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A Proofs

A.1 Proof of Theorem/I]

Consider the density estimator for the samples populating the polytopes f . Let n be the total number
of samples and n, be the number of data points within polytope (),.. As stated in the theorem
statement, we make the following assumptions:

1. The polytope bandwidth h,, — 0 as n — oc.
2. n grows faster than the shrinkage of h,,, i.e.,n - h,, — co as h,, — 0 in probability.

For simplicity, we first explore the one-dimensional distribution. The derivation can be readily
extended to multi-dimensional scenarios. We consider any Gaussian kernel G’() with parameters
chosen independently of the data satisfying two conditions. In lemma 3]and ] we will show that the
aforementioned class of estimators is consistent. The conditions for choosing the Gaussian kernel
parameters are:

1. The center of the kernel can be any point z, within the polytope Q- as n — oo,

2. The kernel bandwidth o, is any non-negative number always bounded by the polytope
bandwidth h,, asn — oo, i.e., 0. = C,.h,,, where 0 < C,. < 1.

Now the class conditional density estimate at a point = can be written as:

flz) = %ang’(x;uﬁilr)]l(r:r;). (19)

reP

Lemma 3. The class of estimators in (19) is an asymptotically unbiased class of estimators of the
true density f.

Proof. The polytope sample counts n,. can be considered as binomially distributed: n,, ~ B(n, P,),
where P, = |, o, dF is the probability of finding a training sample within the polytope r and F' is the
cumulative density function associated with the density f. This allows us to write : E[n,] = n P,.
Using the mean value theorem, we have that P. = h,, f(g,), for some ¢, € Q,.. Note that, if we
consider the multi-dimensional scenario for the mean value theorem here, the proof can be easily
generalized for multi-dimensional case.

Now consider the expectation of f with respect to the training distribution:

; P G (s pr, Br) L(r = 77) ' *

E[f@)) =Y = =Y haf(@)9 @ )L =17). (20)
Note that we are given the partitions of the feature space and we choose Gaussian parameters such that
they are independent of the training data. Therefore, G’ (x, p1,-, 3, ) 1(r = %) is not a random variable.
Now, as n — 00, h,, — 0, and h,, can be considered an infinitesimal measure dz,.. Furthermore, as
the bandwidth of the Gaussian is limited by the polytope bandwidth and the area under the Gaussian
is 1, the kernel G'(x, u,-, X,.)1(r = %) becomes a dirac delta function evaluated at z as h,, — 0.
Therefore, in the limiting conditions, G’ (x, fi, 2, )1(r = %) — 6(x — z,) and f(¢.) — f(zr).
Here z, is a point such that z,. € Q,. for all n. As n — oo, the summation in thus becomes an
integral over the space R. Therefore, in the limit we can write [20|as

E[f(2)] = /_ St =z @1
= f(z)

Therefore, f() is an asymptotically unbiased estimator of f(z).

Lemma 4. The variance of the class of estimators in asymptotically goes to (.
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Proof. For binomially distributed samples n,., we can write, Var[n,] = nP.(1 — P,). Therefore,
we can estimate the variance of f(x) as:

varlf@)] = 3 O g w10 = )2
reP
. hnf(zr;’;)(l - hnf(zr;)) 1 (v — :urj;)2
= " {\/%O'T; exp (_ 20_2; )}2 o
o hnf(zrj)(l - hnf(zr:)){ 1 ex (_ (x - /-‘rl",)2 )}2
- nCZ 12 Var P 202,
) A f )
- 27?0,?; (nhy)

Equation 22] offers several interesting insights:

1. Ashy, =0, 2+ — xand f(2px)(1 = hpn f(2r)) — f(2). Therefore, the variance becomes
directly dependent on f(z). There is more variability at regions with higher density.

2. The variance is also higher if C’f; < 1. Therefore, C,~ should be as close to 1 as possible
and nh,, should be as high as ﬁossible for lower variance. Moreover, variance can be
reduced at the expense of higher bias with C;.- > 1. Most importantly note that, the effect
of C'.» cancels out in the numerator and the denominator while estimating the posteriors in
Equation

3. As h,, — 0 the estimation becomes unbiased (see Equation @ but the estimation variance
becomes unbounded. Therefore, for bounded and decreasing variance the condition nh,, —
00 is necessary.

Lemma [3|and 4| together completes the proof of Theorem

A.2 Proof of Theorem

We first expand g, (x):

As the inference point x becomes more distant from training samples (and more distant from all of

the Gaussian centers), we have that G(x, fi,, 3,.) becomes smaller. Thus, Yy, f,(x) shrinks. More
formally, Yy,

lim f,(x) =0

dx—r00

13
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We can use this result to then examine the limiting behavior of our posteriors as the inference point x
becomes more distant from the training data:

f( )PY( )+10g(n)PY< )

lim g, (x) =

b0 S I ATT T, )+ oy Py (k)
C (limaee fy )Py () + gy Pr ()
S (img, oo f5(3)) Py () + s Py (k)
_ Py (y)
Zf:l PY(k)
= Py(y)

B Simulations

We construct five types of binary class simulations:

Gaussian XOR is a two-class classification problem with equal class priors. Conditioned
on being in class 0, a sample is drawn from a mixture of two Gaussians with means
+[0.5,—0.5] " and standard deviations of 0.25. Conditioned on being in class 1, a sample is
drawn from a mixture of two Gaussians with means £[0.5, —0.5] " and standard deviations
of 0.25.

Spiral is a two-class classification problem with the following data distributions: let K
be the number of classes and .S’ ~ multinomial(%l K, ). Conditioned on S, each feature
vector is parameterized by two variables, the radius 7 and an angle 6. For each sample,

r is sampled uniformly in [0, 1]. Conditioned on a particular class, the angles are evenly
47!‘(]671)t1( 47T(k)tK
K

spaced between and , Where tg controls the number of turns in the
spiral. To inject noise along the spirals, we add Gaussian noise to the evenly spaced angles
0" : 0 =46+ N(0,0.09). The observed feature vector is then (r cos(8),r sin(6)).

Circle is a two-class classification problem with equal class priors. Conditioned on being
in class 0, a sample is drawn from a circle centered at (0, 0) with a radius of » = 0.75.
Conditioned on being in class 1, a sample is drawn from a circle centered at (0, 0) with a
radius of » = 1, which is cut off by the region bounds. To inject noise along the circles, we
add Gaussian noise to the circle radii 7’ : r = v/ + N(0,0.01).

Sinewave is a two-class classification problem based on sine waves. Conditioned on being
in class 0, a sample is drawn from the distribution y = cos(7z). Conditioned on being in
class 1, a sample is drawn from the distribution y = sin(7wz). We inject Gaussian noise to
the sine wave heights v : y = ' + N (0,0.01).

Polynomial is a two-class classification problem with the following data distributions:
y = x%. Conditioned on being in class 0, a sample is drawn from the distribution y = z.
Conditioned on being in class 1, a sample is drawn from the distribution y = 2. Gaussian
noise is added to variables 3’ : y = ' + A(0,0.01).

Table 1: Hyperparameters for RF and KGF.

Hyperparameters | Value
n_estimators 500
max_depth 00
min_samples_leaf 1

O(n) 1+ [log(n)/3]
b (bias) exp(—10v4)

A 1x1078

14



445

446

447

448

449

450

451
452

C

Table 2: Hyperparameters for RELU-net and KGN.

Hyperparameters Value
number of hidden layers | 4
nodes per hidden layer 1000

optimizer Adam
learning rate 3x 1071
O(n) logy (n)

b (bias) exp(—lO‘/E)
A 1x10°°

Pseudocodes

In this section, we provide the pseudocode for our porposed algorithms.

Algorithm 1 Fit a KGX model.

Input:
(Ho > Parent learner (random forest or deep network model)
Q) D, = (X,y) e R?*4 x {1,... , K}" > Training data
Output: G > a KGX model
1: function KGX.FIT(6, X, y)
2: fori=1,...,ndo > Iterate over the dataset to calculate the weights
3: forj=1,...,ndo
4: w;; + COMPUTEWEIGHTS(xX;, X;, 6)
5: end for
6: end for
7:
8: _
9: {Q,}F_, <+ GETPOLYTOPES(w) b Identify the polytopes by clustering the samples with
similar weight
10:
11: G, «+0 > Initialize the counts for each class
12: forr=1,...,pdo > Iterate over each polytope
13: fork=1,...,Kdo
14: G Wy < COUNTWEIGHTS({w,s}2_;, k) > w,y is the number of weighted input
samples in @),- with label &k
15: Gy +— Gy + Gk > Update the total count for each class
16: end for )
17: G.fir,G.%, < ESTIMATEPARAMETERS(X, {w, }2_,) > Fit Gaussians using weighted
MLE
18: end for
19: return G
20: end function

D

Hardware and Software Configurations

* Operating System: Linux (ubuntu 20.04), macOS (Ventura 13.2.1)
* VM Size: Azure Standard D96as v4 (96 vcpus, 384 GiB memory)
* GPU: Apple M1 Max

* Software: Python 3.8, scikit-learn > 0.22.0, tensorflow-macos<2.9, tensorflow-metal <
0.5.0.
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Algorithm 2 Computing weights in KGF

Input:
(D x;,x; € R1xd > two input samples to be weighted
2)0 > parent random forest with 7" trees
Output: w;; € [0,1] > compute similarity between ¢ and j-th samples.
1: function COMPUTEWEIGHTS(xX;, X, 0)
2: Z; < PUSHDOWNTREES(X;, #) > push x; down T trees and get the leaf numbers it end up
in.
3: Z; + PUSHDOWNTREES(x;, §) > push x; down T’ trees and get the leaf numbers it end up
in.
4: l <~ COUNTMATCHES(Z;,Z;) > count the number of times the samples end up in the same
leaf
5: Wij < %
6: return w;;

7: end function

Algorithm 3 Computing weights in KGN

Input:
(D x;,x; € R1xd > two input samples to be weighted
2)0 > parent deep-net model
Output: w;; € [0,1] > compute similarity between ¢ and j-th samples.
1: function COMPUTEWEIGHTS(X;, X, 0)
2: A; + PUSHDOWNNETWORK(x;, 0) > get activation modes A4;
33 Aj < PUSHDOWNNETWORK(xX;, ) > get activation modes A,
4 l < COUNTMATCHES(A;, A;) > count the number of times the two samples activate the
activation paths in a similar way
5: Wij % > N is the total number of activation paths
6: return w;;
7: end function

16
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Figure 4: Extended results on OpenML-CC18 datasets. Classifications errors for KGF and RF with
max sample size, number of features, and number of classes mentioned in the title for each panel.
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Figure 5: Extended results on OpenML-CC18 datasets. Calibration errors for KGF and RF with
max sample size, number of features, and number of classes mentioned in the title for each panel.
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OpenML-CC18 Benchmark Suites on KGF and RF #(max distance, feature, class)
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Figure 6: Extended results on OpenML-CC18 datasets. Mean max confidence for KGF and RF
with max distance from the data origin, number of features, and number of classes mentioned in the
title for each panel. The dashed line indicates the maximum of the empirical priors for different class

labels.
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OpenML-CC18 Benchmark Suites on KGN and DN #(max sample, feature, class)
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Figure 7: Extended results on OpenML-CC18 datasets. Classifications errors for KGN and RELU-net
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Figure 8: Extended results on OpenML-CC18 datasets. Calibration errors for KGN and RELU-net
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OpenML-CC18 Benchmark Suites on KGN and DN #(max distance, feature, class)
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Figure 9: Extended results on OpenML-CC18 datasets. Mean max confidence for KGN and RELU-
net with max distance from the data origin, number of features, and number of classes mentioned in
the title for each panel. The dashed line indicates the maximum of the empirical priors for different
class labels.

22



	Introduction
	Related Works and Our Contributions
	Methods
	Setting
	Background and Main Idea
	Proposed Model
	Desiderata

	Theoretical Results
	Model Parameter Estimation
	Gaussian Kernel Parameter Estimation
	Kernel Generative Forest
	Kernel Generative Network

	Experimental Results
	Simulation Study
	Benchmark Data Study

	Discussion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Simulations
	Pseudocodes
	Hardware and Software Configurations

