
A Additional Experimental Details405

A.1 Robustness Experiments406

To investigate the robustness of the learned representations, we conducted a set of experiments where407

we tested out our trained model with noisy object point clouds, partial point clouds and partial point408

clouds with noise added as well:409

Noisy point clouds. For this experiment, we processed the 10 object point clouds of our evaluation410

set by adding Gaussian noise with standard deviation 0.001 and clipping to a one standard deviation411

interval, to each of the points. Our evaluation process was then repeated with these as input zero-412

shot, i.e. grasps were generated and evaluated with the same process.413

Partial point clouds. For this experiment, we emulated a table top scenario where objects placed
on a table would be missing the bottom of their surface. To achieve this, for each object point cloud,
we defined a z-plane

zthres =
zmax � zmin
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where zmin, zmax are the minimum and maximum z-value found in each object point cloud respec-414

tively. We then remove all points with z < zthres in order to emulate such a table effect. The resulting415

point clouds are again used zero-shot on our model to predict grasps.416

Noisy partial point clouds. For this experiments, the table top emulating partial point clouds gen-417

erated for the previous experiment are augmented with Gaussian noise of standard deviation 0.001418

and clipping to a one standard deviation interval. Grasping generation occurs again zero-shot on419

our model, and the evaluation process remains the same as all other experiments.420

Comparative results for all 3 experiments against noiseless inputs can be viewed in Tab. 3.421

Augmentation Success (%) " Diversity (rad) "
ezgripper barrett shadowhand ezgripper barrett shadowhand

noiseless 72.5 90.0 75.0 0.188 0.249 0.205
noisy 75 95.0 62.5 0.183 0.245 0.196
partial 67.5 67.5 65.0 0.181 0.207 0.197

noisy partial 65 75.0 62.5 0.143 0.227 0.212

Table 3: Comparisons between noiseless, noisy, partial, and noisy partial object point cloud inputs.

We observe that our model generally demonstrates robustness to noise with performance actually422

increasing in two out of three evaluated end-effectors. Partial point clouds cause the performance to423

drop as expected, however the model is still performing at a good level at multi-embodiments.424

A.2 PointNet++ Ablation425

Our choice of GCN as a geometry encoder is, of course, not the single architectural option avail-426

able for representing 3D geometry features, with PointNet++ [20] being a popular choice in the427

literature. In this ablation, we investigate the efficacy of GCN in the multi-embodiment grasping428

setup compared to PointNet++ by replacing both our GCN object and end-effector encoders with a429

PointNet++ architecture1.430

Results in Tab. 4 show that the GCN encoder variant outperforms the PointNet++ one for the 3-431

finger and 5-finger gripper while performs on par with it for the 2-finger gripper. The GCN variant432

is also showing higher diversity of grasps for all 3 end-effectors.433

A.3 Non-Shared Weights Ablation434

For our main method, we assumed shared weights between the representations used in the autore-435

gressive modules predicting each keypoint contact. However, it is of interest to investigate how436

1We used the implementation from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
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Encoder Success (%) " Diversity (rad) "
ezgripper barrett shadowhand ezgripper barrett shadowhand

GCN [28] 75.0 90.0 72.5 0.188 0.249 0.205
PointNet++ [20] 75.0 70.0 65.0 0.154 0.223 0.151

Table 4: Comparison between GCN and PointNet++ encoder choices.

performance gets impacted if each autoregressive module is free to influence geometry representa-437

tions for the keypoint it is responsible for. We thus, disentangled encoding weights for each of the438

autoregressive modules by passsing in a separate end-effector encoder in each.439

Ablation Success (%) " Diversity (rad) "
ezgripper barrett shadowhand ezgripper barrett shadowhand

Shared weights 75.0 90.0 72.5 0.188 0.249 0.205
Non-shared weights 70.0 82.5 60.0 0.165 0.259 0.163

Table 5: Comparison between shared and non-shared weights of the end-effector encoder for au-
toregressive learning.

The comparison is provided in Tab. 5 and indicate that training end-to-end with a shared end-effector440

encoder for all keypoint predictions, is still a significantly better performant choice. The shared441

weights variant performs 5%-12.5% better among the 3 sample embodiments than the non-shared442

weights ablation.443

B Implementation Details444

Implementation of all experiments was done using an Adam optimizer with learning rate of 1e-4 for445

200 epochs. An assortment of GPU was used, namely RTX3090, V100, T4. Other hyperparameters446

used were provided in the main paper but for completeness, we include all hyperparameters here.447

The GNN used had 3 hidden layers of size 256. The output feature size of the GNN encoder was448

512. The two parts of the loss were weighed by 0.5 each while the two positive weights used for449

the two BCE losses were 500 and 200 for the independent distributions and marginals respectively.450

The dataset used was the subset of MultiDex used by [12] to train the CMap-CVAE model of their451

approach, which contains 50,802 diverse grasping poses for 5 hands and 58 objects from YCB and452

ContactDB. The training set contained 38 objects and the validation set the remaining 10. The453

projection layer was a Linear layer without bias with an output dimension of 64 and each of the454

MLP autoregressive modules had 3 hidden layers of size 256.455

For the IK, SciPy’s TRF algorithm was used where each resulting set of predicted keypoints was456

moved 5mm away from the surface of the object on the direction of the normal in order to form a457

pre-grasp pose. The initial pose guess provided, was a heuristic calculated by orienting the palm of458

the gripper to align with the negative of the normal on the object surface at the closest surface point.459

For evaluation, 4 grasps per object-gripper pair were sampled by selected the top-[0, 20, 50, 100]460

most likely keypoint 0.461

The Isaac Gym based evaluation scripts from [12] were used as is, aside from the one Adam step of462

force closure where the step size used was 0.05 in order to make the force closure smoother and less463

abrupt.464
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