
A Proofs363

A.1 Proof of Theorem 1364

Consider the density estimator for the samples populating the polytopes f̂ . Let n be the total number365

of samples and nr be the number of data points within polytope Qr. As stated in the theorem366

statement, we make the following assumptions:367

1. The polytope bandwidth hn ! 0 as n!1.368

2. n grows faster than the shrinkage of hn, i.e., n · hn !1 as hn ! 0 in probability.369

For simplicity, we first explore the one-dimensional distribution. The derivation can be readily370

extended to multi-dimensional scenarios. We consider any Gaussian kernel G0() with parameters371

chosen independently of the data satisfying two conditions. In lemma 3 and 4, we will show that the372

aforementioned class of estimators is consistent. The conditions for choosing the Gaussian kernel373

parameters are:374

1. The center of the kernel can be any point zr within the polytope Qr as n!1,375

2. The kernel bandwidth �r is any non-negative number always bounded by the polytope376

bandwidth hn as n!1, i.e., �r = Crhn, where 0 < Cr  1.377

Now the class conditional density estimate at a point x can be written as:378

f̂(x) =
1

n

X

r2P
nrG0(x;µr,⌃r) (r = r

⇤
x
). (19)

Lemma 3. The class of estimators in (19) is an asymptotically unbiased class of estimators of the379

true density f .380

Proof. The polytope sample counts nr can be considered as binomially distributed: nr ⇠ B(n, Pr),381

where Pr =
R
Qr

dF is the probability of finding a training sample within the polytope r and F is the382

cumulative density function associated with the density f . This allows us to write : E[nr] = n Pr.383

Using the mean value theorem, we have that Pr = hnf(qr), for some qr 2 Qr. Note that, if we384

consider the multi-dimensional scenario for the mean value theorem here, the proof can be easily385

generalized for multi-dimensional case.386

Now consider the expectation of f̂ with respect to the training distribution:387

E[f̂(x)] =
X

r2P

n Pr G0(x;µr,⌃r) (r = r
⇤
x
)

n
=

X

r2P
hnf(qr)G0(x;µr,⌃r) (r = r

⇤
x
). (20)

Note that we are given the partitions of the feature space and we choose Gaussian parameters such that388

they are independent of the training data. Therefore, G0(x, µr,⌃r) (r = r
⇤
x
) is not a random variable.389

Now, as n!1, hn ! 0, and hn can be considered an infinitesimal measure dzr. Furthermore, as390

the bandwidth of the Gaussian is limited by the polytope bandwidth and the area under the Gaussian391

is 1, the kernel G0(x, µr,⌃r) (r = r
⇤
x
) becomes a dirac delta function evaluated at x as hn ! 0.392

Therefore, in the limiting conditions, G0(x, µr,⌃r) (r = r
⇤
x
) ! �(x � zr) and f(qr) ! f(zr).393

Here zr is a point such that zr 2 Qr for all n. As n!1, the summation in (20) thus becomes an394

integral over the space R. Therefore, in the limit we can write 20 as395

E[f̂(x)] =
Z 1

�1
f(zr)�(x� zr)dzr

= f(x)

(21)

Therefore, f̂(x) is an asymptotically unbiased estimator of f(x).396

397

Lemma 4. The variance of the class of estimators in (19) asymptotically goes to 0.398

12

Proof. For binomially distributed samples nr, we can write, Var[nr] = nPr(1 � Pr). Therefore,399

we can estimate the variance of f̂(x) as:400

Var[f̂(x)] =
X

r2P

nPr(1� Pr)

n2
{G0(x;µr,⌃r) (r = r

⇤
x
)}2

=
hnf(zr⇤x)(1� hnf(zr⇤x))

n
{ 1p

2⇡�r⇤x

exp (�
(x� µr⇤x)

2

2�2
r⇤x

)}2

=
hnf(zr⇤x)(1� hnf(zr⇤x))

nC2
r⇤x
h2
n

{ 1p
2⇡

exp (�
(x� µr⇤x)

2

2�2
r⇤x

)}2


f(zr⇤x)(1� hnf(zr⇤x))

2⇡C2
r⇤x
(nhn)

(22)

Equation 22 offers several interesting insights:401

1. As hn ! 0, zr⇤x ! x and f(zr⇤x)(1� hnf(zr⇤x))! f(x). Therefore, the variance becomes402

directly dependent on f(x). There is more variability at regions with higher density.403

2. The variance is also higher if C2
r⇤x
⌧ 1. Therefore, Cr⇤ should be as close to 1 as possible404

and nhn should be as high as possible for lower variance. Moreover, variance can be405

reduced at the expense of higher bias with Cr⇤x > 1. Most importantly note that, the effect406

of Cr⇤x cancels out in the numerator and the denominator while estimating the posteriors in407

Equation 7.408

3. As hn ! 0 the estimation becomes unbiased (see Equation 20), but the estimation variance409

becomes unbounded. Therefore, for bounded and decreasing variance the condition nhn !410

1 is necessary.411

412

Lemma 3 and 4 together completes the proof of Theorem 1.413

A.2 Proof of Theorem 2414

We first expand ĝy(x):415

ĝy(x) =
f̂y(x)P̂Y (y)P
K

k=1 f̂k(x)P̂Y (k)

=
f̃y(x)P̂Y (y) +

b

log(n) P̂Y (y)
P

K

k=1(f̂k(x)P̂Y (k) +
b

log(n) P̂Y (k))

As the inference point x becomes more distant from training samples (and more distant from all of
the Gaussian centers), we have that G(x, µ̂r, ⌃̂r) becomes smaller. Thus, 8y, f̃y(x) shrinks. More
formally, 8y,

lim
dx!1

f̃y(x) = 0

13

We can use this result to then examine the limiting behavior of our posteriors as the inference point x416

becomes more distant from the training data:417

lim
dx!1

ĝy(x) = lim
dx!1

f̃y(x)P̂Y (y) +
b

log(n) P̂Y (y)
P

K

k=1(f̃k(x)P̂Y (k) +
b

log(n) P̂Y (k))

=
(limdx!1 f̃y(x))P̂Y (y) +

b

log(n) P̂Y (y)
P

K

k=1(limdx!1 f̃k(x))P̂Y (k) +
b

log(n) P̂Y (k))

=
P̂Y (y)P
K

k=1 P̂Y (k)

= P̂Y (y)

B Simulations418

We construct five types of binary class simulations:419

• Gaussian XOR is a two-class classification problem with equal class priors. Conditioned420

on being in class 0, a sample is drawn from a mixture of two Gaussians with means421

±[0.5,�0.5]> and standard deviations of 0.25. Conditioned on being in class 1, a sample is422

drawn from a mixture of two Gaussians with means ±[0.5,�0.5]> and standard deviations423

of 0.25.424

• Spiral is a two-class classification problem with the following data distributions: let K425

be the number of classes and S ⇠ multinomial(1
K
~1K , n). Conditioned on S, each feature426

vector is parameterized by two variables, the radius r and an angle ✓. For each sample,427

r is sampled uniformly in [0, 1]. Conditioned on a particular class, the angles are evenly428

spaced between 4⇡(k�1)tK
K

and 4⇡(k)tK
K

, where tK controls the number of turns in the429

spiral. To inject noise along the spirals, we add Gaussian noise to the evenly spaced angles430

✓
0 : ✓ = ✓

0 +N (0, 0.09). The observed feature vector is then (r cos(✓), r sin(✓)).431

• Circle is a two-class classification problem with equal class priors. Conditioned on being432

in class 0, a sample is drawn from a circle centered at (0, 0) with a radius of r = 0.75.433

Conditioned on being in class 1, a sample is drawn from a circle centered at (0, 0) with a434

radius of r = 1, which is cut off by the region bounds. To inject noise along the circles, we435

add Gaussian noise to the circle radii r0 : r = r
0 +N (0, 0.01).436

• Sinewave is a two-class classification problem based on sine waves. Conditioned on being437

in class 0, a sample is drawn from the distribution y = cos(⇡x). Conditioned on being in438

class 1, a sample is drawn from the distribution y = sin(⇡x). We inject Gaussian noise to439

the sine wave heights y0 : y = y
0 +N (0, 0.01).440

• Polynomial is a two-class classification problem with the following data distributions:441

y = x
a. Conditioned on being in class 0, a sample is drawn from the distribution y = x

1.442

Conditioned on being in class 1, a sample is drawn from the distribution y = x
3. Gaussian443

noise is added to variables y0 : y = y
0 +N (0, 0.01).444

Table 1: Hyperparameters for RF and KGF.

Hyperparameters Value
n_estimators 500
max_depth 1
min_samples_leaf 1
O(n) 1 + blog(n)/3c
b (bias) exp(�10

p
d)

� 1⇥ 10�6

14

Table 2: Hyperparameters for ReLU-net and KGN.

Hyperparameters Value
number of hidden layers 4
nodes per hidden layer 1000
optimizer Adam
learning rate 3⇥ 10�4

O(n) log2(n)

b (bias) exp(�10
p
d)

� 1⇥ 10�6

C Pseudocodes445

In this section, we provide the pseudocode for our porposed algorithms.

Algorithm 1 Fit a KGX model.
Input:

(1) ✓ . Parent learner (random forest or deep network model)
(2) Dn = (X,y) 2 Rn⇥d ⇥ {1, . . . ,K}n . Training data

Output: G . a KGX model
1: function KGX.FIT(✓,X,y)
2: for i = 1, . . . , n do . Iterate over the dataset to calculate the weights
3: for j = 1, . . . , n do
4: wij COMPUTEWEIGHTS(xi,xj , ✓)
5: end for
6: end for
7:
8:
9: {Qr}p̃r=1 GETPOLYTOPES(w) . Identify the polytopes by clustering the samples with

similar weight
10:
11: G.{w̃k}Kk=1 0 . Initialize the counts for each class
12: for r = 1, . . . , p̃ do . Iterate over each polytope
13: for k = 1, . . . ,K do
14: G.w̃rk COUNTWEIGHTS({wrs}p̃s=1, k) . wrk is the number of weighted input

samples in Qr with label k
15: G.w̃k G.w̃k + G.w̃rk . Update the total count for each class
16: end for
17: G.µ̂r,G.⌃̂r ESTIMATEPARAMETERS(X, {wrs}p̃s=1) . Fit Gaussians using weighted

MLE
18: end for
19: return G
20: end function

446

D Hardware and Software Configurations447

• Operating System: Linux (ubuntu 20.04), macOS (Ventura 13.2.1)448

• VM Size: Azure Standard D96as v4 (96 vcpus, 384 GiB memory)449

• GPU: Apple M1 Max450

• Software: Python 3.8, scikit-learn � 0.22.0, tensorflow-macos2.9, tensorflow-metal 451

0.5.0.452

15

Algorithm 2 Computing weights in KGF
Input:

(1) xi,xj 2 R1⇥d
. two input samples to be weighted

(2) ✓ . parent random forest with T trees
Output: wij 2 [0, 1] . compute similarity between i and j-th samples.

1: function COMPUTEWEIGHTS(xi,xj , ✓)
2: Ii PUSHDOWNTREES(xi, ✓) . push xi down T trees and get the leaf numbers it end up

in.
3: Ij PUSHDOWNTREES(xj , ✓) . push xj down T trees and get the leaf numbers it end up

in.
4: l COUNTMATCHES(Ii, Ij) . count the number of times the samples end up in the same

leaf
5: wij l

T

6: return wij

7: end function

Algorithm 3 Computing weights in KGN
Input:

(1) xi,xj 2 R1⇥d
. two input samples to be weighted

(2) ✓ . parent deep-net model
Output: wij 2 [0, 1] . compute similarity between i and j-th samples.

1: function COMPUTEWEIGHTS(xi,xj , ✓)
2: Ai PUSHDOWNNETWORK(xi, ✓) . get activation modes Ai

3: Aj PUSHDOWNNETWORK(xj , ✓) . get activation modes Aj

4: l COUNTMATCHES(Ai, Aj) . count the number of times the two samples activate the
activation paths in a similar way

5: wij l

N
. N is the total number of activation paths

6: return wij

7: end function

16

Figure 4: Extended results on OpenML-CC18 datasets. Classifications errors for KGF and RF with
max sample size, number of features, and number of classes mentioned in the title for each panel.

17

Figure 5: Extended results on OpenML-CC18 datasets. Calibration errors for KGF and RF with
max sample size, number of features, and number of classes mentioned in the title for each panel.

18

Figure 6: Extended results on OpenML-CC18 datasets. Mean max confidence for KGF and RF
with max distance from the data origin, number of features, and number of classes mentioned in the
title for each panel. The dashed line indicates the maximum of the empirical priors for different class
labels.

19

Figure 7: Extended results on OpenML-CC18 datasets. Classifications errors for KGN and ReLU-net
with max sample size, number of features, and number of classes mentioned in the title for each
panel.

20

Figure 8: Extended results on OpenML-CC18 datasets. Calibration errors for KGN and ReLU-net
with max sample size, number of features, and number of classes mentioned in the title for each
panel.

21

Figure 9: Extended results on OpenML-CC18 datasets. Mean max confidence for KGN and ReLU-
net with max distance from the data origin, number of features, and number of classes mentioned in
the title for each panel. The dashed line indicates the maximum of the empirical priors for different
class labels.

22

	Introduction
	Related Works and Our Contributions
	Methods
	Setting
	Background and Main Idea
	Proposed Model
	Desiderata

	Theoretical Results
	Model Parameter Estimation
	Gaussian Kernel Parameter Estimation
	Kernel Generative Forest
	Kernel Generative Network

	Experimental Results
	Simulation Study
	Benchmark Data Study

	Discussion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Simulations
	Pseudocodes
	Hardware and Software Configurations

