

The computational bottleneck for inference is solving the linear system (KX,X + σ2I)−1y, and for444

kernel learning it is computing the log determinant log |KX,X + σ2I| in the marginal likelihood. The445

standard approach is to compute the Cholesky decomposition of the K ×K matrix KX,X , which446

requires O(K3) operations and O(K2) storage. After inference is complete, the predictive mean447

costs O(K), and the predictive variance costs O(K2), per test point x∗.448

Deep Kernel Learning Regression: Conceptually DKL consists of a NN architecture that extracts a449

feature representation of the input x and fits an approximate GP on top of these features to produce a450

probabilistic output [70]. DKL combines GPs and DNNs in a scalable way. In practice, all parameters,451

the weights of the feature extractor and the GP parameters are optimized jointly by maximizing452

the log marginal likelihood of the GP. We utilize GPytorch for our implementation [15] and use453

a grid approximation where we optimized over the number of inducing points. For DKL the GP454

is transformed by replacing the inputs x by the outputs of a NN in the following way. The kernel455

kγ(x, x
′) with hyperparameters θ is replaced by,456

kγ(x, x
′)→ kγ(g(x, θ), g(x

′, θ)) , (91)

where g(x, θ) is a non-linear mapping given by a deep architecture, such as a deep convolutional457

network mapping into a feature space of dimension J , parametrized by weights θ,458

g(·, θ) : X → RJ

x 7→ g(x, θ). (92)

This so called deep kernel in (91) is now used as the covariance function of a GP to model data459

D = {xi, yi}Ni=1. The deep kernel hyperparameters, ρ = {γ, θ, σ2}, can be jointly learned by460

maximizing the log marginal likelihood of the GP (93).461

L = log p(Y |γ,X, θ) ∝ −
(
y⊤(Kγ,θ + σ2I)−1y + log |Kγ,θ + σ2I|

)
, (93)

Except for the replacement of input data, one can almost follow the same procedures for learning and462

inference as for GPs as outlined previously. For optimizing (93) the chain rule is used to compute463

derivatives of the log marginal likelihood with respect to the deep kernel hyperparameters as in [70].464

465

Exact inference is possible for the regression case, yet the computational complexity scales cubically466

with the number of data points and makes it not suitable for large datasets. Thus, following [66] in467

the implementation the sparse GP of [65] and the variational approximation of [23] is used, in order468

to allow for DKL to scale to large training datasets. The sparse GP approximation of [65] augments469

the DKL model with M inducing inputs, Z ∈ RM×J , where J is the dimensionality of the feature470

space, as in (92). Moreover, to perform computationally efficient inference we use the the variational471

approximation introduced by [23], where inducing points Z are treated as variational parameters. U472

are random variables with prior473

p(U) = N (U |mZ ,KZ,Z), (94)
and variational posterior474

q(U) = N (U |m̃, S), (95)
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where m̃ ∈ RM and S ∈ RM×M are variational parameters and initialized at the zero vector and the475

identity matrix respectively. The approximate predictive posterior distribution at training points X is476

then477

p(f |Y ) ≈ q(f) =

∫
p(f |U)q(U)dU (96)

Here p(f |U) is a Gaussian distribution for which we can find an analytic expression, see [23] for478

details. Note that we deviate from [23] in that our input points X are mapped into feature space just479

before computing the base kernel, while inducing points are used as is (they are defined in feature480

space). The variational parameters Z, m̃, and S and the feature extractor parameters θ and GP model481

hyparparameters γ, given by l and η2, and σ2 are all learned at once by maximizing a lower bound482

on the log marginal likelihood of the predictive distribution p(Y |X), the ELBO, denoted by L. For483

the variational approximation above, this is defined as484

log(p(Y |X)) ≥ L(Z,m, S, γ, θ, σ2) =

N∑
i=1

Eq(f) [log p(yi|f(xi))]− βDKL(q(U)||p(U)). (97)

Both terms can be computed analytically when the likelihood is Gaussian and all parameters can be485

learned using stochastic gradient descent. To accelerate optimization gpytorch additionally utilizes486

the whitening procedure of [45] in their Variational Strategy. The approximate predictive posterior487

distribution at test points X∗ is then488

p(f∗|Y ) ≊ q(f∗) =

∫
p(f∗|U)q(U)dU (98)

For regression tasks we directly use the function values f∗ above as the predictions. We use the mean489

of p(f∗|Y ) as the prediction, and the variance as the uncertainty.490

491

DKL Classification: For DKL Classificiation the likelihood is replaced wth the softmax (multiclass)492

likelihood, which is also used used for GP classification. The model head is formed of an independent493

approximate GP for each output dimension, see [66]. The predictions are obtained by approximating494

the posterior over the class probabilities. See the appendix in [66] for an overview.495

Deterministic Uncertainty Estimation (DUE) - extension of DKL496

Algorithm 1 Algorithm for training DUE [66]

1: Definitions:
- Residual NN gθ : x→ RJ with feature space dimensionality J and parameters θ.
- Approximate GP with parameters ρ = {γ, σ2, ω}, where γ = {l, η} and l length scale and η
output scale of kγ , ω GP variational parameters (including m inducing point locations Z)
- Learning rate ζ, loss function L

2: Using a random subset of p points of our training data, X init ⊂ X , compute:
Initial inducing points: K-means on gθ(X

init) with K = m. Use found centroids as initial
inducing point locations Z in GP.
Initial length scale:
l = 1

(p2)

∑p
i=0

∑p
j=i+1 |gθ(X init

i )− gθ(X
init
j )|2.

3: for minibatch xb, yb ⊂ X,Y do
4: θ′ ← spectral_normalization(θ)
5: p(y′b|xb)← evaluate_GPθ(gθ′(xb))
6: L ← ELBOθ(p(y

′
b|xb), yb)

7: (ρ, θ)← (ρ, θ) + ζ ∗ ∇ρ,θL
8: end for

DUE builds on DKL by using the same model except for exchanging the feature extractor of the497

DKL model. With this replacement DUE addresses limitations of DKL and provides potentially498

robust uncertainty estimates. According to [66] with DKL, data points dissimilar to the training data499

(also called OOD data) can potentially be mapped close to feature representations of in-distribution500

points. These feature representations, which are close in some norm, input into the approximate501
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GP yield similar or nearly the same predictions. This is called "feature collapse", and suggests502

that a constraint must be placed on the deep feature extractor. Based on deterministic uncertainty503

quantification (DUQ) [67] and spectrally normaplized GPs (SNGP) [38], the authors of [66] propose504

to use a bi-Lipschitz constraint on a feature extractor. This bi-Lipschitz constraint is enforced by505

spectral normalization on the weights, [47, 18]. This constraint mitigates so-called "feature collapse",506

by forcing the feature representation to be sensitive to changes in the input (lower Lipschitz, avoids507

feature collapse) but also generalize due to smoothness (upper Lipschitz).508

509

For convolutional and linear layers following [66], we use spectral normalization of the weight510

matrices to promote approximate bi-Lipschitz continuity. To promote spectral normalization for fully511

connected layers and 1× 1 convolutions online power iteration are used and for larger convolutions512

an approximate method, as proposed in [18] and was first implemented by [6], is used. Spectral513

normalization is also extended to batch normalization by rescaling the weights, see [66] for details.514

Adding spectral normalization to batch normalization layers makes it more likely that the entire515

network’s upper Lipschitz constant is bounded. The mean prediction and predictive uncertainty are516

obtained as for DKL for both the classification and regression tasks.517

Summary of learnable parameters:518

• weights of DNN feature extractor θ519

• for the GP, parameters γ: noise hyperparamter σ2, the GP function mean m, the length scale520

of the GP kernel l and the scale of the kernel η2. In the above case the GP hyperparameters521

are learned by optimizing ELBO.522

Summary of hyperparameters:523

• number of power iterations for spectral normalization, usually set to r = 1524

• number of initial inducing points M525

4.5 Quantile Based UQ Methods526

Quantile Regression (QR): The goal of Quantile Regression is to extend a standard regression527

model to also predict conditional quantiles that approximate the true quantiles of the data at hand.528

It does not make assumptions about the distribution of errors as is usually common. It is a more529

commonly used method in Econometrics and Time-series forecasting [32].530

531

In the following we will describe univariate quantile regression. Any chosen conditional quantile532

α ∈ [0, 1] can be defined as533

qα(x) := inf{y ∈ R : F (y|X = x) ≥ α}, (99)

where F (y|X = x) = P (Y ≤ y|X = x) is a strictly monotonic increasing cumulative density534

function.535

536

For Quantile Regression, the NN fθ parameterized by θ, is configured to output the number of537

quantiles that we want to predict. This means that, if we want to predict p quantiles [α1, ...αn],538

fθ(x⋆) = (ŷ1(x
⋆), ..., ŷn(x

⋆)). (100)

The model is trained by minimizing the pinball loss function [32], given by the following loss539

objective,540

Li(θ, (x
⋆, y⋆)) = max{(1− αi)(y

⋆ − ŷi(x
⋆)), α(y⋆ − ŷi(x

⋆))}. (101)

Here i ∈ {1, ..., n} denotes the number of the quantile and 100αi is the percentage of the quantile for541

αi ∈ [0, 1). Note that for α = 1/2 one recovers the ℓ1 loss. During inference, the model will output542

an estimate for the chosen quantiles and these can be used as an indication of aleatoric uncertainty.543
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Conformalized Quantile Regression (CQR): Conformal Prediction is a post-hoc uncertainty quan-544

tification method to yield calibrated predictive uncertainty bands with proven coverage guarantees545

[4]. Based on a held out calibration set, CQR uses a score function to find a desired coverage quantile546

q̂ and conformalizes the QR output by adjusting the quantile bands wirh q̂ for an unseen test point as547

follows x⋆:548

T (x⋆) = [ŷα/2(x⋆)− q̂, ŷ1−α/2(x⋆) + q̂] (102)

where ŷα/2(x⋆) is the lower quantile output and ŷ1−α/2(x⋆) is the higher quantile output and α is549

the desired miscoverage rate [57].550

551

4.6 Diffusion Based UQ Methods552

CARD: The classification and regression diffusion (CARD) models, as introduced in [21], combine a553

denoising diffusion-based conditional generative model and a pre-trained conditional mean estimator554

in order to obtain a predictive distribution given an input. Given a target y⋆ and input x⋆ CARD555

utilizes a series of intermediate predictions y1:T for a number of steps T ∈ N. The parameters of the556

diffusion-based conditional generative model are obtained by optimising the following objective557

LELBO(y
⋆, x⋆) = L0(y

⋆, x⋆) +

T∑
t=2

Lt−1(y
⋆, x⋆) + LT (y

⋆, x⋆), (103)

where the individual terms are given by558

L0(y
⋆, x⋆) = Eq [− log(pθ(y

⋆|y1, x)] (104)

Lt−1(y
⋆, x⋆) = Eq [DKL(q(yt−1|yt, y0, x)||pθ(yt−1|yt, x))] (105)

LT (y
⋆, x⋆) = Eq [DKL(q(yT |, y0, x)||p(yT |x))] (106)

and the predictive distribution p(yT |x) is obtained by a MAP estimate, in our case the deterministic559

base model,560

p(yT |x) = N (fθMAP
(x), I). (107)

Following [54] the forward process of conditional distributions with a diffision schedule (βt)
T
t=1 ∈561

(0, 1)T is defined such that a closed-form solution exists,562

p(yt|yt−1, fθMAP
(x)) = N (yt;

√
1− βtyt + (1−

√
1− βt)fθMAP

(x), βtI), (108)

this admits a closed form and non-iterative solution at each time step t ∈ {1, ..., T},563

p(yt|y0, fθMAP
(x)) = N (yt;

√
αtyt + (1−

√
αt)fθMAP

(x), βtI), (109)

with αt = Πt
l=1(1− βl). For regression the goal is to reverse the above diffusion process to recover564

the distribution of the noise term and, hence, obtaining the aleatoric uncertainty of the second moment565

predictive distribution p(y|x). For this a neural network ϵθ is trained that given a sample yt predicts566

the corresponding noise ϵ ≈ ϵθ(x, yt, fθMAP
(x), t). The predictive mean and uncertainty, in terms of567

standard deviation, is obtained by moment matching with the predictive samples y0 approximating568

the labels y⋆.569
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4.7 Post-hoc methods570

RAPS: As introduced by [3] is a a posthoc conformal method referred to as Regularized Adaptive571

Prediction Sets (RAPS). RAPS is based on conformal prediction and can be used to adapt572

classifiers to output a predictive set containing the true label with a user-specified probability,573

such as 90% which then is true on average given some assumptions. Three desiderata, firstly,574

coverage desideratum says the sets must provide 1 − α coverage, secondly, the size desideratum575

says we want sets of small size, since these convey more detailed information and may be576

more useful in practice and, thirdly, adaptiveness desideratum says we want the sets to commu-577

nicate instance-wise uncertainty: they should be smaller for easy test-time examples than for hard one.578

579

Figure 14: RAPS Conformal Calibration Algorithm. Figure from [3].

RAPS has three main steps. First, for a feature vector x, the base model computes class probabilities,580

and we order the classes from most probable to least probable. Then, we add a regularization term581

to promote small predictive sets. This algorithimic procedure is shown in Figure 14. Finally, we582

conformally calibrate the penalized prediction sets according to the algorithmic procedure in Figure583

15 and, thus obtaining the marginal covergae guarantee on future test sets [3].584

Figure 15: RAPS Prediction Sets Algorithm. Figure from [3].

Temperature Scaling Temperature scaling optimizes the logits temperature value τ > 0 to calibrate585

the confidence of a classification model predictions. The temperature describes the scaling of the586

logits and is considered as τ = 1 during the training procedure. After the training, the scaling of the587

logits can reduce over- or underconfidence, by adjusting the absolute difference between the logit588

values before the softmax operation is applied.589

For this we consider a calibration set Dcal = {xm, ym}Mm=1 and the cross-entropy loss LCE, which590

was also used in the training,591
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τ∗ = argmin
τ>0

1

M

∑
(x,y)∈Dcal

LCE

(
softmax

(
lθ(x)

τ

)
, y

)
.

Depending on the data set size, the temperature scaling is also performed on mini-batches.592

4.8 Partially Stochastic Network Strategies593

In order to adapt the Bayesian UQ methods to large EO data sets, we support partially stochastic594

NNs following the approach presented in [61]. In [61] the authors demonstrate experimentally and595

theoretically that partially stochastic networks can also approximate predictive distributions. There596

are multiple ways to obtain partially stochastic networks. For the Laplace Approximation and SWAG597

methods, we use a two-stage training. First, all parameters are obtained by a MAP estimate. Then,598

in the second training stage the stochastic parameters are obtained. For BNN with VI ELBO and599

BNN+LV we use joint training, where the stochastic and deterministic parameters are learnt jointly600

by maximising the evidence lower bound or the so called α-divergence, [12].601

Figure 16: Visualization of partially stochastic networks. Figure from [61].

5 Additional Information on Metrics602

Regression tasks are commonly evaluated by accuracy metrics such as Root Mean Squared Error603

(RMSE) or coefficient of determination, R2. A better quality of prediction is indicated by a lower604

RMSE and MAE and a R2 score close to 1.0. However, these measures only characterize the error605

between point predictions and available targets. When considering UQ methods, we therefore need606

additional metrics in the form of proper scoring rules [17] which do not ignore predictive uncertainty.607

In particular, we consider the negative log-likelihood (NLL) of a Gaussian as a proper scoring rule,608

[17]. Moreover, we consider calibration as introduced in [34]. As neither the NLL or calibration are609

sufficient to verify a useful forecast since a model with large predictive uncertainties can be well610

calibrated and obtain a sufficient NLL, we additionally consider sharpness, which measures the mean611

of the predictive uncertainties. We use [8] for metric computation and some plots.612

613

The RMSE is computed between the targets y = (yi)
N
i=1 and the mean model predictions f(x) =614

(f(xi))
N
i=1 for N samples as615

RMSE(f(x),y) =

√√√√ 1

N

N∑
i=1

(f(xi)− yi)2. (110)

The MAE is computed as616

MAE(f(x),y) =
1

N

N∑
i=1

|f(xi)− yi|. (111)
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The R2 is computed as617

R2 = R2(f(x),y) = 1−
∑N

i=1(f(xi)− yi)
2∑N

i=1

(
f(xi)− 1

N

∑N
j=1 f(xj)

)2 . (112)

However, these measures only characterize the error between point predictions and available targets.618

In order to compare the predictive uncertainties to the target distribution, we need additional metrics,619

such as proper scoring rules [17]. We consider the NLL of a Gaussian as a proper scoring rule [17].620

We also report the miscalibration area, where a lower miscalibration area indicates a better fit of the621

predictive uncertainties to the true target distribution. To quantify the overall confidence of a model622

in a single metric, we consider sharpness which computes the mean of the predictive uncertainties.623

We use [8] for computing these metrics.624

The NLL is computed between the targets y = (yi)
N
i=1 and the mean model predictions f(x) =625

(f(xi))
N
i=1 and predictive uncertainties σ(x) = (σ(xi))

N
i=1 for N samples as NLL is computed as626

NLL((f(x),σ(x)),y) =
1

N

N∑
i=1

(
1

2
ln
(
2πσ(xi)

2
)
+

1

2σ(xi)2
(f(xi)− yi)

2

)
, (113)

Additional we consider the scoring rule of the Continuous Ranked Probability Score (CRPS), which627

for single sample and a predictive distribution that is Gaussian is given by628

crps(N (µ, σ), y) = −σ

(
y − µ

σ
(2Φ

(
y − µ

σ

)
− 1) + 2ϕ

(
y − µ

σ

)
− 1√

π

)
, (114)

where Φ is the cumulative density function and ϕ probability distribution of N (0, 1). Then, we629

compute the average sum over all predictions and labels, where fθ(x
⋆
i ) = (µ(x⋆

i ), σ(x
⋆
i )), which630

gives the reported CRPS,631

CRPS =
1

N⋆

N⋆∑
i=1

crps(fθ(x
⋆
i ), y

⋆
i ). (115)

The miscalibration area is computed based on [8] and is identical to mean absolute calibration error,632

however the integration here is taken by tracing the area between curves.633

The sharpness is computed as634

sharpness(σ(x)) =

√√√√ 1

N

N∑
i=1

σ(xi)2. (116)

Another key aspect for assessing the reliability of uncertainty estimates is calibration. Calibration635

refers to the degree to which a predicted distribution matches the true underlying distribution of the636

data. The mean absolute calibration error, (MACE), gives the mean absolute error of the expected637

and observed proportions for a given range of quantiles.638
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