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Abstract1

Node embedding methods map network nodes to low dimensional vectors that can2

be subsequently used in a variety of downstream prediction tasks. The popularity3

of these methods has grown significantly in recent years, yet, their robustness to4

perturbations of the input data is still poorly understood. In this paper, we assess5

the empirical robustness of node embedding models to random and adversarial6

poisoning attacks. Our systematic evaluation covers representative embedding7

methods based on Skip-Gram, matrix factorization, and deep neural networks. We8

compare edge addition, deletion and rewiring attacks computed using network9

properties as well as node labels. We also specifically investigate the performance10

of popular baseline node classification attacks that assume full knowledge of the11

node labels. We report qualitative results via embedding visualization and quantita-12

tive results in terms of downstream node classification and network reconstruction13

performances. We find that node classification results degrade more than network14

reconstruction ones, that degree-based and label-based attacks are on average the15

most damaging and that label heterophily can strongly impact attack performance.16

1 Introduction17

In recent years, the design of robust machine learning models has become an important topic and18

attracted significant amounts of research attention [1–4]. The term ‘robust’ refers to the ability of19

a model to provide consistent and accurate predictions under small perturbations of the input data.20

These perturbations can appear in the form of random noise, out of distribution (OOD) data, or21

partially observed inputs [5]. They can affect models at train or evaluation times and be random22

or adversarial in nature. For a more complete overview of robustness in machine learning we refer23

the reader to [6]. In this manuscript, we empirically study both random and adversarial attack24

scenarios where perturbations are either a consequence of noise or specifically crafted to reduce25

model performance. We further focus our analysis on attacks affecting the models at training time26

exclusively, also know as the poisoning scenario [7].27

Simultaneously, node representation learning or node embedding models have become increasingly28

popular for bridging the gap between traditional machine learning and network structured data29

[8–10]. These approaches map network nodes to real-valued vectors that can be subsequently used30

in downstream prediction tasks such as classification [11] and regression [12]. Training of these31

models can be performed in a semi-supervised or unsupervised fashion. In the former, embeddings32

are optimized for a particular downstream task while in the latter, general purpose embeddings33

are obtained. Robustness is an important feature for representation learning models as well. One34

would generally prefer small changes in the input networks to have a minimal impact on the vector35

representations learned and on downstream task performance. Moreover, with the deployment of these36

models in safety-critical environments (e.g., [13]) and on the web (where adversaries are common37

[14, 15]), robustness evaluation has become ever more essential. Unfortunately, the robustness of38

unsupervised node embedding approaches is poorly understood. Some recent studies have analyzed39

particular semi-supervised models based on the Graph Neural Network (e.g., [16]) and on shallow40

models (e.g., [17]). Others, have evaluated specific unsupervised random walk approaches under41

poison attacks [7]. Methods leveraging unsupervised embedding learning paradigms such as matrix42

factorization and deep neural networks, have not received much attention yet. Additionally, there is a43

lack of studies providing broader robustness evaluations and comparing multiple models.44
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We perform a systematic empirical analysis of the robustness of foundational works in the field of node45

embeddings. Among the 9 unsupervised approaches evaluated we include Node2vec [18], GraRep46

[19], and SDNE [20], which have inspired many other methods based on similar principles, e.g.,47

[21–23]. The models considered can be categorized into Skip-Gram, matrix factorization, and deep48

neural networks, and their robustness is compared on two downstream tasks: node classification and49

network reconstruction. We evaluate robustness under randomized and adversarial attacks targeting50

the network edges. For adversarial attacks we limit the scope to heuristic-based approaches where51

edges are targeted based on topological network properties (e.g. assortativity, degree). In contrast,52

optimization-based attacks (e.g. [7, 24–26]) solve a multi-level optimization problem to identify53

the most promising targets. Heuristic attacks are, thus, simpler and more computationally efficient54

making them more easily accessible to an attacker. Additionally, they do not require tailoring to55

specific embedding models and downstream tasks –as many optimization-based approaches do– and56

provide intuitive and explainable targets. Moreover, the heuristic attacks considered in this manuscript57

have already shown to effectively lead to structural collapse in networks [27]. The analysis of stronger58

optimization-based models is left for future work. Lastly, we focus our evaluation on global attack59

scenarios where changes can be made to the entire graph structure provided a fixed attack budget.60

Contributions. Our main contribution is a systematic analysis of node embedding robustness. We61

evaluate a total of 9 unsupervised node embedding approaches based on three learning paradigms. We62

employ 6 small and mid-sized networks and compare 14 different poison attack strategies. Further,63

we investigate the differences between randomized and adversarial attacks and compare edge addition,64

deletion and rewiring strategies. We also investigate attacks leveraging full knowledge of the node65

labels, commonly used as baselines, and show that network homophily (tendency of nodes with66

similar labels to be connected) and heterophily (where nodes of different labels are more often67

connected) have a strong impact on their performance. This work constitutes the first empirical68

evaluation of its magnitude on node embedding robustness.69

The remainder is organized as follows: in Section 2 we present the related work and in Section 370

we introduce the embedding methods and attack strategies evaluated. In Section 4, we discuss the71

experimental evaluation and results and finally, in Section 5 we outline our main conclusions.72

2 Related Work73

A large body of research has shown that traditional machine learning models and more recently deep74

neural models can be easily misled into providing wrong answers with high confidence [28, 29].75

Work on identifying and protecting against these adversarial attacks has particularly developed in the76

field of computer vision [30]. Works in this field, including [31, 32], have also shown how changes77

unperceivable to the human eye can result in dramatic performances drops or misclassifications.78

Later, adversarial attacks were introduced in the field of network science [5]. In [27], the authors79

show how structural properties of networks can collapse as a result of attacks. The authors further80

provide a framework for simulating attacks and defenses on networks. With the popularization81

of node embedding methods authors have also investigated adversarial attacks on semi-supervised82

[16, 33] and unsupervised [17] approaches. While there are some empirical studies comparing the83

performance of these types of methods (e.g., [34]), there is little research comparing their robustness.84

With the present work, our aim is to fill this gap and provide a fist empirical study and overview on85

the robustness to random and adversarial attacks of unsupervised node embedding approaches.86

3 Methods87

In this section we introduce the node embeddings approaches evaluated and the attack strategies used88

to poison the input networks. Regarding notation, in what follows we will use G = (V,E) to refer89

to an undirected graph with vertex set V = {v1, . . . , vN}, N = |V| and edge set E ⊆ (V ×V),90

M = |E|. We will represent edges or connected node-pairs as unordered pairs {vi, vj} ∈ E.91

And refer to pairs {vi, vj} /∈ E as non-edges or unconnected node-pairs. Node embeddings are92

denoted as X = (x1,x2, . . . ,xN ), X ∈ IRN×d where xi is the d-dimensional vector representation93

corresponding to node vi.94
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Table 1: Poison attacks evaluated and their types: (D) deterministic, (ND) non-deterministic.

Edge addition Edge deletion Edge rewiring

Name Type Name Type Name Type

add_rand ND del_rand ND rew_rand ND
add_deg ND del_deg D - -
add_pa ND del_pa D - -
add_da ND del_da D - -
add_dd ND del_dd D - -
add_ce ND del_di ND DICE ND

3.1 Node embedding methods95

For our experimental evaluation we have selected 9 representative methods spanning three different96

embedding learning paradigms, namely Skip-Gram, matrix factorization and deep neural networks.97

Next, we introduce each paradigm and the corresponding methods.98

Skip-Gram. These approaches capture node similarities in the graph through random walks and99

leverage the Skip-Gram model [35] to obtain node representations that maximize the posterior100

probability of observing neighboring nodes in the walks. From this category we evaluate: Deepwalk101

[36], the seminal work that proposed fixed length random walks to capture node similarities and102

Skip-Gram (approximated via hierarchical softmax) for learning the embedding matrix X; Node2vec103

[18], which introduced more flexible random walks controlled by in/out and return parameters and104

approximates Skip-Gram via negative sampling; LINE [37], where the authors leverage first and105

second order proximities to learn representations; And finally, VERSE [11], which minimizes the106

KL-divergence between a similarity metric on G (by default Personalized PageRank) and a vector107

similarity on X.108

Matrix Factorization. Factorization methods take as input node similarities encoded in the graph109

Laplacian, incidence matrices, adjacency matrices (A) and their polynomials, etc. and compute low110

dimensional embeddings by factorizing the selected matrix. We evaluate the following methods111

based on this paradigm: GraRep [19], HOPE [38], NetMF [39] and M-NMF [40]. GraRep factorizes112

high order polynomials of A, HOPE can factorize different similarity matrices provided they can113

be expressed as a composition of two sparse proximity matrices. NetMF decomposes the Deep-114

Walk transition matrix via SVD and lastly, M-NMF computes embeddings via non-negative matrix115

factorization and incorporates community structure in this process.116

Deep Neural Networks. Deep neural models, from auto-encoders to Siamese networks or CNNs,117

have also been used to obtain node representations from a graph’s link structure in an unsupervised118

fashion. Among these types of methods we evaluate SDNE [20], a deep neural model that captures119

first and second order proximity in the graph.1.120

3.2 Network attacks121

We subdivide network attacks into randomized and adversarial and further into three main types122

based on the changes to the network structure. These changes are edge addition, edge deletion and123

edge rewiring. Table 1 summarizes all attacks and below we briefly describe each one.124

Randomized Attacks. These attacks are designed to simulate random errors or failures in the125

networks. We consider edge addition (add_rand), deletion (del_rand) and rewiring (rew_rand). In126

the first case, pairs of nodes, vi, vj ∈ V are selected uniformly at random and added to E iff vi 6= vj127

and {vi, vj} /∈ E. For deletion attacks edges {vi, vj} ∈ E are selected uniformly at random and128

removed from E iff di ≥ 2 ∧ dj ≥ 2. Here di and dj represent the degrees of node vi and vj ,129

respectively. In rewire attacks we use del_rand to remove a budget of edges {vi, vj} ∈ E and then130

reconnect each vi to a new node vk such that vk 6= vj and {vi, vk} /∈ E.131

Adversarial Attacks. We also consider a particular type of heuristic-based adversarial attacks132

which target specific network properties such as node degrees, assortativity, and node labels. Despite133

1We also evaluated PRUNE [12] but despite our best efforts the method severely underperformed on all tasks.
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their lower effectiveness compared to optimization-based attacks, we evaluate these approaches134

due to their lower computational complexity, applicability to different embedding methods and135

downstream tasks, and explainable attack targets. Moreover, they aim to modify key structural136

properties commonly captured by representation models and can thus lead to worse representations.137

The heuristics considered have also been successfully used as baselines in previous works e.g., [7, 27].138

For all edge addition attacks we ensure the newly generated pairs do not exist already in the graph,139

i.e., {vi, vj} /∈ E, and they do not form selfloops, i.e., vi 6= vj . For degree-based (add_deg) and140

preferential attachment (add_pa) edge addition strategies we sample nodes uniformly and based141

on degree, respectively, and connect them to destination nodes sampled based on degree. For142

the degree assortativity (add_da) and disassortativity (add_dd) attacks, we generate edges which143

increase/decrease this property. We define assortativity akin to [41] and compute it per edge as144

the product of standard scores of di and dj , i.e. r{vi,vj} = (di − µ)/σ · (dj − µ)/σ. Where145

µ = 1
M

∑M
l=1 d

2
l and σ = ( 1

M

∑M
i=1 di · (di − µ)2)1/2. Thus, to increase assortativity we sample146

nodes vi with probability pi ∝ |di − µ| and connect them to nodes vj sampled with probability147

pj ∝ 1
|di−dj | . To increase disassortativity we sample nodes vi as above and vj with pj ∝ |di − dj |.148

The add_ce strategy applies to attributed graphs only and adds a set of random edges connecting149

nodes of dissimilar labels, exclusively.150

Unless otherwise specified, edge deletion attacks ensure that input networks do not become discon-151

nected after the attack. For del_deg and del_pa we first sort all edges based on the appropriate metric,152

i.e., di + dj for del_deg and di × dj for del_pa, and later remove the top edges that do not disconnect153

the network. For del_da and del_dd we compute r{vi,vj} and −r{vi,vj} as described above. Then,154

we sort the edges based on these properties and take the top candidates in each case while avoiding155

disconnections. The add_di strategy applies exclusively to attributed graphs and randomly selects156

edges for removal where the incident nodes share the same label.157

Finally, DICE [7] is an adversarial attack where edges are removed or added to a network with equal158

probability. Edges are removed according to the add_di strategy and added following add_ce. It is159

important to note that all edge deletion attacks with the exception of add_di are deterministic while160

the remaining addition and rewire attacks are non-deterministic (see Table 1).161

4 Experiments162

In this section we present the experimental setup, networks used and the results obtained. All our163

experiments were carried out on a single machine equipped with two 12 Core Intel(R) Xeon(R) Gold164

processors, 1TB of RAM and an RTX 3090 GPU.165

To ensure reproducibility of results, we have employed and extended the capabilities of the EvalNE166

toolbox [42]. This Python framework allows users to assess the performance and robustness of167

network embedding approaches for downstream node classification, network reconstruction, link168

prediction and sign prediction. In the framework we have integrated a variety of random and169

adversarial poison attack strategies, including those introduced in Section 3.2 and Table 1. In EvalNE,170

complete evaluation pipelines and hyperparameters are specified through configuration files which171

can be used at any time to replicate results. These configuration files together with the rest of our172

code are available online at https://tinyurl.com/5n8tsmrs.173

4.1 Preliminaries and Setup174

As pointed out in Section 1, the main goal of this paper is to investigate the robustness of node175

embedding approaches to poison attacks. To this end we report changes in downstream node176

classification and network reconstruction performances for different attacks on the input graphs. Next,177

we summarize the main goals and evaluation pipelines for both tasks and the overall evaluation setup.178

Node Classification. Given an input graph and labels for a subset of vertices, the goal in node179

classification is to infer the labels of the remaining vertices. To evaluate node classification robustness180

we proceed as follows. (1) We start by attacking an input network G with a specific strategy (from181

Table 1) and budget b. The budget defines the number of edges an attacker can add, delete or rewire182

in the network, expressed as a fraction of the total edges. For example, b = 0.1 indicates 10% of all183

edges in E. (2) The attacked network Ĝ = (V, Ê) is then provided as input to a node embedding184

4
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Table 2: Main statistics of the networks used for evaluation. The average degree is indicated by 〈k〉,
the assortativity coefficient by r, and ‘Viz’ represents the network visualization task in Section 4.3.4.

Network Type Task # Nodes # Edges # Labels 〈k〉 r

Citeseer Citation NC 2110 3668 6 3.48 0.01
Cora Citation NC 2485 5069 7 4.08 -0.07
PolBlogs Web NR 1222 16714 - 27.35 -0.22
Facebook Social NR 4039 88234 - 43.69 0.06
IIP Collaboration Viz 219 630 3 5.75 -0.22
StudentDB Relational Viz 395 3423 7 17.33 -0.34

approach which yields a representation matrix X containing vertex representations as its rows. As185

shown by Mara et. al. [34], gains from optimizing the hyperparameters of these models are marginal,186

and thus, we resort to fixed default values 2. We also fix the embedding dimensionality d = 128. (3)187

Given a number of training nodes Ntr (also defined as a fraction of all nodes in V), a multi-class188

one-versus-rest logistic regression model with 5-fold cross validation is trained to predict node labels189

from node representations. (4) We repeat the previous step 3 times with different node samples and190

report average results. For some experiments we will report results independent of the value of Ntr.191

In these cases we additionally average results over several values of Ntr. (5). Finally, and unless192

otherwise specified, for the non-deterministic attacks listed in Table 1 we repeat the complete process193

3 times with varying random seeds resulting in different sets of edges being removed in step 1). We194

report node classification performance in terms of f1_micro and f1_macro.195

Network Reconstruction. In this task the aim is to investigate how well the link structure of an196

input network can be recovered from the node representations. To this end node representations are197

first learned from the input network. Then, node pair representations are derived by applying a binary198

operator on the node representations. Finally, a binary classifier is trained to discriminate edges from199

non-edges. High quality representations are expected to result in the classifier scores of edges being200

higher than those of non-edges.201

We evaluate robustness on this task akin to node classification. (1) We attack the input network202

G with a given strategy and budget b. (2) We compute node representations for Ĝ with different203

methods for which we use fixed default hyperparameters. (3) Representations of node pairs {vi, vj}204

are combined into node-pair representations using the Hadamard product, i.e., xi,j = xi · xj . (4) A205

binary Logistic Regression with 5-fold cross validation is trained using representations corresponding206

to edges and non-edges in Ĝ. (5) The classifiers performance is tested using representations of edges207

and non-edges of the original unattacked graph G. For computational efficiency, we approximate the208

performance using 5% of all possible node-pairs in G. (6) We again repeat the complete process 3209

times for non-deterministic attacks. For this task we report AUC and average precision scores.210

Experimental Setup. Our evaluation setup is structured as follows. First, in Section 4.3.1 we211

investigate the performance of node embedding approaches under random attacks. In this case,212

we use the add_rand and del_rand strategies and vary the attack budget b ∈ [0.1, 0.2, ..., 0.9]3.213

For node classification specifically, we report average results over Ntr ∈ [0.1, 0.5, 0.9], 3 node214

shuffles for each Ntr value, and 3 experiment repetitions for non-deterministic attacks. For network215

reconstruction we only perform the 3 experiment repetitions for non-deterministic attacks. We then216

also investigate the effect of the number of labeled nodes for node classification by comparing the217

results obtained for Ntr = 0.1 to Ntr = 0.5 and Ntr = 0.9. Second, in Section 4.3.2 we evaluate218

adversarial robustness. We use a similar setup with the following exceptions: we compare all attacks219

from Table 1 (random attacks are used as baselines) and the budget is fixed to b = 0.2. Third, in220

Section 4.3.3 we compare addition, deletion and rewiring attacks. For both downstream tasks we221

compare add_rand, del_rand and rew_rand and for node classification we additionally compare222

add_ce, del_di and DICE. Other parameters are set as for the adversarial attack experiment. In this223

section we also investigate differences between deletion attacks that disconnect and those that do not224

disconnect the input networks. Lastly, in Section 4.3.4 we investigate the performance of common225

node classification attacks such as DICE that leverage full knowledge of the node labels.226

2Exact hyperparameter values and method implementations are reported in the EvalNE configuration files.
3We acknowledge the impracticality of extreme budgets but find these edge cases theoretically interesting.
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Figure 1: Robustness to randomized attacks for different budget values. The x-axis shows budgets
as a fraction of all edges in the graph. Negative values represent edge deletion and positives edge
addition attacks. Figure 1a presents f1_micro scores for node classification on Citeseer. Figure 1b
shows AUCs for network reconstruction of Facebook. In Figures 1c and 1d we show average
node classification performances for different fractions of labeled nodes Ntr on Citeseer and Cora,
respectively. Shaded areas denote 95% confidence intervals and the y-axis present f1_micro scores.

4.2 Data227

To conduct our experiments we use a total of 6 small and mid sized networks from different domains.228

Specifically, for node classification we use Citeseer [43] and Cora [44], two citation networks where229

nodes denote publications, edges represent citations between them and node labels indicate the main230

research field of each paper. For network reconstruction we use PolBlogs [45], a network of political231

blogs connected to each other via hyperlinks, and Facebook [46], a network of individuals and232

their social relations on the platform. Lastly, we perform qualitative and visualization experiments233

on the internet industry partnership (IIP) [47] and the StudentDB [48] networks. In the former,234

nodes represent companies, edges represent relations such as alliance or partnership and node labels235

indicate the company’s main business area, i.e., user content, infrastructure or commerce. The latter,236

StudentDB, is a k-partite network representing a snapshot of the Antwerp University relational237

database. Nodes represent entities such as students, courses, tracks, etc., and edges are binary238

relations, e.g., student-in-track, course-in-track, etc. Node labels indicate the type of each node (see239

Appendix A.1 for more details). In Table 2 we summarize the main statistics of the networks used.240

4.3 Experimental Results241

4.3.1 Randomized attacks242

We start in Figure 1a with node classification performance under random edge attacks and varying243

attack budgets. In the chart, negative budgets indicate edge deletion and positives indicate edge244

addition. In this case we allow edge deletions to disconnect the original networks. We report f1_micro245

scores for the Citeseer network (f1_macro results as well as those for the Cora network are similar and246

provided in Appendix A.2). From the figure we first note different general behaviors for edge deletion247

and addition attacks. Deletions cause a consistent performance degradation until complete network248

collapse at b = 0.9. Additions cause a sharper loss in performance for relatively low budget values249

(b ≤ 0.2) which become less severe around b = 0.4. Thus, in the low budget regime commonly250

analyzed in the literature (−0.2 < b < 0.2), edge addition attacks are superior to edge deletion.251

Outside of this range, however, edge deletions are more damaging. This observation is reasonable252

given the asymmetry in the attack budgets. Removing 90% of the graph edges leaves significantly less253
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Figure 2: Comparison of adversarial edge deletion and addition attacks for b = 0.2. Figures 2a
and 2b show deletion and addition attacks on node classification for Citeseer. Colors indicate the
fraction of train nodes Ntr. Figures 2c and 2d show similar results for network reconstruction on
both Facebook and PolBlogs networks combined (colors indicate the network).

information to learn an embedding from than adding 90% of spurious edges. We also observe from254

Figure 1a that NetMF and M-NMF are slightly more robust to edge additions than other approaches255

while edge deletion performance is similar across the board.256

In Figure 1b we present the AUC scores for reconstructing the original Facebook network G, from an257

attacked graph Ĝ. The plot indicates high edge recovery with AUCs u 1 despite the random attacks.258

Most methods maintain high robustness for a wide range of budget values. Some notable exceptions259

are Node2vec, LINE, and SDNE which consistently lose performance the more adversarial edges260

are added. One possible explanation is that these methods are not only affected by the addition261

of spurious edges but also by the removal of potentially informative negative samples, used by all262

three approaches to learn embeddings. For the PolBlogs dataset presented in Appendix A.2, we263

observe similar patterns. An exception in both networks is HOPE, which significantly degrades264

performance for strong edge deletion attacks (b ≤ −0.6). This indicates the method is less suited265

to learning embeddings of highly sparse networks. The high robustness exhibited by the evaluated266

approaches on this task is particularly interesting given the double impact of the attacks. Unlike in267

node classification, attacks on network reconstruction affect the models both at embedding learning268

time and binary classifier training (edge and non-edge train labels are obtained from the attacked Ĝ).269

We now focus our attention to the impact of the number of labeled nodes available for node clas-270

sification (Ntr). In Figures 1c and 1d we compare the average performance over all methods and271

experiment repetitions for Ntr ∈ [0.1, 0.5, 0.9]. For both Citeseer and Cora we observe similarly low272

performances when only a relatively small amount of labeled nodes are available i.e., Ntr = 0.1.273

For larger values (Ntr ≥ 0.5) the performances are very similar. We also observe that as networks274

become denser (as we move right on the x-axis in each plot) the difference between low and high275

values of Ntr become more significant. This indicates that node embedding methods will generally276

not provide robust predictions when few labeled nodes are available and this situation will worsen the277

denser the network is.278
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Figure 3: Comparison of edge addition, rewiring and deletion attacks for both downstream tasks. The
leftmost and center figures present f1_micro scores for random and node label based attacks on node
classification. The rightmost figure shows AUC results for random attacks on network reconstruction.

4.3.2 Adversarial attacks279

We now compare the effect of different heuristic-based adversarial attacks on node classification.280

Figures 2a and 2b summarize the results on the Citeseer network for edge deletion and addition281

attacks, respectively. In both cases we present decreases in f1_micro caused by different attacks with282

budget b = 0.2, as compared to the performance on the non-attacked graph. Firstly, if we compare283

across graphs we observe that edge additions decrease performance more than deletions across all284

methods for this particular budget value. This is also consistent with our observations from Figure 1a285

for random attacks on node classification. Among the edge deletion attacks we see that del_dd is,286

from an adversarial perspective, the most effective strategy. With this attack, we are targeting edges287

from high degree to low degree nodes further increasing the uncertainty regarding the latter. On the288

other hand, for edge addition the most effective strategies are connecting edges with different labels289

together (add_ce) or connecting nodes with similar degrees to each other (add_deg). It is interesting290

to note that attacks with full knowledge of the node labels del_di and add_ce are not significantly291

stronger than others e.g., degree based attacks. The colors in both figures indicate different fractions292

of labeled nodes. We observe that most of the variance in performance comes from the experiments293

with Ntr = 0.1 (blue points) and that these are also mostly concentrated in the lower ends of the294

boxplots. The variances for Ntr ≥ 0.5 are very similar across all attack strategies and networks.295

In Figures 2c and 2d we present similar results for network reconstruction. In this case we show the296

combined performances for both Facebook and PolBlogs datasets. The experiments reveal that edge297

deletion attacks are marginally stronger than edge additions. In particular, deleting edges based on298

degree is the most effective adversarial technique of the ones we have evaluated. Overall, we also299

observe much less variance in performance compared to the results on node classification.300

4.3.3 Addition, deletion and rewiring attacks301

In Figure 3 we compare edge addition, rewiring and deletion attacks on both downstream tasks. The302

attack budget is fixed to 0.2 and we show combined results for the two networks used in each task303

(marker color denotes the data used). We observe that for node classification rewiring attacks perform304

best (central boxes in the left and middle plots in Figure 3). This is also the case if we look at each305

individual dataset with results for Cora (orange dots) being significantly higher than those on Citeseer306

(blue dots). For network reconstruction we have much less data available, considering that we do307

not need to test different train sizes and shuffles per size. In this case the results indicate similar308

performances for all attack types. We further observe that results on the Facebook network are overall309

higher than on PolBlogs. The f1_macro and average precision scores for each task also corroborate310

this findings and are presented in Appendix A.3.311

We further investigate how strong a role network connectivity plays in adversarial attacks. We312

compare random and degree attacks constrained to not disconnecting the input networks and their313

unconstrained counterparts. We find that constrained attacks are on average, over all methods314

and networks 5% less effective. Specifically, for random attacks the f1_micro performance without315

disconnections is 0.651±0.166 (mean and standard deviation) and with disconnections 0.612±0.161.316

Similarly, for degree based attacks average performance reaches 0.637± 0.163 when disconnections317

are prevented and 0.606± 0.164 when they are not.318
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Figure 4: Correctly and incorrectly classified
nodes for the homophilic IIP network for vary-
ing attack budgets.

Figure 5: Correctly and incorrectly classified
nodes for the heterophilic StudentDB network
for varying attack budgets.

4.3.4 Attacks exploiting node labels319

In this section we investigate adversarial attacks on node classification under the assumption that320

an attacker has full access to the node labels. These types of attacks e.g., DICE, are commonly321

used as baselines and assume that access to the node labels leads to stronger attacks. Here, we322

demonstrate that the above assumption does not always hold. Specifically, we find that node label323

homophily/heterophily has a strong impact on the performance of these types of attacks.324

In this experiment we use the IIP and StudentDB datasets. The former is an example of a homophilic325

network where 70.9% of edges connect nodes of the same label. On the other hand, StudentDB326

is a strongly heterophilic network where no edges connect nodes sharing the same label. We327

summarize the results for node2vec, although our findings apply to other methods capturing high328

order proximities in graphs. We use DICE as an attack strategy.329

We start our evaluation by attacking both networks with budgets b ∈ [0.0, 0.2, 0.6]. We then learn330

node embeddings and perform downstream node classification for each network and attack budget.331

Correctly and incorrectly classified nodes at validation time are recorded for each case. Figure 4332

presents a spring-layout representations of the IIP network for each attack budget where nodes are333

colored based on their prediction status, correct (blue) or incorrect (red). From the figure we can334

visually confirm that, as the attack strength increases, the misclassification rate (mr in the figure) also335

increases. This is also confirmed numerically by the mr value presented above each plot.336

In Figure 5 we present the same information for the StudentDB network. In this case, as the attack337

strength increases the misclassification rate decreases (as can be seen visually and through the mr338

values). This seemingly counter intuitive behavior can be explained by the fact that our attack339

introduces additional information in the network reinforcing the heterophily schema (similar nodes340

remain unconnected while dissimilar ones are more connected). This dilutes the local network341

structure and makes nodes of the same type more similar to each other. Methods such as node2vec342

able to capture high order proximity can use this additional information to provide embeddings more343

suitable for node classification.344

5 Conclusions345

In this paper we have demonstrated that node embedding approaches, regardless of their underlying346

representation mechanisms, are sensitive to random and adversarial poison attacks. We have shown347

that results on downstream node classification are significantly less robust compared to those on348

network reconstruction. Our experiments also revealed that for low attacks budgets (below 20% of349

edges in the graph) edge addition attacks are generally stronger than edge deletions. Outside of this350

range, the opposite is true. Surprisingly, our empirical evaluation showed no significant differences351

between different heuristic-based adversarial attacks. Even leveraging full knowledge of the node352

labels when attacking node classification does not yield significantly stronger attacks. Finally, we353

have also shown that the number of labeled nodes plays a fundamental role in node classification354

robustness, that rewiring attacks are generally stronger than addition or deletion independently, and355

that attacks leveraging node label information can result in improved representations of heterophilic356

networks. With this work and our the extension to robustness evaluation for the EvalNE software we357

hope to lay the foundations for further research in this area.358
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A Appendix492

A.1 Further dataset details493

The IIP network represents a set of companies competing in the internet industry between 1998494

and 2001. Nodes in the graph denote companies and edges represent business relations such as495

joint venture, strategic alliance or other type of partnership. The associated node labels denote the496

company’s main business area i.e., content, infrastructure of commerce.497

The StudentDB network represents a snapshot of Antwerp University’s relational student database.498

Nodes in the network represent entities, more specifically: students, professors, tracks, programs,499

courses and rooms. Edges constitute binary relations between them, that is, student-in-track, student-500

in-program, student-takes-course, professor-teaches-course, and course-in-room. Numerical node501

labels are assigned according to each node’s type.502

A.2 Randomized attacks: additional results503

In this section we present our additional experiments regarding randomized attacks on node embed-504

dings. We start in Figures 6 and 7 by presenting the node classification f1_micro results for the Cora505

dataset and the network reconstruction AUC scores for PolBlogs.506

In Figures 8 and 9 we summarize the f1_macro scores for both Citeseer and Cora and Figures 8 and 9507

present the average precision on Facebook and PolBlogs.508

A.3 Other attacks: additional results509

We also compare the performance of edge addition, rewiring and deletion on both downstream tasks510

in terms of f1_micro and average precision. These results support our conclusions in Section 4.3.3511

(see Figure 12).512
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Figure 6: Node classification performance
for the Cora network. Y axis indicates
f1_micro scores. Negative attack budgets in-
dicate edge deletion.
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Figure 7: Network reconstruction perfor-
mance for the PolBlogs network. Y axis in-
dicates AUC scores. Negative attack budgets
indicate edge deletion.
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Figure 8: Node classification performance
for the Citeseer network. Y axis indicates
f1_macro scores. Negative attack budgets in-
dicate edge deletion.
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Figure 9: Node classification performance
for the Cora network. Y axis indicates
f1_macro scores. Negative attack budgets in-
dicate edge deletion.
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Figure 10: Network reconstruction perfor-
mance for the Facebook network. Y axis in-
dicates average precision scores. Negative
attack budgets indicate edge deletion.

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Attack budget

0.2

0.4

0.6

0.8 Deepwalk
Node2vec
LINE
VERSE
GraRep
HOPE
NetMF
M-NMF
SDNE

Figure 11: Network reconstruction perfor-
mance for the PolBlogs network. Y axis in-
dicates average precision scores. Negative
attack budgets indicate edge deletion.
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Figure 12: Comparison of edge addition, rewiring and deletion attacks for both downstream tasks.
The leftmost and center figures present f1_macro scores for random and node label based attacks
on node classification. The rightmost figure shows average precision results for random attacks on
network reconstruction.
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