
Temperature Balancing, Layer-wise Weight Analysis,
and Neural Network Training

Anonymous Author(s)
Affiliation
Address
email

Abstract

Regularization in modern machine learning is crucial, and it can take various forms1

in algorithmic design: training set, model family, error function, regularization2

terms, and optimizations. The learning rate, which can be interpreted as a tempera-3

ture parameter within the statistical mechanics of learning, plays a crucial role in4

training deep neural networks. Indeed, many widely adopted strategies define the5

decay of the learning rate over time, using either a global learning rate or one that6

varies for each parameter, which can be interpreted as decreasing the temperature.7

This paper proposes a middle-ground approach for temperature balancing called8

TempBalance. It is based on the theory of heavy-tail self-regularization (HT-SR),9

and it is a simple yet effective layer-wise policy applicable to general global tem-10

perature assignments in deep learning regularization. Our main contributions are as11

follows: (i) In addition to following a learning rate schedule, we suggest balancing12

the learning rate across each layer, an approach that has received less attention com-13

pared to global or parameter-wise learning rate allocation. (ii) We demonstrate that14

HT-SR-motivated capacity control metrics characterize the layers to achieve maxi-15

mal temperature balance during model training, resulting in improved performance16

during testing. We implement TempBalance on CIFAR10, CIFAR100, SVHN,17

and TinyImageNet datasets using ResNets, VGGs and WideResNets with various18

depths and widths. Our results show that TempBalance significantly outperforms19

ordinary SGD and carefully-tuned spectral norm regularization, which is a closely20

related regularization technique. We also show that TempBalance outperforms a21

number of state-of-the-art optimizers and learning rate schedulers.22

1 Introduction23

Having a learning rate schedule that gradually decreases over time is crucial for the convergence and24

performance of state-of-the-art machine learning algorithms. Indeed, many optimization algorithms25

essentially boil down to designing the progression of parameter updates, as realized by different26

learning rate schedules [1–4]. Common schedules assign a global model learning rate per epoch,27

where the same learning rate is used for all layers in the model. This includes the family of cyclical28

learning rates [3], and parameter-wise learning rate schedules like Adam [2] and its variants [5, 6].29

However, such a global learning rate schedule does not take into account the structural characteristics30

of neural networks. At the same time, parameter-wise learning rate schedules have long been31

conjectured to have worse generalization performance than carefully tuned SGD optimizers [7], and32

storing both first and second-order moments for each parameter can lead to significantly increased33

memory consumption [8]. As mentioned in Smith et al. [9], storing the whole Megatron-Turing34

NLG requires 10 terabytes of aggregate memory, and the Adam optimizer’s first and second-order35

moments [2] consume 40% of it. Nonetheless, improving parameter-wise learning rate schedules is36

an active field of study [4, 5, 10, 11].37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

A largely under-explored idea is to assign layer-wise learning rates to reconcile the two extremes of38

setting a single global learning rate or assigning fine-grained parameter-level learning rates. This39

learning rate assignment method does not require much storage cost and can assign different training40

speeds to different layers. However, existing layer-wise schemes are often introduced as an additional41

part of hyperparameter sweeping, and most lack a strong theoretical foundation. For instance, layer-42

wise learning rates can increase test accuracy in transfer learning [12] and domain adaptation [13], but43

these learning rates are often empirically tuned. More recently, Chen et al. [14], motivated by the idea44

that lower-level layers are domain-specific and higher-level layers are task-specific, automates the45

search for the optimal set of learning rates. However, the authors find the nested, bi-level optimization46

scheme to be too computationally expensive in practice [15]. AutoLR also automatically tunes its47

layer-wise learning rates according to the “role” of each layer [16]. The method is validated almost48

entirely by empirical results, further explained by layer-wise weight variations. While the authors49

attempt to assign a different starting learning rate to each layer, the learning rate for each layer50

continues to stay largely constant throughout training. LARS [17, 18] is another method to assign51

layer-wise learning rate. It is based on the “trust ratio”, defined as the ratio of weight norm to gradient52

update norm of each layer, and it is specifically used in large batch training to avoid the gradient53

diverge.54

In this paper, we propose TempBalance, a simple yet effective layer-wise learning rate assignment55

regularization method. TempBalance adopts a statistical physics viewpoint of learning and opti-56

mization [19–22], and it views the learning rate as a “temperature parameter”, which refers to some57

quantity related to the empirical noise/stochasticity introduced in the learning process. From this58

viewpoint, what matters in SGD training is the noise scale (which is the same as the noise scale59

mentioned in Smith and Le [23], Smith et al. [24] that can be written as a function of learning rate,60

batch size and momentum), instead of the learning rate per se. Further, a series of recent papers [25–61

27] point out that neural network training can be viewed as a balance between temperature-like62

parameters and load-like parameters, where a load-like parameter refers to some quantity related63

to the quantity/quality of the data, relative to the size of the model. For instance, Yang et al. [26]64

vary load and temperature parameters to provide a comprehensive taxonomy of NN loss landscapes,65

showing sharp phase transitions between different types of loss landscapes. In this paper, building66

on this line of research on temperature parameters, we further use ideas and measurements from67

Heavy-Tail Self Regularization (HT-SR) Theory [25, 28–31] to characterize the quality of each layer68

and then assign layer-wise temperature (i.e., layer-wise learning rate) based on their heavy-tail (HT)69

characterizations. We discuss the significance of HT-SR and its connection to layer-wise temperature70

in the following paragraph.71

HT-SR theory. HT-SR theory suggests that as layer weight matrices train for a longer period,72

they start to show strong correlations, resulting in the HT structure of the Empirical Spectrum73

Density (ESD) for each layer. To obtain this ESD, we take a neural network with L layers and its74

corresponding weight matrices W1,W2, · · · ,WL with shape n×m (where n ≥ m). For the i-th75

layer, we calculate the eigenvalues of its correlation matrix Xi = WT
i Wi and then plot the ESD for76

that layer, which, upon training, will gradually change to have an HT structure by HT-SR theory [28].77

We can then fit a power-law (PL) distribution to the HT part of the ESD, and extract its exponent as,78

namely, PL_Alpha. The fitted PL will have the following formula:79

p(λ) ∝ λ−α, λmin < λ < λmax. (1)

The PL_Alpha metric measures the PL exponent of the weight matrices’ ESD, and its underlying80

motivation stems from random matrix theory and statistical physics [29, 30].81

The PL_Alpha metric has been shown to predict the trends in the test accuracy of state-of-the-art82

computer vision (CV) and natural language processing (NLP) neural networks, without even the need83

for access to training or testing data [30, 32]. According to Martin et al. [30], one can aggregate84

PL_Alpha’s for different layers either by simple averaging or weighted averaging, and they can all85

predict test accuracy in different cases [30, 32]. Furthermore, the layer-wise nature of PL_Alpha86

makes it a fine-grained metric that can be used to assess the quality of individual layers of the network.87

Thus, in this paper, we extend HT-SR to training, and we exploit the layer-wise information provided88

by PL_Alpha to determine the layer-wise learning rates for better test accuracy.89

Note that PL_Alpha is not the only way to measure the HT structure. Several recent papers [33–35]90

use different HT metrics to measure the spectral of several “important matrices” (such as input/output91

covariance matrices, Fisher Information Matrices and Hessian), and we show in Appendix A that92

2

Figure 1: Examples of power-law (PL) fitting using the Hill estimator. Blue histograms depict the
empirical spectral densities (ESDs). Vertical black lines indicate the lower threshold λmin used to
truncate the full ESDs and extract the tail portion. Solid red curves represent the tail part of the
ESDs truncated by λmin, while dashed red curves represent the fitted heavy-tailed (HT) distributions.
The left shows a more HT ESD, requiring a relatively lower learning rate. The right one shows less
HT ESD, which requires a relatively higher learning rate. Unlike prior work, we do not aim to find
the “optimal” PL exponent. Instead, we use the PL exponent to rank ESDs to find layers that need
higher/lower learning rates. These two ESDs correspond to two layers of a ResNet18 model trained
on TinyImageNet.

these HT phenomena, measured in different ways on different matrices, are closely related to each93

other. On the other hand, this also means that the “absolute value” of PL_Alpha is unimportant,94

as optimal PL exponents estimated by different algorithms can be different [30, 33]. It turns out95

that what matters the most, as we show in this paper, is the layer-wise quality ranked by the PL96

exponent: layers with a smaller PL_Alpha to be relatively more “overtrained” and those with a larger97

PL_Alpha to be relatively more “undertrained”. This observation leads to a simple and efficient way98

to balance layer-wise learning rates: assigning a lower learning rate to overtrained layers and a larger99

learning rate to undertrained layers using PL_Alpha (see Figure 1). On top of this, we can grid-search100

the global learning rate on validation data, which is standard practice and is more efficient than101

grid-searching the layer-wise learning rates. We use this combination of assigning layer-wise learning102

rates using PL_Alpha and grid-searching the base learning rate to avoid deciding the “optimal PL103

exponent”, which can be tricky due to different ways of measuring HT. Indeed, there are different104

ways to measure PL_Alpha [28], and we use the Hill estimator [36], which shows stable performance105

in our experiments. Thus, we call our version of PL_Alpha the PL_Alpha_Hill metric, and we use106

that for the remaining paper. Further, we use a scale-free way to map the estimated PL_Alpha_Hill107

to the learning rate, meaning that arbitrary linear scaling on the estimated PL_Alpha_Hill (either108

due to the choice of the estimator or noisy measurements) does not affect the assigned learning rates.109

Another common way to change the ESD of weights is to constrain the spectral norm (i.e., the110

largest eigenvalue) using spectral norm regularization (SNR) [37, 38]. SNR provides a different111

form of regularization compared to HT-SR because it regulates the largest eigenvalue instead of112

the ESD slope (i.e., the PL_Alpha_Hill metric). It has been demonstrated that spectral norm113

and PL_Alpha_Hill serve distinct roles in generalization, and their combined form yields optimal114

predictions for test accuracy trends [28, 30–32]. Our paper, on the other hand, demonstrates that115

TempBalance outperforms SNR in training deep neural networks in most cases. Moreover, when116

these two regularization methods are combined during training, they result in optimal test accuracy,117

thereby confirming their complementary roles. As mentioned by Martin and Mahoney [31], Yang118

et al. [32], spectral norm and PL_Alpha_Hill measure the scale and the shape of a ESD respectively,119

and regulating both the scale and shape is crucial for achieving better ESD regularization. We120

also provide ablation studies on several layer-wise metrics for assigning layer-wise learning rates,121

including spectral norm, and we show that PL_Alpha_Hill performs the best among them.122

Contributions. The following summarizes our main contributions:123

• We propose a simple yet effective layer-wise learning rate schedule TempBalance based on124

HT-SR theory. We empirically found two insights. First, the mapping from PL_Alpha_Hill125

to learning rates should be scale-free, meaning that arbitrary linear scaling on the estimated126

PL exponent should not change the learning rate assignment. Second, searching for the127

3

minimum eigenvalue λmin, a standard practice in PL fitting [28, 39, 40], leads to unstable128

training. We instead fix λmin as the medium of the ESD.129

• We compare TempBalance to ordinary stochastic gradient descent (SGD) and SNR on various130

training tasks. This includes (1) different network architectures, such as ResNet, VGG,131

WideResNet, (2) different datasets, such as CIFAR10, CIFAR100, SVHN, TinyImageNet,132

and (3) ablation studies, such as varying widths, depths, initial learning rates and HT-SR133

layer-wise metrics. Compared to ordinary SGD, TempBalance achieves higher test accuracy134

by setting layer-wise learning rates. Compared to SNR, TempBalance performs better by135

providing a more fine-grained regularization on shape/slope instead of norm. We also show136

that combining TempBalance and SNR leads to further improved accuracy, verifying their137

complementary roles in informing deep learning training.138

• We compare TempBalance to a range of state-of-the-art optimizers and learning rate sched-139

ulers, including SGDR [10], SGDP [41], Lookahead [42] and LARS [17, 18] on ResNet18140

and ResNet34 trained on CIFAR100. We show that TempBalance achieves the highest test141

accuracy. We do careful hyperparameter tuning for all baselines. All results are obtained142

from five random seeds.143

• We use ablation studies to show that PL_Alpha_Hill provides the best test accuracy among144

a few layer-wise metrics considered in HT-SR [30, 32]. We also show that TempBalance145

maintains stable performance over SGD baselines when the model size changes. Furthermore,146

we show visualization results in Appendix B, verifying that TempBalance controls ESDs147

during training.148

2 Related Work149

Here we give an overview of the statistical mechanics of learning and recent progress in theoretical150

and empirical studies on generalization metrics and their applications.151

2.1 Statistical mechanics of learning and HT-SR152

Our paper is motivated by statistical mechanics of learning [43–45], and especially by works that153

connect load-like [43, 46, 47] and temperature-like parameters [19, 48] to neural networks. According154

to prior works in this area [25, 26], a temperature-like parameter represents the amount of noise and155

disturbance in the iteration of SGD, such as learning rate, weight decay parameter, and batch size. A156

load-like parameter represents the quantity and/or quality of data relative to the size of the learning157

model. To measure the quality of trained neural networks, Martin and Mahoney [28] introduce HT-SR158

theory, showing that the weight matrices of deep neural networks exhibit heavy-tailed empirical159

spectral densities. In subsequent papers, HT-SR has been applied to predicting trends in test accuracy160

of large-scale neural networks in both CV and NLP [30–32], but it has yet to be systematically161

incorporated to novel training algorithms. Recently, more and more papers realize the important162

connections between deep neural networks and statistical mechanics of learning. To name a few, Yang163

et al. [26] use load and temperature parameters to study a wide range of loss landscapes, providing a164

taxonomy from the perspective of global structure of a loss landscape. On the theory side, Baity-Jesi165

et al. [49] investigates the glassy behavior of neural networks, and Barbier et al. [50] derives the166

optimal generalization error of generalized linear systems. More recently, Sorscher et al. [51] studies167

easy versus hard samples used in training and design a “data-pruning” method. Zhou et al. [27]168

establishes a “three-regime model” in network pruning, unifying multiple practical hyperparameter169

tuning methods in a principled way.170

2.2 Generalization measures171

Note that the search for effective and robust generalization metrics has been the focus of several recent172

theoretical and empirical works [26, 30, 32, 52–54]. Several recent papers apply metric-informed173

training and architecture search, such as those based on Hessian [4, 55–57], spectral norm [37, 38],174

stable rank [58] and the spectrum of neural tangent kernel [59]. However, the most empirically175

successful generalization metrics, such as those based on the PAC-Bayes bounds [60–63], do not176

straightforwardly transfer to layer-wise quality metrics because such generalization metrics often177

study the whole neural network as an architecture-free function and lack the fine granularity to unveil178

the quality of each layer. Also, it has been mentioned in the literature [52] that (1) directly regularizing179

4

①

②

③

① Do weight analysis and get
layer-wise PL_Alpha_Hill.

② Assign � layer-wise learning
rates by TempBalance.

③ Update � layer-wise learning
rates for optimizer.

��(�)
��

� << �����������: ���
�

��
� >> ������������: ���

�

Figure 2: The pipeline diagram of TempBalance. For each epoch, TempBalance completes 3
steps: (i) Do weight analysis for all layers and get layer-wise PL_Alpha_Hill. (ii) Leverage layer-
wise PL_Alpha_Hill to assign learning rate for each layer while maintaining their change range
expectation roughly equal to the baseline across layers. (iii) Update the optimizer for the next epoch.

Algorithm 1: TempBalance
Input: M : Deep Neural Network, T : Total training epoch, t: Current epoch,

αi
t: ith layer’s PL_Alpha_Hill at epoch t, ηt: Baseline global learning rate at epoch t,

s1, s2: Minimum and maximum scaling ratio, ft: Learning rate schedule function

1 Initialize model M ;
2 for t← 0 to T do
3 Compute αi

t for all layers using the Hill estimator;
4 Leverage all αi

t and adopt ft in (2) to assign per-layer learning rate ft(i) between s1ηt and
s2ηt for the next epoch;

5 Update the optimizer for the next epoch;
6 end

generalization metrics can lead to difficulty in training, (2) evaluating these regularization methods180

may be hard due to the existence of implicit regularization in SGD, and (3) these metrics, especially181

norm-based metrics, cannot be expected to correlate with test accuracy causally [53], making the link182

between these generalization metrics and practical training methods nuanced. It will be clear in the183

next section that we do not regularize ESD metrics directly. Instead, we change learning rates to184

modify ESDs.185

3 The TempBalance Algorithm186

In this section, we introduce our simple yet effective method TempBalance, based on the general-187

ization metric PL_Alpha_Hill from HT-SR theory. For a neural network, different layers tend to188

have different PL_Alpha_Hill, [25, 28]: a layer with larger PL_Alpha_Hill indicates it is rela-189

tively undertrained while a smaller PL_Alpha_Hill means it is relatively overtrained. A natural190

idea is to adjust the degree of learning among different layers to get a balance: for a layer whose191

PL_Alpha_Hill is too large, we could assign a larger learning rate to accelerate its learning, and192

vice versa. We keep the expectation of the learning rate change range across all layers roughly equal193

to a baseline global learning rate, making it easier to tune the global learning rate and compare it194

with other baseline methods. The intuition of our method is transferring one layer’s learning rate to195

another and hence, TempBalance. The pipeline is in Figure 2.196

5

We provide the details of TempBalance in Algorithm 1. Based on PL_Alpha_Hill in different197

layers, we use the learning rate schedule function ft to map the ith layer to a particular learning rate198

ft(i) in epoch t. We adopt ft as a linear map between the layer-wise PL_Alpha_Hill and the final199

layer-wise learning rate, which has the following formula:200

ft(i) = ηt ·
[

αi
t − αmin

t

αmax
t − αmin

t

(s2 − s1) + s1

]
, (2)

where ηt means the base global learning rate in epoch t, (s1, s2) are the minimum and maximum201

learning rate scaling ratio relative to ηt, αi
t represents the layer i’s PL_Alpha_Hill at the beginning202

of epoch t, and (αmin
t , αmax

t) denote the minimum and maximum PL_Alpha_Hill across all the203

layers in epoch t. Using (2), we ensure that the new learning rate ft(i) is a scaled version of the204

original base learning rate ηt and is always inside the interval [s1ηt, s2ηt]. We only consider (s1, s2)205

such that s1+s2
2 = 1, e.g., (0.5, 1.5) or (0.8, 1.2).206

To fit the power law distribution p(λ) defined in (1), we use the famous Hill estimator [36] [64]. For207

the i-th layer, suppose the weight matrix is Wi and the correlation matrix W⊤
i Wi has ascending208

eigenvalues {λi}ni=1. Then, the Hill estimator calculates PL_Alpha_Hill using the following:209

PL_Alpha_Hill = 1 +
k

(
∑k

i=1 ln
λn−i+1

λn−k
)
, (3)

where k is the adjustable parameter, and we adopt k = n
2 in our experiments. Note that changing k210

essentially changes the lower eigenvalue threshold λmin for (truncated) PL estimation, as shown by211

the vertical black line in Figure 1. Choosing k = n
2 means using the largest half of the eigenvalues to212

estimate the slope. We empirically find that fixing k for all layers leads to more stable performance213

than searching k for different layers (e.g., optimizing k using the Kolmogorov–Smirnov test [40].)214

One advantage of mapping PL_Alpha_Hill to learning rates using (2) is that the scale of215

PL_Alpha_Hill is unimportant, i.e., linearly scaling PL_Alpha_Hill arbitrarily does not change216

the learning rate assignment because the linear scaling cancels each other in (2). This can maximally217

reduce the artifact of estimating the ESD PL exponent/slope due to estimation noise, which has been218

found to be a tricky issue in practice [28, 31].219

4 Empirical results220

In this section, we first give full details of the experimental setup (Section 4.1) and compare our221

method TempBalance to a few baselines (Section 4.2). Then, in Section 4.3, we perform ablation222

studies on varied initial learning rates, model widths and HT-SR layer-wise metrics.223

4.1 Experimental setup224

Datasets. We consider CIFAR100, CIFAR10, SVHN and Tiny ImageNet (TIN) [65–69]. CIFAR100225

consists of 50000 pictures for training and 10000 pictures for testing with 100 categories. CIFAR10226

consists of 50000 pictures for training and 10000 pictures for testing with 10 categories. SVHN227

consists of 73257 pictures for training and 26032 pictures for testing with 10 categories. Tiny228

ImageNet consists of 100000 pictures for training and 10000 images for testing with 200 classes.229

Models. We mainly consider three types of deep neural networks, VGG, ResNet and WideResNet230

(WRN) [70–72]. For each network, we consider two different size options. For VGG, we consider231

VGG16 and VGG19. For ResNet, we consider ResNet18 and ResNet34. For WideResNet, we232

consider WRN16-8 and WRN28-6. Also, for ResNet and VGG, we consider three different widths233

for ablation studies.234

Hyperparameters. One baseline is ordinary SGD training with a cosine annealing learning rate235

schedule (CAL), which follows the formula: ηt = η0

2

(
1 + cos

(
t·π
T

))
, where t is the current epoch,236

T represents the total training epochs and η0 is the initial learning rate. We grid-search the optimal237

initial (base) learning rate η0 for the CAL baseline, using the grid {0.05, 0.1, 0.15} for ResNet and238

{0.025, 0.05, 0.1} for VGG. The momentum and weight decay are 0.9 and 5× 10−4, respectively,239

which are both standard choices.240

6

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

(e) ResNet18, TIN (f) ResNet34, TIN (g) WRN16-8, TIN (h) WRN28-6, TIN

(i) ResNet18, CIFAR10 (j) VGG16, CIFAR10 (k) ResNet18, SVHN (l) VGG16, SVHN

Figure 3: (Main result). Comparing our method TempBalance (TB) to CAL and SNR. Our method
TempBalance outperforms CAL and SNR in almost all the settings except for VGG19 and ResNet
34 on CIFAR 100. For all experiments, combining TempBalance and SNR (TB+SNR) yields the best
performance. All baselines are carefully tuned. All results are obtained by running five random seeds.
See Appendix C for the details in all hyperparameters.

Another baseline is called spectral norm regularization (SNR). Prior work uses the following SNR241

objective function [37]:242

min
Θ

1

n

n∑
i=1

l (fΘ (xi) ,yi) +
λsr

2

L∑
l=1

σ (Wl)
2
, (4)

where λsr is the spectral norm regularization coefficient, σ(Wl) is the largest eigenvalue, i.e, spectrum243

norm of weight matrix Wl, and L is the number of layers. We use the power iteration method to244

calculate σ(Wl) in our experiments. For SNR, we grid-search the optimal regularization coefficient245

λsr, and we again adopt the CAL schedule for SNR, similar to the CAL baseline.246

To make our results fully reproducible, we report in Appendix C all hyperparameters, random seeds,247

and all numerical values of experimental results shown in the figures.248

4.2 Comparing TempBalance and multiple baseline methods.249

First, we compare TempBalance to two baseline training methods. See results in Figure 3. In the250

figure, CAL means SGD training with a CAL learning rate schedule, SNR means SGD trained with spectral251

norm regularization. TB means our method TempBalance, and TB + SNR means TempBalance252

combined with SNR. All error bars are obtained from five random seeds. From Figure 3, we see that253

TempBalance outperforms the CAL baseline in all settings. In almost all cases, it performs better than254

SNR baseline. When TempBalance does not outperform SNR, combining SNR with TempBalance255

leads to better test accuracy.256

Second, we compare our method to a number of optimizers and learning rate schedulers that are257

not necessarily related to ESD of weights. These include SGDR [10], SGDP [41], Lookahead [42]258

and LARS [17, 18], and we compare these baselines with TempBalance for ResNet18 and ResNet34259

trained on CIFAR100. SGDR is stochastic gradient descent with warm restarts. SGDP modifies the260

ordinary SGD to compensate for the effect of increasing weight norm. Lookahead [42] modifies SGD261

by letting each gradient update approximate the future trajectory of multiple updates. LARS assigns262

layer-wise learning rates based on the so-called “trust-ratio” and is the closest to our method. Results263

in Figure 4 show that TempBalance outperforms these baselines, and TempBalance combined with264

SGDP is the best-performing method. The crosses on each column represent training runs with265

different hyperparameters. Note that there are several other methods based on modifying the Adam266

7

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100

Figure 4: (More baseline optimizers). Comparing our method TempBalance (TB) to cosine anneal-
ing (CAL) baseline and other state-of-the-art optimizers and learning rate schedulers for ResNet18 and
ResNet34 trained on CIFAR100. Crosses for the same method represent different hyperparameter
settings. Each cross represents the mean test accuracy of five random seeds. The best performing
model thus far is TB combined with SGDP.

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 5: (Tuning initial learning rate). Comparing the test accuracy of TempBalance (red) and
CAL baseline (blue) for varying initial learning rate. Our method TempBalance outperforms CAL for
both ResNet and VGG trained on CIFAR100. All results are obtained by running five random seeds.

optimizer [2], such as AdamW [11], AdamP [41] and LAMB [73]. However, we do not find them to267

provide better results than the SGD baseline with cosine annealing (CAL in Figure 4).268

4.3 Corroborating results and ablation studies.269

In addition to the main results shown in Figure 3 and Figure 4, we show three ablation studies.270

Experiment one: tuning initial learning rate η0. We train models from scratch using TempBalance271

vs. CAL with various initial learning rates. We intend on comparing TempBalance and CAL baseline272

when both methods are allowed to search for the optimal hyperparameters. We again use ResNet18,273

ResNet34, VGG16 and VGG19 as our architectures and show results on CIFAR100. From the results274

in Figure 5, TempBalance achieves a higher test accuracy than CAL for both ResNet and VGG.275

Experiment two: varying channel width. We view the fraction of model width in Experiment276

one as “100%” and experiment with models with varied widths in [50%, 100%, 150%]. We again277

use VGG16, VGG19, ResNet18, and ResNet 34 trained on CIFAR100, and we grid search for the278

optimal learning rate for each width to get best accuracy. From Figure 6, we find that TempBalance279

outperforms the baseline for all widths.280

Experiment three: varying HT-SR metric. We use different HT-SR metrics to assign layer-wise281

learning rates. That is, we replace the layer-wise PL_Alpha_Hill in (2) with other HT-SR metrics282

including SpectralNorm and AlphaWeighted [30]. Results in Figure 7 show that PL_Alpha_Hill283

achieves the optimal test accuracy.284

Visualization results. We further analyze our methods by illustrating the effect of TempBalance on285

regularizing ESDs. See Appendix B.286

8

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 6: (Different widths). Comparing TempBalance and the CAL baseline for different network
widths. All results are obtained by running five random seeds.

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 7: (Different HT-SR metrics). Comparing PL_Alpha_Hill with multiple HT-SR metrics.
PL_Alpha_Hill achieves the best test accuracy among these metrics. All results are obtained by
running five random seeds.

5 Conclusion287

Our extensive empirical evaluations demonstrate that TempBalance offers a straightforward yet288

effective layer-wise learning rate schedule. Furthermore, our approach for balancing layer-wise289

temperature confirms the following: (i) HT-SR-motivated metric PL_Alpha_Hill helps layers290

achieve maximal temperature balance during training, exhibits strong correlations with model quality,291

and yields improved performance during testing. (ii) Temperature balancing is a novel and essential292

aspect of neural network training, and HT-SR theory provides a strong theoretical support for293

balancing temperatures. (iii) Layer-wise learning rate schedules are cheap and effective to apply294

when compared with per-parameter learning rate schedules, and it is useful to study these layer-wise295

learning rate schedules further. Our method provides insights into the study of layer-wise tuning296

approaches and load-temperature balancing in deep neural network training, as it serves both as a297

layer-wise learning rate schedule and an effective regularization technique based on HT-SR metrics.298

Limitations and societal impacts. Our paper leaves many future directions to explore, of which we299

discuss a few below:300

• Can HT-SR metrics be extended to parameter-wise learning rate schedules, global learning301

rate schedules, or other hyperparameters? It would be great to observe how HT-SR can302

assist in acquiring a comprehensive set of hyperparameter tuning tools.303

• Is it possible to accelerate the computation of ESDs and PL_Alpha_Hill to achieve a304

more adaptive learning rate scheduler? Currently, we calculate layer-wise PL_Alpha_Hill305

once per epoch, resulting in a minimal increase in computational complexity. Consider the306

example of training ResNet18 for 200 epochs on CIFAR100 or TinyImageNet. Calculating307

layer-wise PL_Alpha_Hill takes 1.4 seconds for each epoch, leading to 4.6 minutes in total.308

Training CIFAR100 on 1 V100 takes 80 minutes, and thus using TB increases 6% of training309

time. Training TinyImageNet on 2 V100 takes 240 minutes, and thus using TB increase 2%310

of training time. However, if we can significantly decrease the expense of computing ESDs,311

it might enable an optimizer that adjusts the learning rate every few gradient updates.312

Our research centers around developing a generic algorithm for optimizing neural networks. Although313

it can be applied to learning models with adverse applications, we do not see any immediate negative314

societal impacts stemming from the algorithm itself.315

9

References316

[1] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning317

and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.318

[2] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International319

Conference on Learning Representations, 2014.320

[3] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter321

conference on applications of computer vision (WACV), pages 464–472, 2017.322

[4] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.323

Adahessian: An adaptive second order optimizer for machine learning. In Proceedings of the324

AAAI Conference on Artificial Intelligence, 2021.325

[5] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon326

Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in327

observed gradients. Advances in neural information processing systems, 2020.328

[6] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and329

Jiawei Han. On the variance of the adaptive learning rate and beyond. In International330

Conference on Learning Representations, 2020.331

[7] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The332

marginal value of adaptive gradient methods in machine learning. In Advances in Neural333

Information Processing Systems, 2017.334

[8] Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-335

specific adaptive learning rates for deep networks. In IEEE 14th International Conference on336

Machine Learning and Applications, 2015.337

[9] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,338

Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using339

deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language340

model. arXiv preprint arXiv:2201.11990, 2022.341

[10] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In342

International Conference on Learning Representations, 2017.343

[11] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International344

Conference on Learning Representations, 2019.345

[12] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classi-346

fication. In Proceedings of the 56th Annual Meeting of the Association for Computational347

Linguistics.348

[13] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features349

with deep adaptation networks. In International Conference on Machine Learning, 2015.350

[14] Yixiong Chen, Jingxian Li, Hua Jiang, Li Liu, and Chris Ding. Metalr: Layer-wise learning rate351

based on meta-learning for adaptively fine-tuning medical pre-trained models. arXiv preprint352

arXiv:2206.01408, 2022.353

[15] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.354

Bilevel programming for hyperparameter optimization and meta-learning. In International355

Conference on Machine Learning, 2018.356

[16] Youngmin Ro and Jin Young Choi. Autolr: Layer-wise pruning and auto-tuning of learning357

rates in fine-tuning of deep networks. In Proceedings of the AAAI Conference on Artificial358

Intelligence, 2021.359

[17] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for ImageNet360

training. arXiv preprint arXiv:1708.03888, 6(12):6, 2017.361

10

[18] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in362

minutes. In Proceedings of the 47th International Conference on Parallel Processing, 2018.363

[19] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from examples.364

Physical Review A, 45(8):6056–6091, 1992.365

[20] T. L. H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule. Rev. Mod.366

Phys., 65(2):499–556, 1993.367

[21] D. Haussler, M. Kearns, H. S. Seung, and N. Tishby. Rigorous learning curve bounds from368

statistical mechanics. Machine Learning, 25(2):195–236, 1996.369

[22] Andreas Engel and Christian P. L. Van den Broeck. Statistical mechanics of learning. Cambridge370

University Press, New York, NY, USA, 2001.371

[23] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic372

gradient descent. In International Conference on Learning Representations, 2018.373

[24] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate,374

increase the batch size. In International Conference on Learning Representations, 2018.375

[25] Charles H Martin and Michael W Mahoney. Rethinking generalization requires revisiting376

old ideas: statistical mechanics approaches and complex learning behavior. Technical Report377

Preprint: arXiv:1710.09553, 2017.378

[26] Yaoqing Yang, Liam Hodgkinson, Ryan Theisen, Joe Zou, Joseph E Gonzalez, Kannan Ram-379

chandran, and Michael W Mahoney. Taxonomizing local versus global structure in neural380

network loss landscapes. In Advances in Neural Information Processing Systems, 2021.381

[27] Yefan Zhou, Yaoqing Yang, Arin Chang, and Mahoney W Michael. A three-regime model of382

network pruning. In International Conference on Machine Learning, 2023.383

[28] Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks:384

Evidence from random matrix theory and implications for learning. Journal of Machine385

Learning Research, 22(165):1–73, 2021.386

[29] Charles H Martin and Michael W Mahoney. Traditional and heavy tailed self regularization in387

neural network models. In International Conference on Machine Learning, 2019.388

[30] Charles H Martin, Tongsu Serena Peng, and Michael W Mahoney. Predicting trends in the389

quality of state-of-the-art neural networks without access to training or testing data. Nature390

Communications, 12(1):1–13, 2021.391

[31] Charles H Martin and Michael W Mahoney. Post-mortem on a deep learning contest: a392

Simpson’s paradox and the complementary roles of scale metrics versus shape metrics. Technical393

Report Preprint: arXiv:2106.00734, 2021.394

[32] Yaoqing Yang, Ryan Theisen, Liam Hodgkinson, Joseph E Gonzalez, Kannan Ramchandran,395

Charles H Martin, and Michael W Mahoney. Evaluating natural language processing models396

with generalization metrics that do not need access to any training or testing data. In proceedings397

of the 29th SIGKDD Conference on Knowledge Discovery and Data Mining, 2023.398

[33] Kumar K Agrawal, Arnab Kumar Mondal, Arna Ghosh, and Blake Richards. \alpha-req :399

Assessing representation quality in self-supervised learning by measuring eigenspectrum decay.400

In Advances in Neural Information Processing Systems, 2022.401

[34] Josue Nassar, Piotr Sokol, SueYeon Chung, Kenneth D Harris, and Il Memming Park. On 1/n402

neural representation and robustness. 2020.403

[35] Zeke Xie, Qian-Yuan Tang, Yunfeng Cai, Mingming Sun, and Ping Li. On the power-law404

hessian spectrums in deep learning. arXiv preprint arXiv:2201.13011, 2022.405

[36] Bruce M Hill. A simple general approach to inference about the tail of a distribution. The406

annals of statistics, pages 1163–1174, 1975.407

11

[37] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generaliz-408

ability of deep learning. arXiv preprint arXiv:1705.10941, 2017.409

[38] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization410

for generative adversarial networks. In International Conference on Learning Representations,411

2018.412

[39] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in413

empirical data. SIAM review, 51(4):661–703, 2009.414

[40] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. Powerlaw: a python package for analysis of415

heavy-tailed distributions. PloS one, 9(1):e85777, 2014.416

[41] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan417

Kim, Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum418

optimizers on scale-invariant weights. In International Conference on Learning Representations,419

2021.420

[42] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps421

forward, 1 step back. In Advances in Neural Information Processing Systems, 2019.422

[43] John J Hopfield. Neural networks and physical systems with emergent collective computational423

abilities. Proceedings of the national academy of sciences, 1982.424

[44] Haim Sompolinsky et al. Statistical mechanics of neural networks. Physics Today, 41(21):425

70–80, 1988.426

[45] LM Rasdi Rere, Mohamad Ivan Fanany, and Aniati Murni Arymurthy. Simulated annealing427

algorithm for deep learning. Procedia Computer Science, 72:137–144, 2015.428

[46] Adriano Barra and Francesco Guerra. About the ergodic regime in the analogical hopfield429

neural networks: moments of the partition function. Journal of mathematical physics, 49(12):430

125217, 2008.431

[47] Adriano Barra, Alberto Bernacchia, Enrica Santucci, and Pierluigi Contucci. On the equivalence432

of hopfield networks and boltzmann machines. Neural Networks, 34:1–9, 2012.433

[48] Stephen G. Brush. History of the lenz-ising model. Reviews of Modern Physics, 39:883–893,434

1967.435

[49] Marco Baity-Jesi, Levent Sagun, Mario Geiger, Stefano Spigler, Gérard Ben Arous, Chiara436

Cammarota, Yann LeCun, Matthieu Wyart, and Giulio Biroli. Comparing dynamics: Deep437

neural networks versus glassy systems. In International Conference on Machine Learning,438

2018.439

[50] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová. Optimal440

errors and phase transitions in high-dimensional generalized linear models. Proceedings of the441

National Academy of Sciences, 116(12):5451–5460, 2019.442

[51] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond443

neural scaling laws: beating power law scaling via data pruning. In Advances in Neural444

Information Processing Systems, 2022.445

[52] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic446

generalization measures and where to find them. In International Conference on Learning447

Representations, 2019.448

[53] Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan Ca-449

ballero, Linbo Wang, Ioannis Mitliagkas, and Daniel M Roy. In search of robust measures of450

generalization. In Advances in Neural Information Processing Systems, 2020.451

[54] Peter Bartlett, Dylan Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for452

neural networks. In Advances in Neural Information Processing Systems, 2017.453

12

[55] Huanrui Yang, Xiaoxuan Yang, Neil Zhenqiang Gong, and Yiran Chen. Hero: Hessian-enhanced454

robust optimization for unifying and improving generalization and quantization performance.455

In Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022.456

[56] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. HAWQ: Hes-457

sian aware quantization of neural networks with mixed-precision. In IEEE/CVF International458

Conference on Computer Vision, 2019.459

[57] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W460

Mahoney, and Kurt Keutzer. Q-BERT: Hessian based ultra low precision quantization of bert.461

In AAAI Conference on Artificial Intelligence, 2020.462

[58] Amartya Sanyal, Philip H. Torr, and Puneet K. Dokania. Stable rank normalization for im-463

proved generalization in neural networks and gans. In International Conference on Learning464

Representations, 2020.465

[59] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in466

four gpu hours: A theoretically inspired perspective. In International Conference on Learning467

Representations, 2021.468

[60] David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual469

conference on Computational learning theory, 1998.470

[61] John Langford and John Shawe-Taylor. Pac-bayes & margins. In Advances in Neural Informa-471

tion Processing Systems, 2002.472

[62] Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds473

for deep (stochastic) neural networks with many more parameters than training data. In Annual474

Conference on Uncertainty in Artificial Intelligence, 2017.475

[63] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian approach476

to spectrally-normalized margin bounds for neural networks. In International Conference on477

Learning Representations, 2018.478

[64] Xuanzhe Xiao, Zeng Li, Chuanlong Xie, and Fengwei Zhou. Heavy-tailed regularization of479

weight matrices in deep neural networks. arXiv preprint arXiv:2304.02911, 2023.480

[65] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. 2009.481

[66] Pierre Sermanet, Koray Kavukcuoglu, and Yann LeCun. Traffic signs and pedestrians vision482

with multi-scale convolutional networks. In Snowbird Machine Learning Workshop, 2011.483

[67] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale484

hierarchical image database. In IEEE conference on Computer Vision and Pattern Recognition,485

2009.486

[68] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng487

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual488

recognition challenge. International journal of computer vision, 115:211–252, 2015.489

[69] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.490

[70] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale491

image recognition. arXiv preprint arXiv:1409.1556, 2014.492

[71] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image493

recognition. In IEEE conference on Computer Vision and Pattern Recognition, 2016.494

[72] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British495

Machine Vision Conference, 2016.496

[73] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan497

Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep498

learning: Training bert in 76 minutes. In International Conference on Learning Representations,499

2020.500

13

[74] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Pathological spectra of the fisher infor-501

mation metric and its variants in deep neural networks. Neural Computation, 33:2274–2307,502

2019.503

[75] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in504

deep neural networks: Mean field approach. In the 22nd International Conference on Artificial505

Intelligence and Statistics, 2019.506

[76] Ka-Veng Yuen. Bayesian methods for structural dynamics and civil engineering. John Wiley &507

Sons, 2010.508

[77] Yudi Pawitan. In all likelihood: statistical modelling and inference using likelihood. Oxford509

University Press, 2001.510

[78] Bohang Zhang, Du Jiang, Di He, and Liwei Wang. Rethinking lipschitz neural networks for511

certified l-infinity robustness. arXiv preprint arXiv:2210.01787, 2022.512

[79] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. PyHessian: Neural513

networks through the lens of the hessian. In IEEE International Conference on Big Data (Big514

Data), pages 581–590, 2020.515

[80] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and516

generalization in neural networks. In Advances in Neural Information Processing Systems,517

2018.518

[81] Yongqi Du, Di Xie, Shiliang Pu, Robert Qiu, Zhenyu Liao, et al. " lossless" compression of519

deep neural networks: A high-dimensional neural tangent kernel approach. In Advances in520

Neural Information Processing Systems, 2022.521

[82] Zeke Xie, Qian-Yuan Tang, Zheng He, Mingming Sun, and Ping Li. Rethinking the structure522

of stochastic gradients: Empirical and statistical evidence. arXiv preprint arXiv:2212.02083,523

2022.524

[83] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari.525

The large learning rate phase of deep learning: the catapult mechanism. arXiv preprint526

arXiv:2003.02218, 2020.527

[84] Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. In528

International Conference on Learning Representations, 2020.529

[85] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in530

linear regression. In Proceedings of the National Academy of Sciences, 2020.531

14

A Heavy-tail phenomena in different DNN matrices are closely related532

Recently, several papers have separately studied the HT structures in different types of “important533

matrices,” including Hessian, Fisher Information Matrix (FIM) and covariance matrices [35, 74, 75].534

They confirm that when neural networks are well-trained, various matrices have an HT-shaped535

spectrum. Among these works, there are two major ways to characterize the HT spectrum, namely536

the HT-shaped ESDs (such as PL_Alpha), or HT-shaped decaying eigenvalues [33–35]. Our paper537

mainly uses the first way of characterizing the HT structure. On the other hand, the second way538

is to sort eigenvalues from largest to smallest and study the PL phenomena between the ordered539

eigenvalues and their index. Our experiments show fruitful connections between the PL phenomena540

manifested in different DNN matrices; if one matrix shows the PL spectrum, the other matrices often541

show something similar [35]. Thus, It is meaningful to ask why and how the PL phenomena in542

different prior works correlate.543

This section first establishes the connections between input/output covariance matrices, FIM and544

Hessian in subsection A.1. We find that if one of these matrices shows the PL phenomenon, the other545

two matrices have a high chance to exhibit a similar PL phenomenon. Then, in subsection A.2, we546

derive the connection between our metric PL_Alpha and the PL exponent on decaying eigenvalues,547

showing a simple reciprocal relationship between these two.548

A.1 Connections between different matrices549

Consider a neural network (NN) fθ : Rd → RC , where θ ∈ RP is the vectorized weights, d is the550

input dimension, and C is the output dimension. When the NN is used for a classifying task, C is also551

the number of classes. We denote the input data as {(xi, yi)}ni=1, where xi ∈ Rd, and the number of552

samples is n. We denote the loss function as L(θ) = 1
n

∑n
i=1 l(yi, fθ(xi)).553

Covariance matrices. We denote the output covariance matrix as E[fθ(x)f⊤
θ (x)], where the expec-554

tation is taken over the input distribution. We tend to consider the following empirical covariance555

matrix:556

C(θ) :=
1

n

n∑
i=1

fθ(xi)f
⊤
θ (xi) ∈ RC×C . (5)

Fisher Information Matrices. We denote the (output) FIM as557

E[∇θfθ(x)∇θfθ(x)
⊤] =

C∑
k=1

E[∇θf
(k)
θ (x)∇θf

(k)
θ (x)⊤], (6)

where f (k)
θ (x) is the k-th entry of the vector function f(x). We also consider the empirical version of558

the FIM:559

F (θ) :=

C∑
k=1

1

n

n∑
i=1

∇θf
(k)
θ (xi)∇θf

(k)
θ (xi)

⊤ ∈ RP×P . (7)

Note that (7) can be equally written as560

F (θ) :=
1

n
∇θf̃θ(x)∇θf̃θ(x)

⊤, (8)

where∇θf̃θ(x) has the following form:
∂f

(1)
θ (x1)

∂θ1
· · · ∂f

(1)
θ (xn)

∂θ1
· · · ∂f

(C)
θ (x1)

∂θ1
· · · ∂f

(C)
θ (xn)

∂θ1
...

. . .
...

∂f
(1)
θ (x1)

∂θP
· · · ∂f

(1)
θ (xn)

∂θP
· · · ∂f

(C)
θ (x1)

∂θP
· · · ∂f

(C)
θ (xn)

∂θP

 ∈ RP×Cn.

Hessian Matrices. We denote the Hessian as E
[
∂2l(y,fθ(x))

∂θ2

]
, and we tend to consider the empirical561

Hessian Matrices:562

H(θ) :=
∂2L(θ)

∂θ2
∈ RP×P , (9)

15

where L(θ) is the empirical loss function L(θ) = 1
n

∑n
i=1 l(yi, fθ(xi)).563

Hessian and FIM are equivalent under certain conditions. FIM can be defined in alternative ways564

different from (6). For instance, from classic statistical knowledge, we have the standard FIM (sFIM)565

in the following form:566

sFIM := E[∇θ logP (y|x; θ)∇θ logP (y|x; θ)T], (10)

where P (y|x; θ) represents the likelihood; after simple derivations, one can show that sFIM also has567

the following form [76, 77]:568

sFIM = −E
[
∂2 logP (y|x; θ)

∂θ2

]
. (11)

Therefore, when the loss function is defined as the negative log-likelihood, the sFIM in (11) is569

equivalent to Hessian defined in (9).570

Why is the FIM defined in (6) equivalent to (10). Back to deep learning, FIM is often defined571

as (6). It is thus meaningful to derive the equivalence between these two forms. Suppose P (y|x; θ)572

here means the conditional probability distribution of output y given input data x. If P (y|x; θ) is573

assumed to take the following form:574

P (y|x; θ) = 1√
2π

exp

(
−1

2
∥y − fθ(x)∥2

)
, (12)

then the MSE estimator minθ
1
2∥y − fθ(x)∥2 is equivalent to the maximum likelihood estimation of575

P (y|x; θ). Then, plugging (12) into (10), we have:576

sFIMmse = E[∥y − fθ(x)∥2∇θfθ(x)∇θfθ(x)
T]. (13)

We now expand sFIMmse by the definition of expectation, and we have the following [74]:577

sFIMmse =

∫
R

∫
R
∥y − fθ(x)∥2∇θfθ(x)∇θfθ(x)

T p(x, y; θ)dydx (14)

=

∫
R

∫
R
∥y − fθ(x)∥2∇θfθ(x)∇θfθ(x)

TP (y|x; θ)q(x)dydx (15)

=

∫
R

[∫
R

1√
2π
∥y − fθ(x)∥2 exp

(
−1

2
∥y − fθ(x)∥2

)
dy

]
∇θfθ(x)∇θfθ(x)

T q(x)dx

(16)

=

∫
R
∇θfθ(x)∇θfθ(x)

T q(x)dx (17)

= E[∇θfθ(x)∇θfθ(x)
T], (18)

where (14) follows from the definition of expectation, q(x) is input distribution, and (17) holds578

because the integral of y in the brackets [] equals 1 due to the property of Gamma function Γ(·).579

Therefore, from (18), we find that sFIMmse is just equal to FIM defined in (6). Also, plugging (12)580

into E
[
∂2logP (y|x;θ)

∂θ2

]
and taking the loss function L(θ) as the mean-square loss, we will again find581

E
[
∂2logP (y|x;θ)

∂θ2

]
is equal to H(θ). Therefore, jointly considering (11), we can see that FIM is equal582

to Hessian H(θ).583

PL in the covariance matrix and PL in Hessian are tightly correlated. Next, we consider the584

relationship between the covariance matrix and Hessian. Suppose the NN function fθ is a Lipchitz585

function [78]. Then, it can be seen that the covariance matrix (5) may be controlled and estimated by586

FIM defined in (6), which is equivalent to be controlled by Hessian.587

Although deriving an exact equivalent between these two can be hard, we numerically show that the588

PL in one matrix informs the PL in the other. To visualize their relationship in the presence of PL, we589

train a simple MLP with one hidden layer and 2000 neurons for 50 epochs. We leverage the spectral590

regularization from Nassar et al. [34] to make the output covariance matrix exhibit a PL spectrum.591

Meanwhile, we calculate the top eigenvalues of covariance and hessian [79], fit the PL exponent s for592

16

0.9 1.0 1.1 1.2 1.3
Hessian PL exponent s

1.55

1.60

1.65

1.70

1.75

1.80

1.85

Ou
tp

ut
 c

ov
ar

ia
nc

e
PL

 e
xp

on
en

t s linear fitting

Figure 8: We train a MLP for 50 epochs and fit PL exponent s for both the output covariance and the
Hessian. For models trained with epochs [1,10,20,30,40,50], we see their PL exponents s show a
strong correlation.

each matrix, and compare the PL exponents against each other. More specifically, we take trained593

NNs from epochs [1,10,20,30,40,50] and plot the Hessian PL exponent s versus the output covariance594

PL exponent s. From the results shown in figure 8, we can see that their PL exponent s shows a595

strong correlation, which supports our claim that the PL phenomena in one matrix can inform the596

other.597

Connections to the NTK matrix. Interestingly, if we ignore the constant in (8) and switch the two598

matrices multiplied together, we obtain∇θf̃θ(x)
T∇θf̃θ(x). This matrix is equal to Neural Tangent599

Kernel(NTK) [80], which is a kernel used to approximate the deep neural network when NN’s600

width is infinite. We thus conjecture that NTK should show PL when the NN is well trained [81].601

Indeed, Karakida et al. [74] and Karakida et al. [75] study the eigenvalues of NTK, showing a PL602

trend. Some other work on stochastic gradient [82] claim that the so-called “stochastic gradient603

matrix” (which is similar to the NTK matrix) shows a PL spectrum as well, which matches our604

expectations. Also, Lewkowycz et al. [83], Dyer and Gur-Ari [84] show that the eigenvalues of NTK605

are similar to those in the Hessian, which again meets our expectation because the Hessian tends to606

be PL when neural networks are well-trained [35].607

In summary, the derivations above indicate that different “important matrices” are tightly correlated608

to each other in terms of the PL trends: if one matrix shows a PL spectrum, there is a high chance609

that the other ones show something similar.610

A.2 Connections between PL in ESD and PL in decaying eigenvalues611

Next, we derive the connection between our metric PL_Alpha and the exponent of PL distribution on612

decaying eigenvalues. Take the covariance matrix (5) as an instance. According to Nassar et al. [34],613

the HT phenomenon in the output covariance matrix is similar to the layer-wise covariance matrices.614

Thus, without the loss of generality, we can consider the case when there is only one layer in the615

neural network. We assume the weight matrix L is in RN×M . According to prior works, when L is616

well-trained, the ESD follows a PL distribution:617

p(λ) =
1

H
λ−α, λmin < λ < λmax. (19)

Here, H is a normalizing constant, and α is the PL exponent.618

Another way to characterize the PL phenomenon is to consider eigenvalues directly following a PL619

series. For example, Xie et al. [35] show that the decaying eigenvalues follows the following PL620

series:621

λk = λ1k
−s, k = 1, 2, · · · ,M, (20)

where λ1 is the same as λmax used in the main paper.622

Now, we will analytically and empirically show that these two ways of characterizing PL are623

essentially equivalent. Furthermore, the two PL coefficients satisfy s = 1
α−1 .624

17

1 2 3 4 5 6 7
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=16

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

2 3 4 5 6 7
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=32

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

2 3 4 5 6
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=64

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

2 3 4 5 6
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=128

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

2 3 4 5 6
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=256

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

2 3 4 5 6
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=512

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

2 3 4 5 6
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=768

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

2 3 4 5 6
PL_Alpha_Hill

1

2

3

s

PL_Alpha_Hill vs s
 M=1024

1/(PL_Alpha_Hill-1)
Fitted PL_Alpha_Hill vs s

Figure 9: We show the connection between PL_Alpha, estimated by PL_Alpha_Hill, and the PL
exponent of the decaying eigenvalues (denoted as s) satisfy s = 1

PL_Alpha_Hill−1 . Results are shown
for different matrix size M . In particular, we see that PL_Alpha = 2 [28] is equivalent to s = 1 [33]
in the linear case.

An analytical way to show that s = 1
α−1 . The derivation is actually quite simple. Consider the case625

that λk = λ1k
−s (i.e., (20) holds), and suppose Λ is a random variable distributed according to the626

empirical distribution from these eigenvalues λk = λ1k
−s. Now, from (20), we easily see that the627

distribution function takes the following form:628

P(Λ > λ1k
−s) =

k

M
. (21)

By changing variables λ1k
−s = λ, we get the cumulative distribution function of Λ:629

P(Λ > λ) ∼ λ− 1
s . (22)

After that, we take the derivative with respect to λ, and we get the ESD:630

p(λ) ∼ λ−(1
s+1). (23)

In other words, we have λ−(1
s+1) = λ−α, which means s = 1

α−1 .631

An empirical way to show that s = 1
α−1 . We consider matrices of size M×M , where we choose M632

in [16, 32, 64, 128, 256, 512, 768, 1024] and assign the parameters such that the decaying eigenvalues633

obey the formula λ1k
−s, for s in [0.2, 0.3, 0.4, · · · , 3.2]. Then, we fit the ESD and get our estimate634

PL_Alpha_Hill. We plot the relationship between PL_Alpha_Hill and s in figure9. From figure635

9, we find that the connection between α and s shows a good fit with the formula s = 1
α−1 . With636

increasing matrix size M , the fitting becomes increasingly accurate.637

When s = 1
α−1 , s = 1 corresponds to α = 2. Some prior works Nassar et al. [34], Xie et al.638

[35], Bartlett et al. [85] measure the HT phenomena from the perspective of decaying eigenvalues639

with PL exponent s, and they show either theoretically or empirically that s = 1 is the optimal640

exponent. Now that we have s = 1
α−1 in the linear case, and from the theory of NTK[80], the infinite641

wide neural network is approximated as a linear model, we tend to believe that α = 2 satisfies a642

similar property. Indeed, one of the main contributions of Martin and Mahoney [28] is to establish643

different HT families of ESDs, and 2 is believed to be the boundary between “moderately HT” and644

“very HT.” Martin and Mahoney [28] further argue that the optimal exponent for PL_Alpha is in645

the range [2,4]. Combining the perspective from Nassar et al. [34], Xie et al. [35], Bartlett et al.646

[85] and those from Martin and Mahoney [28], it is reasonable to believe that the optimal exponent647

for PL_Alpha is around 2. When PL_Alpha is much higher or lower than two, the NN probably648

has some issue in training. Although we argued in the main paper that the “absolute value” of649

PL_Alpha is unimportant in implementing our TempBalance algorithm, it is, however, helpful to650

have an “optimal” PL_Alpha value to test if our algorithm actually works in controlling the ESDs.651

We will show visualization results in Appendix B that TempBalance leads to a better distribution of652

our estimated PL_Alpha_Hill.653

18

B Visualization results: how does TempBalance control ESDs654

In this section, we demonstrate that the proposed method, TempBalance, effectively controls the655

shape of the empirical spectral densities (ESDs), resulting in a more favorable distribution of656

PL_Alpha_Hill among the layers of neural networks (NNs) compared to the baseline method657

CAL. This observation elucidates the superior performance of TempBalance over CAL in our main658

experiment, as presented in Section 4.2.659

We evaluate the models reported in Figure 3. For each individual NN, we compute and aggregate660

PL_Alpha_Hill values across all layers, excluding the first and last layers that have an extremely661

small number of eigenvalues and thus cause inaccurate PL_Alpha_Hill estimation. We aggregate662

the PL_Alpha_Hill values from five models trained using different random seeds for each method.663

Figure 10 shows the distribution of PL_Alpha_Hill of TempBalance and the baseline CAL. Com-664

paring TempBalance with CAL, we see that TempBalance consistently yields a more concentrated665

distribution. Furthermore, TempBalance causes the median and mean of the distribution to approach666

2 (shown in each subplot respectively as the middle vertical line and the red star). The value 2667

represents the theoretically optimal PL_Alpha_Hill value, as we have justified in Appendix A.668

Next, in Figure 11, we group the models into different subgroups based on their architectures and/or669

datasets, aggregating the PL_Alpha_Hill values and comparing the distributions of the two methods670

TempBalance and CAL. Once again, we observe that TempBalance results in a more concentrated671

distribution, with a larger number of samples (layers) having PL_Alpha_Hill values closer to 2.672

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

(e) ResNet18, TIN (f) ResNet34, TIN (g) WRN16-8, TIN (h) WRN28-6, TIN

(i) ResNet18, CIFAR10 (j) VGG16, CIFAR10 (k) ResNet18, SVHN (l) VGG16, SVHN

Figure 10: Comparing the distribution of PL_Alpha_Hill of NNs trained by our method
TempBalance (TB) and CAL. The mean of each distribution is indicated by a red star marker. Each
distribution aggregates the PL_Alpha_Hill values from models trained using five different random
seeds. Across all experiments, our method TempBalance consistently yields a more concentrated
distribution, resulting in the mean and median approaching the theoretically optimal PL_Alpha_Hill
value of 2, as supported in Appendix A.

19

(a) Total (b) ResNet (c) VGG (d) WRN

(e) TIN (f) CIFAR100 (g) CIFAR10 (h) SVHN

Figure 11: Comparing our method TempBalance (TB) to CAL in terms of the distribution of
PL_Alpha_Hill of aggregating NNs into different architectures and datasets. Each distribution
aggregates the PL_Alpha_Hill of models trained with five random seeds. Across all subgroups,
our method TempBalance consistently exhibits a more concentrated distribution, accompanied by a
higher number of layers approaching a PL_Alpha_Hill value close to 2. This value of 2 corresponds
to the theoretically optimal PL_Alpha_Hill value, as justified in Appendix A.

C Hyperparameter settings for reproducing our results673

In this section, we report all hyperparameters, random seeds and all numerical values of experimental674

results shown in the main paper (in Section 4).675

First, we report the common hyperparameters shared by all the experiments: the default optimizer is676

SGD, trained with batch size 128, number of training epochs 200, weight decay 5e-4, and momentum677

0.9. The default HT-SR metric used in TempBalance is PL_Alpha_Hill. For each experimental678

setting, we use five random seeds, which are always 43, 37, 13, 51, 71, and we report the mean and679

standard deviation of the test accuracy across these seeds.680

First, Table 1 reports the details of experiments shown in Figure 3. We carefully tune the initial681

learning rate η0 and λsr for the two baseline methods CAL and SNR. Then, Table 2 reports the682

detailed hyperparameter settings of the experiments shown in Figure 4. We again carefully tune the683

hyperparameters of various baseline optimizers and schedulers, as specified in their papers. Finally,684

Table 3, Table 4 and Table 5 respectively report the details of the experiments shown in Figure 5,685

Figure 6 and Figure 7.686

20

Table 1: Parameter settings of the experiment reported in Section 4.2 Figure 3. The hyperparameter
in bold is the best hyperparameter selection reported in the main paper. The five random seeds for
each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0 λsr

Test Acc
(best hyperparam.)

scaling ratio
(s1, s2)

0

CIFAR100

ResNet18 CAL 0.05, 0.1, 0.15 - 78.31 ± 0.05 -
1 ResNet18 SNR 0.1 0.001, 0.005, 0.01, 0.015 78.65 ± 0.29 -
2 ResNet18 TB 0.1 - 78.97 ± 0.29 (0.5, 1.5)
3 ResNet18 TB + SNR 0.1 0.001 79.06 ± 0.32 (0.6, 1.4)
4 ResNet34 CAL 0.05, 0.1, 0.15 - 78.98 ± 0.14 -
5 ResNet34 SNR 0.1 0.001, 0.005, 0.01, 0.015 79.97 ± 0.21 -
6 ResNet34 TB 0.1 - 79.89 ± 0.15 (0.5, 1.5)
7 ResNet34 TB + SNR 0.1 0.005 80.09 ± 0.35 (0.6, 1.4)
8 VGG16 CAL 0.025, 0.05, 0.1 - 74.59 ± 0.23 -
9 VGG16 SNR 0.05 0.001, 0.005, 0.01, 0.015 74.80 ± 0.28 -
10 VGG16 TB 0.05 - 74.96 ± 0.15 (0.5, 1.5)
11 VGG16 TB + SNR 0.05 0.005 75.52 ± 0.46 (0.6, 1.4)
12 VGG19 CAL 0.025, 0.05, 0.1 - 73.26 ± 0.37 -
13 VGG19 SNR 0.05 0.001, 0.005, 0.01, 0.015 74.37 ± 0.16 -
14 VGG19 TB 0.05 - 73.77 ± 0.43 (0.5, 1.5)
15 VGG19 TB + SNR 0.05 0.01 74.74 ± 0.10 (0.5, 1.5)
16 ResNet18 CAL 0.05, 0.1, 0.15 - 66.25 ± 0.17 -
17 ResNet18 SNR 0.1 0.001, 0.005, 0.01, 0.015 66.20 ± 0.22 -
18 ResNet18 TB 0.1 - 66.77 ± 0.25 (0.6, 1.4)
19 ResNet18 TB + SNR 0.1 0.001 66.86 ± 0.22 (0.6, 1.4)
20 ResNet34 CAL 0.05, 0.1, 0.15 - 68.19 ± 0.16 -
21 ResNet34 SNR 0.1 0.001, 0.005, 0.01, 0.015 68.69 ± 0.13 -
22 ResNet34 TB 0.1 - 69.12 ± 0.16 (0.6, 1.4)
23 ResNet34 TB + SNR 0.1 0.001 69.27 ± 0.21 (0.6, 1.4)
24 WRN16-8 CAL 0.05, 0.1, 0.15 - 63.67 ± 0.09 -
25 WRN16-8 SNR 0.1 0.00005, 0.0001, 0.001 63.98 ± 0.23 -
26 WRN16-8 TB 0.1 - 64.09 ± 0.17 (0.6, 1.4)
27 WRN16-8 TB + SNR 0.1 0.0001 64.08 ± 0.07 (0.6, 1.4)
28 WRN28-6 CAL 0.05, 0.1, 0.15 - 65.88 ± 0.20 -
29 WRN28-6 SNR 0.1 0.00005, 0.0001, 0.001 66.09 ± 0.25 -
30 WRN28-6 TB 0.1 - 66.58 ± 0.23 (0.6, 1.4)
31

TinyImageNet

WRN28-6 TB + SNR 0.1 0.0001 66.79 ± 0.25 (0.6, 1.4)
32

CIFAR10

ResNet18 CAL 0.05, 0.1, 0.15 - 95.53 ± 0.12 -
33 ResNet18 SNR 0.1 0.001, 0.005, 0.01, 0.015 95.57 ± 0.06 -
34 ResNet18 TB 0.1 - 95.63 ± 0.08 (0.5, 1.5)
35 ResNet18 TB + SNR 0.1 0.001 95.66 ± 0.09 (0.6, 1.4)
36 VGG16 CAL 0.025, 0.05, 0.1 - 93.98 ± 0.12 -
37 VGG16 SNR 0.05 0.001, 0.005, 0.01, 0.015 94.04 ± 0.07 -
38 VGG16 TB 0.05 - 94.14 ± 0.06 (0.5, 1.5)
39 VGG16 TB + SNR 0.05 0.005 94.26 ± 0.10 (0.6, 1.4)
40 ResNet18 CAL 0.05, 0.1, 0.15 - 96.59 ± 0.08 -
41 ResNet18 SNR 0.1 0.001, 0.005, 0.015, 0.01 96.65 ± 0.12 -
42 ResNet18 TB 0.1 - 96.63 ± 0.06 (0.5, 1.5)
43 ResNet18 TB + SNR 0.1 0.01 96.67 ± 0.09 (0.6, 1.4)
44 VGG16 CAL 0.025, 0.05, 0.1 - 96.28 ± 0.04 -
45 VGG16 SNR 0.05 0.001, 0.005, 0.015, 0.01 96.32 ± 0.07 -
46 VGG16 TB 0.05 - 96.33 ± 0.06 (0.5, 1.5)
47

SVHN

VGG16 TB + SNR 0.05 0.005 96.40 ± 0.08 (0.6, 1.4)

Table 2: Parameter settings of the experiment reported in Section 4.2 Figure 4. The hyperparameter
in bold is the best hyperparameter selection reported in the main paper. The five random seeds for
each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0
SGDR

(T0, Tmul)
Lookahead

k
Lookahead

α
Test Acc

(best hyperparams.)
scaling ratio

(s1, s2)
0 ResNet18 CAL 0.05, 0.1, 0.15 - - - 78.31 ± 0.05 -
1 ResNet18 SGDR 0.05, 0.1, 0.15 (100,1), (10, 2),(1, 2) - - 77.69 ± 0.20 -
2 ResNet18 LARS 26, 28, 30, 32, 34 - - - 78.44 ± 0.12 -
3 ResNet18 Lookahead 0.05, 0.1, 0.15 - 10, 5 0.8, 0.5 78.46 ± 0.18 -
4 ResNet18 SGDP 0.01, 0.05, 0.1, 0.15, 0.2 - - - 78.74 ± 0.11 -
5 ResNet18 TB 0.05, 0.1, 0.15 - - - 78.97 ± 0.29 (0.5, 1.5)
6 ResNet18 TB + SGDP 0.05, 0.1, 0.15 - - - 79.13 ± 0.15 (0.5, 1.5)
7 ResNet34 CAL 0.05, 0.1, 0.15 - - - 78.98 ± 0.14 -
8 ResNet34 SGDR 0.05, 0.1, 0.15 (100,1), (10, 2), (1, 2) - - 78.61 ± 0.20 -
9 ResNet34 LARS 26, 28, 30, 32, 34 - - - 78.94 ± 0.19 -
10 ResNet34 Lookahead 0.05, 0.1, 0.15 - 10, 5 0.8, 0.5 79.19 ± 0.12 -
11 ResNet34 SGDP 0.01, 0.05, 0.1, 0.15, 0.2 - - - 79.34 ± 0.21 -
12 ResNet34 TB 0.05, 0.1, 0.15 - - - 79.89 ± 0.15 (0.5, 1.5)
13

CIFAR100

ResNet34 TB + SGDP 0.05, 0.1, 0.15 - - - 79.94 ± 0.30 (0.5, 1.5)

21

Table 3: Parameter settings of the experiment reported in Section 4.3 Figure 5. The five random seeds
for each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0 Test Acc
scaling ratio

(s1, s2)
0

CIFAR100

ResNet18 CAL 0.05, 0.1, 0.15 78.08 ± 0.19, 78.31 ± 0.05, 77.72 ± 0.44 -
1 ResNet18 TB 0.05, 0.1, 0.15 78.48 ± 0.27, 78.97 ± 0.29, 78.69 ± 0.11 (0.5, 1.5)
2 ResNet34 CAL 0.05, 0.1, 0.15 78.98 ± 0.14, 78.89 ± 0.24, 78.51 ± 0.34 -
3 ResNet34 TB 0.05, 0.1, 0.15 79.36 ± 0.18, 79.89 ± 0.15, 79.09 ± 0.64 (0.5, 1.5)
4 VGG16 CAL 0.025, 0.05, 0.1 73.96 ± 0.27, 74.59 ± 0.23, 74.46 ± 0.12 -
5 VGG16 TB 0.025, 0.05, 0.1 74.40 ± 0.31, 74.96 ± 0.15, 74.94 ± 0.16 (0.5, 1.5)
6 VGG19 CAL 0.025, 0.05, 0.1 72.57 ± 0.45, 73.26 ± 0.37, 72.98 ± 0.16 -
7 VGG19 TB 0.025, 0.05, 0.1 73.47 ± 0.16, 73.77 ± 0.43, 73.40 ± 0.38 (0.5, 1.5)

Table 4: Parameter settings of the experiment reported in Section 4.3 Figure 6. The five random seeds
for each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0 Width Test Acc
scaling ratio

(s1, s2)
0

CIFAR100

ResNet18 CAL 0.1 256, 512, 768 75.05 ± 0.26, 78.31 ± 0.05, 79.44 ± 0.26 -
1 ResNet18 TB 0.1 256, 512, 768 75.63 ± 0.12, 78.97 ± 0.29, 80.47 ± 0.18 (0.5, 1.5)
2 ResNet34 CAL 0.1 256, 512, 768 76.79 ± 0.34, 78.89 ± 0.24, 79.94 ± 0.31 -
3 ResNet34 TB 0.1 256, 512, 768 77.25 ± 0.14, 79.89 ± 0.15, 80.23 ± 0.53 (0.5, 1.5)
4 VGG16 CAL 0.05 256, 512, 768 71.04 ± 0.14, 74.59 ± 0.23, 75.53 ± 0.32 -
5 VGG16 TB 0.05 256, 512, 768 71.26 ± 0.26, 74.96 ± 0.15, 76.19 ± 0.14 (0.5, 1.5)
6 VGG19 CAL 0.05 256, 512, 768 69.58 ± 0.39, 73.26 ± 0.37, 74.39 ± 0.33 -
7 VGG19 TB 0.05 256, 512, 768 69.96 ± 0.25, 73.77 ± 0.43, 74.80 ± 0.35 (0.5, 1.5)

Table 5: Parameter settings of the experiment reported in Section 4.3 Figure 7. The five random seeds
for each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method HT-SR Metric
Initial

learning rate η0 Test Acc
scaling ratio

(s1, s2)
0

CIFAR100

ResNet18 TB SpectralNorm 0.05, 0.1, 0.15 77.83 ± 0.21, 78.30 ± 0.32, 78.27 ± 0.25 (0.5, 1.5)
1 ResNet18 TB AlphaWeighted 0.05, 0.1, 0.15 78.18 ± 0.27, 78.67 ± 0.17, 78.48 ± 0.24 (0.5, 1.5)
1 ResNet18 TB PL_Alpha_Hill 0.05, 0.1, 0.15 78.48 ± 0.27, 78.97 ± 0.29, 78.69 ± 0.11 (0.5, 1.5)
2 ResNet34 TB SpectralNorm 0.05, 0.1, 0.15 78.25 ± 0.16, 78.71 ± 0.15, 78.92 ± 0.28 (0.5, 1.5)
3 ResNet34 TB AlphaWeighted 0.05, 0.1, 0.15 78.36 ± 0.39, 78.87 ± 0.34, 78.83 ± 0.23 (0.5, 1.5)
3 ResNet34 TB PL_Alpha_Hill 0.05, 0.1, 0.15 79.36 ± 0.18, 79.89 ± 0.15, 79.09 ± 0.64 (0.5, 1.5)
4 VGG16 TB SpectralNorm 0.025, 0.05, 0.1 73.58 ± 0.19, 74.29 ± 0.16, 74.17 ± 0.28 (0.5, 1.5)
5 VGG16 TB AlphaWeighted 0.025, 0.05, 0.1 73.97 ± 0.22, 74.19 ± 0.11, 74.42 ± 0.31 (0.5, 1.5)
5 VGG16 TB PL_Alpha_Hill 0.025, 0.05, 0.1 74.40 ± 0.31, 74.96 ± 0.15, 74.94 ± 0.16 (0.5, 1.5)
6 VGG19 TB SpectralNorm 0.025, 0.05, 0.1 72.34 ± 0.26, 72.91 ± 0.35, 73.04 ± 0.39 (0.5, 1.5)
7 VGG19 TB AlphaWeighted 0.025, 0.05, 0.1 72.85 ± 0.16, 73.41 ± 0.17, 73.33 ± 0.21 (0.5, 1.5)
7 VGG19 TB PL_Alpha_Hill 0.025, 0.05, 0.1 73.47 ± 0.16, 73.77 ± 0.43, 73.40 ± 0.38 (0.5, 1.5)

22

	Introduction
	Related Work
	Statistical mechanics of learning and HT-SR
	Generalization measures

	The TempBalance Algorithm
	Empirical results
	Experimental setup
	Comparing TempBalance and multiple baseline methods.
	Corroborating results and ablation studies.

	Conclusion
	Heavy-tail phenomena in different DNN matrices are closely related
	Connections between different matrices
	Connections between PL in ESD and PL in decaying eigenvalues

	Visualization results: how does TempBalance control ESDs
	Hyperparameter settings for reproducing our results

