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Abstract
We give nearly-tight upper and lower bounds for the improving multi-armed bandits problem. An
instance of this problem has k arms, each of whose reward function is a concave and increasing
function of the number of times that arm has been pulled so far. We show that for any randomized
online algorithm, there exists an instance on which it must suffer at least an Ω(

√
k) approximation

factor relative to the optimal reward. We then provide a randomized online algorithm that guarantees
an O(

√
k) approximation factor, if it is told the maximum reward achievable by the optimal arm in

advance. We then show how to remove this assumption at the cost of an extra O(log k) approximation
factor, achieving an overall O(

√
k log k) approximation relative to optimal.

1. Introduction

In this paper, we study the problem of improving multi-armed bandits. In this problem, a problem
instance consists of k bandit arms (i.e., “pulling” the arm reveals the reward) each with reward that
increases the more the arm is pulled. In other words, the payoff is not a function of the time at which
an arm is pulled but rather of the number of times it has been pulled so far, with different arms
having (potentially) different increasing functions. Our goal is to maximize the reward we achieve.
Some real-world problems captured by this framework include: training multiple learning algorithms,
when the performance of an algorithm improves with resources expended and some algorithms are
ultimately better than others for the setting at hand (Haussler et al., 1996; Li et al., 2017, 2020);
developing new technologies, where investing resources into developing a technology may increase
its efficiency and different technologies have different asymptoting utility values (Rivest, 2023);
or even the problem of deciding what research area to work in. In each of these examples, each
algorithm or technology is represented by one bandit arm, and the reward achieved from pulling
the arm increases as it is pulled more. The goal, then, is to find a sequence of arms to pull that will
maximize the reward achieved.

If the rewards are arbitrarily increasing, then we cannot guarantee much: we could have one
arm that gives 0 reward for the first T/2 pulls and reward 1 after that, and k − 1 arms that are 0
regardless of how many times they’ve been pulled; the good arm and the bad arms in this case
are indistinguishable until it is too late. Thus, prior papers on this problem (Heidari et al., 2016;
Patil et al., 2023) consider reward functions that have diminishing returns, i.e., where the difference
between two consecutive rewards is non-increasing. The continuous equivalent of this property is
concavity. Even with the assumption of diminishing returns and with just two arms, we can see that it
is impossible to achieve sublinear additive regret. Suppose one arm linearly increases from 0 to 1/2
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until time T/2 , and then flattens out, and the other arm increases with the same slope throughout
until time T . The algorithm has no way of distinguishing which arm it is playing until time T/2+1 .
At this point, if it finds it is playing the first arm, switching to the other arm is worse than continuing
to play the first arm. Since there is an Ω(T ) gap between the rewards of the two arms, no algorithm
can achieve o(T ) regret. Accordingly, we focus on the approximation factor we can achieve, i.e., the
ratio of the optimal reward to the reward achieved by the algorithm.

In Patil et al. (2023), the authors study deterministic algorithms and show tight upper and lower
bounds of Θ(k) for the problem. We show that with randomization, we can, in fact, achieve an
approximation ratio of O(

√
k) if the algorithm knows the maximum value achieved by the best

arm and O(
√
k log k) if it does not. We also provide an Ω(

√
k) lower bound, nearly completely

characterizing the achievable approximation guarantees for this problem. Our upper bound is
achieved through careful analysis of the recursive structure induced by a natural randomized method
for searching through bandit arms. Finally, in Appendix B, we extend our results to the case where
the objective is to maximize the maximum reward achieved rather than the total reward achieved, and
in Appendix C, we show that even if reward functions are only approximately concave (i.e., concave
+ noise), we can get nearly the same guarantees.

Related Work Our work directly follows up on Heidari et al. (2016); Patil et al. (2023). Heidari
et al. (2016) define the setting and problem and shows how to achieve asymptotically sublinear
regret1. Metelli et al. (2022) study the same asymptotic regret setting but with stochastic rewards.
Patil et al. (2023) extends the model in Heidari et al. (2016) to the notion of approximation we
consider in our paper. They show that deterministic algorithms must incur an approximation factor of
k , where k is the number of arms; they also match this with an algorithm that can achieve an O(k)
approximation factor.

Another area in which a similar problem has been studied is in the area of online algorithms.
Here, the problem is framed as one of a class of searching problems (Alpern and Gal, 2003; Gal,
2011). McGregor et al. (2009) consider the problem of a reward (oil, say) present at some depth
at one of k locations. Their goal is to minimize the amount of time spent searching; in contrast, in
the setup we study, the search time is fixed, and the rewards are gradual, making the objective to
maximize reward.

More generally, our work follows in a rich line of work regarding multi-armed bandits (Thompson,
1933; Lattimore and Szepesvári, 2020; Slivkins, 2022). Multi-armed bandits have been well-studied
in many different settings. The main idea is that there are many actions an agent could take, but the
utility of taking any action is only known (possibly only partially) after taking it. In particular, the
nature of the reward function associated with each arm could be stochastic, adversarial, or dependent
on some world context. In this work, we study one such setting with rewards that are adversarial up
to conforming to the improving, concave structure.

2. Preliminaries

We follow the problem specification in Patil et al. (2023). In particular, each instance consists of k
arms, where each arm i has an associated monotone increasing reward function fi . The reward from

1. More specifically, Heidari et al. (2016) use the fact that for any k bounded and non-decreasing functions fi(t) and any
ϵ > 0, there must exist some Tϵ after which each function is within ϵ of its asymptotic value to achieve asymptotically
sublinear regret. In contrast, we will be interested in the case that the adversary can choose the functions fi(t) after T
is fixed.
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pulling arm i for the tth time is fi(t) . These functions are not known to the algorithm in advance; the
algorithm only gets to know the current reward by interacting with the arm. Further, the argument
t of the function is not the time at which the arm is picked, but rather the number of times the
arm has been played. Notice that the best strategy in hindsight is to just identify and pull the arm
i⋆ = argmaxi

∑T
t=1 fi(t) the entire time. (Proposition 1 in Heidari et al. (2016)). We will often

refer to how things compare to the “optimal” arm; when we say that, we are referring to that arm.
For simplicity of notation, we elide the i and refer to this arm as f⋆(·) . The reward of playing the
optimal arm for the whole time horizon T is OPTT , which we may refer to as OPT , and we say
playing the best arm for T ′ steps accrues reward OPTT ′ .

Our goal is to maximize the expected reward ALGT achieved by our algorithm, i.e., find
a sequence of pulls which gives us the maximum cumulative reward over the T time steps (in
expectation over internal randomness in the algorithm)2.

We aim to minimize the approximation factor, which we define as follows.

Definition 1 Suppose the expected reward achieved by the algorithm is ALG and the optimal reward
achievable is OPT . Then, we say that our algorithm achieves a g-approximation to the optimal
reward if ALG ≥ OPT/g .

Not only is approximation factor a natural objective to study (it is fundamental, as defined in
the textbook of Borodin and El-Yaniv (2005)), but also it is the metric on which we could hope
to understand the problem better. As discussed earlier, achieving sublinear regret in general is
impossible, and indeed achieving any non-trivial guarantee with high probability is impossible. To
see this, consider a distribution over instances in which there are k arms: k− 1 of them increase until
time 2T/k and then flatten, and one arm (chosen randomly) increases linearly throughout. For any
algorithm, with probability at least 1/2 , the algorithm will never receive reward better than 2T/k ,
because the algorithm can choose at most k/2 arms to play more than 2T/k times. Thus, achieving a
non-trivial guarantee with high probability is not possible.

Following Heidari et al. (2016); Patil et al. (2023), we assume that the reward function for each
arm follows the diminishing returns property. Formally,

Definition 2 A function f is said to have diminishing returns if the following holds for all t ≥ 1:

f(t+ 1)− f(t) ≤ f(t)− f(t− 1) .

Finally, we assume that f(0) = 0 for all of the arms.

3. Lower Bound

First, we argue that no randomized algorithm can achieve an o(
√
k) approximation to the optimal

reward. In order to show this, we apply Yao’s principle (Yao, 1977), i.e., we focus on a distribu-
tion over instances that is hard for deterministic algorithms. Theorem 3 presents the distribution
over instances and argues the

√
k lower bound for deterministic algorithms over this distribution.

Corollary 4 uses Yao’s principle to translate this result to randomized algorithms.

2. As is standard in the bandits literature, we define the objective as maximizing cumulative reward. The reader may
notice that in some of the motivating applications, the natural goal instead might be to maximize the largest single pull.
In Appendix B, we show how all the results from the paper translate to this slightly different objective function.
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Theorem 3 There exists a distribution over instances of the increasing bandits problem where no
deterministic algorithm can achieve expected reward greater than 3OPT/

√
k.

Proof We begin by defining the following functions. Let f⋆(t) = t/T ∀ t ∈ [1, T ] . Let f(t) be the
following reward function:

f(t) =

{
t
T 1 ≤ t ≤ T√

k
1√
k

T√
k
< t ≤ T

.

Let us describe a game played by the universe and the algorithm with the following stages.

1. Universe sets each of k arms to have reward f(t) .

2. Algorithm runs for T time steps.

3. Universe chooses one arm i⋆ uniformly at random and changes its reward function to f⋆(t) .

4. Algorithm gains OPT reward if it had played the arm replaced with f⋆ for at least T/
√
k

steps. Otherwise it keeps the reward it gained originally.

The distribution over instances is exactly specified by the (uniform) distribution over choices for
the arm that gets f⋆(t) as its reward function in step (3) above.

First, we explain how the game detailed above is strictly more generous to the algorithm than the
original game in which the algorithm has to maximize reward when playing the instance consisting
of k arms. Because the sequence of arms Algorithm pulls is deterministic, if it has not played arm i⋆

more than T/
√
k times, it cannot change its sequence of pulls based on where f⋆ is located. Thus,

provided we give the algorithm any extra reward for playing i⋆ long enough to identify it, which is
done in step 4, we can fix its run before revealing i⋆ in step 3.

Now, we argue that the above game ensures that the expected reward of the algorithm, over
the randomness in the instance, is at most 3OPT/

√
k. We do so by upper bounding the amount

an algorithm can achieve while playing this game and lower bounding the value the optimal arm
achieves by T/2.

Observe that in the T time steps that Algorithm runs, at most
√
k of the arms could have been

played for more than T/
√
k steps. Let us consider the two complementary events:

E = I
(
f⋆ assigned to an arm Algorithm played for > T/

√
k steps

)
Ec = I

(
f⋆ assigned to an arm Algorithm played for ≤ T/

√
k steps

)
Notice that the maximum reward the algorithm can achieve conditioned on event Ec is by playing

a single non-optimal arm for all T time steps. We thus upper bound Algorithm’s expected reward as
follows:

ALG = P [E] · Reward under event E + P [Ec] · Reward under event Ec

≤
√
k

k
OPT + 1 ·

(
1

2

T

T
√
k

(
T√
k
+ 1

)
+

(
T − T√

k

)
1√
k

)
=

OPT√
k

+
T

k
+

T√
k
− T

k
≤ 3OPT√

k
,

since we know that OPT ≥ T/2 .
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Corollary 4 For any randomized algorithm, there exists an instance for which its approximation
factor is at least

√
k/3.

4. Upper Bound

In this section, we present an algorithm with approximation factor O(
√
k), matching the Ω(

√
k)

lower bound in Section 3, when the value of f∗(T ) and the value of T itself are given to the algorithm
in advance. In Section 5, we show how to remove these assumptions with an O(log k) factor loss in
approximation. To describe the algorithm, we use m to denote the value given to the algorithm that
represents f∗(T ); we begin by assuming m = Θ(f∗(T )) and then later show how to relax, and then
remove, this assumption. Also, we show that in this setting, we can achieve the same approximation
factor in terms of k even when the functions do not exactly follow diminishing returns but are close
to functions that do (Appendix C).

Algorithm The algorithm chooses an arm i uniformly at random, pulls it so long as its current
reward fi(ti) is at least mti/T , where ti is the number of pulls of arm i so far, and then switches to a
different uniformly random arm. (Notice that if m ≤ f∗(T ) then we will never switch away from
the optimal arm.) See Algorithm 1. In Theorem 8, we show that if m is within a constant factor of
f∗(T ), then the algorithm achieves approximation factor O(

√
k), matching the lower bound from

Section 3. We then consider algorithms that aim to adaptively learn a good value of m in Section 5
and give approximation guarantees for the case that f∗(T ) and T are not known in advance.

Algorithm 1 Random round robin
1 Parameters m, T
2 t← 0
3 R← 0

while time not yet expired do
4 i← Randomly choose arm that has not been chosen so far
5 ti ← 0

repeat
6 ti ← ti + 1
7 t← t+ 1
8 pull arm i
9 R← R+ fi(ti)

until fi(ti) < mti/T ;
end
return R

To analyze the performance of this algorithm, we begin with the following helpful fact.

Claim 5 If for some constant c2 > 1 , m ∈ [ 1c2 f
∗(T ), f∗(T )] and Algorithm 1 plays arm i for ti

steps, then, from that arm, the algorithm receives total reward at least
(
ti−1
T

)2 OPTT
2c2

.
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Proof We know that i is played until fi(ti) < mti/T . This gives us that the algorithm’s reward is
at least:

ti−1∑
τ=1

fi(τ) ≥
m

T

ti−1∑
τ=1

τ ≥ (ti − 1)2

2

m

T
. (1)

Since OPTT ≤ f∗(T )T ≤ c2mT , this is at least
(
ti−1
T

)2 OPTT
2c2

as desired.

Next, define V (T ′, k′) = E[ reward from Algorithm 1 when run for T ′ + k′ steps]. Note that this
is in the worst case over subsets A of k′ of the original k arms, subject to A containing the optimal
arm. The additional k′ steps we give the algorithm in this calculation are simply an analysis tool to
help account for the last step on an arm that does not gain sufficient reward but is necessary for the
algorithm to know it needs to switch. We will later discuss how to use this recurrence to calculate
the quantity we are actually interested in, the expected reward after T steps. We show that V (T ′, k′)
satisfies a natural recurrence and then solve that recurrence.

Lemma 6 If m ∈ [ 1c2 f
∗(T ), f∗(T )] then the quantity V (T ′, k′) = E[ reward from Algorithm 1

when there are a total of k′ arms and the algorithm is run for time T ′ + k′] satisfies the recurrence
below:

V (T ′, k′) ≥ 1

k′
OPTT ′+k′ +

(
1− 1

k′

)
min

0≤t≤T ′+k′−1

{(
t

T

)2 OPTT

2c2
+ V (T ′ − t, k′ − 1)

}

where we define V (T ′, k′) = 0 for T ′ ≤ 0 ,∀ k′.

Proof With probability 1
k′ , Algorithm 1 finds the optimal arm in its first random choice, in which

case it receives reward OPTT ′+k′ . If the arm chosen was not the best arm, let the time duration
for which reward is received from it be t + 1. By Claim 5, the algorithm receives reward at least(
t
T

)2 OPTT
2c2

while playing that arm, after which the algorithm recurses in a game with one fewer arm
(so k′ ← k′ − 1) and with T ′ + k′ − t− 1 time steps to go (so T ′ ← T ′ − t). Here, we use the fact
that we never discard the optimal arm, which follows from m ≤ f∗(T ).

Since the value of t depends on the adversarially-chosen function fi, we take a worst case view
and lower bound it by the worst possible value of t ∈ [0, T ′+k′−1], giving us the recurrence shown.

Now, we analyze this recurrence to get a closed form bound on its value in terms of the amount
of reward received by the optimal strategy played for T steps.

Lemma 7 Suppose we run Algorithm 1 with a parameter m ∈ [ 1c2 f
∗(T ), f∗(T )]. Then the re-

currence given in Lemma 6 evaluates as follows: for all T ′ , V (T ′, k′) ≥
(
T ′

T

)2
OPTT
2c2

· 1√
k′
. In

particular, V (T, k) ≥ OPTT

2c2·
√
k
.

Proof We prove the desired statement by induction on T ′ and k′.
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Base Case: We start by considering the base cases V (1, k′) and V (T ′, 1). For the first case, notice
that if the very first pull of an arm produces reward less than m/T , then the algorithm will immediately
choose a new arm for its next pull. Therefore, the algorithm is guaranteed to at least once pull an
arm with reward at least m/T ≥ OPTT

c2T 2 ≥
(
1
T

)2 OPTT
2c2

. For the second case, the instance only has

one arm, which must be the optimal arm, so it clearly receives OPTT ′+1 ≥ OPTT ′ ≥
(
T ′

T

)2
OPTT
2c2

reward, where the last inequality follows from diminishing returns and 2c2 > 1 .

Inductive Assumption: Assume that ∀T ′′ < T ′ and k′′ < k′, V (T ′′, k′′) ≥
(
T ′′

T

)2
OPTT
2c2
· 1√

k′′
.

Induction: First, observe that the right-hand side of the recurrence in Lemma 6 can be lower
bounded by replacing OPTT ′+k′ with OPTT ′ :

V (T ′, k′) ≥ 1

k′
OPTT ′ +

(
1− 1

k′

)
min
t

{(
t

T

)2 OPTT

2c2
+ V (T ′ − t, k′ − 1)

}
. (2)

From the inductive assumption, we have:

V (T ′, k′) ≥ 1

k′
OPTT ′ +

(
1− 1

k′

)
min
t


(

t

T

)2 OPTT

2c2
+

(
T ′−t
T

)2
OPTT
2c2√

k′ − 1

 (3)

≥ 1

k′
OPTT ′ +

(
1− 1

k′

)
min
t

{(
t

T

)2 OPTT

2c2
+

1√
k′

(
T ′ − t

T

)2 OPTT

2c2

}
(4)

Next, let us compute the minimum desired. We take the derivative with respect to t and set it to
0 (note that at t = 0 , the derivative is negative, and at t = T , the derivative is positive, so the
minimum must lie in the middle):

2t

T 2

OPTT

2c2
+

OPTT

2c2

1√
k′
· 2
(
T ′ − t

T

)
−1
T

= 0 (5)

t =
1√
k′
(T ′ − t)⇔ t =

T ′
√
k′ + 1

(6)

Here, note that T ′
√
k′+1

< T ′. Plugging this back in, we get:

min
t

{(
t

T

)2 OPTT

2c2
+

1√
k′

(
T ′ − t

T

)2 OPTT

2c2

}
=

OPTT

2c2

(
T ′

T

)2 1√
k′ + 1

(7)

Finally, we can plug this back to get the guarantee:

1

k′
OPTT ′ +

(
1− 1

k′

)
OPTT

2c2

(
T ′

T

)2 1√
k′ + 1

7
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≥ OPTT

2c2

(
T ′

T

)2( 1

k′
+

(
1− 1

k′

)
1√

k′ + 1

)
=

OPTT

2c2

(
T ′

T

)2
( √

k′ + k′

k′(
√
k′ + 1)

)
=

OPTT

2c2

(
T ′

T

)2 1√
k′

.

With this fact in hand, let us return our attention to computing the reward for the algorithm run
for T steps. For this, we must consider first the value of V (T − k, k) , which we get in terms of
OPTT−k. Thus, we next compare that to OPTT , which is the actual optimal value the algorithm
must compete with.

Theorem 8 If m ∈ [ 1c2 f
∗(T − k), f∗(T − k)] and T ≥ 2k, then Algorithm 1, run with T − k as its

parameter “T”, receives expected reward at least OPTT

8c2
√
k

in T steps.

Proof Lemma 7 shows that Algorithm 1, run for T + k steps, receives expected reward at least
OPTT

2c2·
√
k

. Therefore, if we run the algorithm with T − k as its value of “T ”, then in T steps, where
T ≥ 2k , it will receive expected reward at least

OPTT−k

2c2 ·
√
k
≥
(
T − k

T

)2 OPTT

2c2 ·
√
k
≥ OPTT

8c2 ·
√
k
.

5. Removing Assumptions

In the previous section, we assumed knowledge of f⋆(T ) , the maximum value attained by the best
arm, to within a constant factor. In this section, we give an extension of our previous algorithm that
essentially makes an educated guess of this value based on some initial exploration. In order to do
so, we now require that T > 4k . This is so that we can conduct an initial exploration phase for the
first half of the time steps and then conduct our previous algorithm for the second half based on our
“learned” guess for m, which we shall call m̂ .

Main Ideas For Learning m̂̂m̂m We spend half of the time available to us “learning” the parameter m
with which we will run Algorithm 1, as detailed in Algorithm 2. In the other half of the time available,
we accrue reward through running Algorithm 1. In order to learn the parameter, we follow the
following main steps: first, we pull each arm T/(2k) times. We use the last two values to determine
an upper and lower bound for the maximum possible value achievable by that arm, fi(T ) , (lines 1-3
of Algorithm 2, analyzed in Lemma 9). We then narrow down a range inside which the maximum
of the best arm (f⋆(T )) must lie (lines 4-5 of Algorithm 2, analyzed in Lemma 10). Finally, we
randomly choose a value in that interval that, with probability Ω( 1

log k ), is within a factor of 2 of
f⋆(T ) (lines 6-7 of Algorithm 2, analyzed in Theorem 11). Once we have that, we can use the
guarantee from Theorem 8 to analyze the output of Algorithm 1 run with the learned parameter m.

Technically, we will learn an estimate of f∗(T2 − k) (rather than f∗(T )) since that will be the
value of “T ” given to Algorithm 1; for this reason, we provide a parameter Tpred to the algorithm
below. Note that f∗(T ) and f∗(T2 − k) differ by only a constant factor.

8



IMPROVING MULTI-ARMED BANDITS

Algorithm 2 Find m̂

Input: parameter Tpred
for each arm i do

1 pull arm T/(2k) times

2 m̂
(i)
L ← fi

(
T
2k

)
3 m̂

(i)
U ← fi

(
T
2k

)
+ (fi

(
T
2k

)
− fi

(
T
2k − 1

)
)
(
T − T

2k

)
end

4 L← 1
2 maxi m̂

(i)
L

5 U ← maxi m̂
(i)
U

6 Define uniform probability distribution p over {− log(T/Tpred), . . . , 0, 1, 2, . . . , log(U/L)}
7 Draw j ∼ p

return L · 2j

5.1. Computing Range for a Fixed Arm

Here, we describe how we compute the range in which the maximum lies for a fixed arm, i.e., we
compute upper and lower bounds on fi(T ) based on an exploration phase on fi .

Lemma 9 The procedure detailed in lines 1-3 of Algorithm 2 provides, for a fixed arm with reward
function f , a rangeR := [m̂L, m̂U ] such that f(T ) ∈ R and m̂U ≤ 2k m̂L .

Proof We use the diminishing returns property to show both parts. First, by the fact that the reward
functions are increasing, it is clear that f(T ) ≥ f(T/(2k)) . Then, due to the diminishing returns
property:

f(T ) = f

(
T

2k

)
+

T− T
2k∑

n=1

{
f

(
T

2k
+ n

)
− f

(
T

2k
+ n− 1

)}
(8)

≤ f

(
T

2k

)
+

(
T − T

2k

)(
f

(
T

2k
+ 1

)
− f

(
T

2k

))
(9)

≤ f

(
T

2k

)
+

(
T − T

2k

)(
f

(
T

2k

)
− f

(
T

2k
− 1

))
. (10)

Next, we show that m̂U ≤ 2km̂L, which follows immediately from the diminishing returns
property. In particular, m̂U = f( T

2k )+(f( T
2k )−f( T

2k −1))(T − T
2k ) ≤ f( T

2k )+
2k
T f( T

2k )(T −
T
2k ) =

f( T
2k ) + (2k − 1)f( T

2k ) = 2k m̂L.

5.2. Upper and Lower Bounds on f⋆(T ) From Exploration

Now, for each arm, we have a range within which its maximum must lie. Next, we combine these
bounds to get a relatively small interval in which we can be sure f⋆(T ) lies.

Lemma 10 Define L := 1
2 maxi m̂

(i)
L and U := maxi m̂

(i)
U . Then, f⋆(T ) ∈ [L,U ] , and U

L ≤ 4k.

9
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Proof First, observe that by diminishing returns, we have that:

f⋆(T )T ≥
T∑
t=1

f⋆(t) = max
i

T∑
t=1

fi(t) ≥
T∑
t=1

fp(t) where p := argmax
i

fi

(
T

2k

)
(11)

≥ fp

(
T

2k

)
T

2
= m̂

(p)
L

T

2
⇔ f⋆(T ) ≥

m̂
(p)
L

2
= L . (12)

Next, since f⋆(T ) ≤ f⋆( T
2k ) + (T − T

2k )(f
⋆( T

2k ) − f⋆( T
2k − 1)) (due to diminishing returns),

we also have that f⋆(T ) ≤ maxi f
(i)( T

2k ) + (T − T
2k )(f

(i)( T
2k )− f (i)( T

2k − 1)) = maxi m̂
(i)
U = U .

Now that we have that m ∈ [L,U ] , we verify the size of the interval. In particular, for some
index i′ we have U = m̂

(i′)
U ≤ 2km̂

(i′)
L ≤ 4kL, where the first inequality follows from Lemma 9.

5.3. Reward Approximation Guarantee With Learned Parameter

Putting the pieces together, we show that choosing m̂ randomly according to the defined uniform
distribution in line 6 of Algorithm 2 allows us to get reward as before with the loss of a factor only
logarithmic in k.

Theorem 11 When T > 4k , picking the parameter m required by Algorithm 1 using the procedure
detailed in Algorithm 2 with parameter Tpred = T

2 − k and running Algorithm 1 with that value m̂

achieves expected reward ALG = Ω(OPT/(
√
k log k)) .

Proof To show this, we analyze the three parts of the algorithm. First, we analyze lines 1-3 of
Algorithm 2 in Lemma 9. Then, we analyze the rangeR = [L,U ] in Lemma 10. With these in hand,
we show that we can find a constant factor approximation to f⋆(T ) with good enough probability
that the overall expected reward only gets worse by a logarithmic factor.

First, let us untangle the relationship between f⋆
(
T
2 − k

)
, which we must use in calling

Algorithm 1 to get the guarantee as per Lemma 7, and f⋆(T ) , which we know we can approximate
from the previous two lemmas. Observe that due to increasing nature of f⋆ , f⋆(T ) ≥ f⋆

(
T
2 − k

)
≥

f⋆
(
T
4

)
. Further, due to the diminishing returns property, we have f⋆

(
T
4

)
≥ f⋆(T )T4 /T = f⋆(T )

4 .
Thus, since U ≥ f⋆(T ) ≥ L ,U ≥ f⋆(T/4) ≥ L/4 . Note that log(T/Tpred) ≤ log(4).

We focus on the selection of m̂ . We divide up the intervalR by doubling L , i.e., the ith interval
endpoint is L · 2i−1 , for i ∈ {−2 ≤ − log(T/Tpred), . . . , 1, 2, . . . , log

(
U
L

)
≤ log(4k)} . We know

that f⋆(T/4) must lie in one of these intervals, so if we pick the endpoint, we will be within a factor
of 2 as desired above. In particular, let us choose L · 2i uniformly over the set. The probability of
choosing L · 2i is exactly 1

3+log(U/L) which is at least 1
3+log(4k) . Thus, with probability ≥ 1

3+log(4k) ,

we choose m̂ such that m̂ ≤ f⋆(T/2 − k) ≤ 2m̂ . When m̂ ≤ f⋆(T/2 − k) ≤ 2m̂ , we have that
m̂ ≤ f⋆(T ) ≤ 8m̂ , since f⋆(T )/4 ≤ f⋆(T/2 − k) ≤ f⋆(T ) Thus, we can apply Lemma 7 with
c2 = 8 , and T ′ = T/2− k to get that:

ALGT/2 = V

(
T

2
− k, k

)
≥

OPTT/2−k

2c2
√
k
≥

(
T
2 − k

T

)2
OPTT

2c2
√
k
≥ OPTT

256
√
k
.

10
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Putting these together, the expected reward is at least 1
3+log(4k) times the reward as described

above, giving us that the reward here is at least:

1

3 + log(4k)
· OPTT

256
√
k
≥ Ω

(
OPT√
k log(k)

)
.

5.4. Removing Dependence on Having To Know T

Finally, we describe how to use a standard doubling trick to remove dependence on knowing T, the
time horizon, a priori. At a high level, we start with a guess, T ′ = T0 = 4k , pretend that is all the
time we have, and run the combined exploration-exploitation algorithm with it. Then, if it turns out
we have not run out of time, we set T ′ ← 2 · T ′ and repeat the same process. At a high level, our
argument will show that if we have a “good” T ′ , i.e., one that is within a constant factor of the true
T , then the reward received when running T ′/2 steps of Algorithm 2 followed by T ′/2 steps of
Algorithm 1 will be within a constant factor of the reward received if we were to play until time T .
Overall, in the exploration phase, we use the algorithm given in Algorithm 2, but a key change is that
in line 5, we instead set U = 4maxi m̂

(i)
U . We present the algorithm and result here and defer the

proof to Appendix A.

Algorithm 3 Unknown Time Wrapper
1 R← 0
2 Guess T ′ ← T0

while True do
3 Try:

Tpred = T ′/2− k
m̂← modified Algorithm 2 for T ′/2 steps with Tpred as above
// in line 5 of Algorithm 2, U = 4 ·maxi m̂

(i)
U

R← R+ reward from Algorithm 1 for T ′/2− k steps
4 Except:

return R
5 T ′ ← 2 · T ′

end

Lemma 12 Suppose we run the procedure described in Algorithm 3. If T > 4k , then the reward
achieved is at least OPTT

8192
√
k log(128k)

.
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Appendix A. Proof of Lemma 12

Proof Let T ′′ = (2i − 1)T0 be such that T ′′ ≤ T ≤ 2T ′′ , which implies that the last T ′ with which
we we run Algorithms 2 and 1 is 2i−1T0. Note that T ′ ≤ T ′′ ≤ T ≤ 2T ′′ ≤ 4T ′ Then, we consider
what we gain when we spend T ′/2 exploring and T ′/2 exploiting. Our analysis of the reward from
Algorithm 1 will assume we start from 0 pulls in the exploitation phase, but in practice we are already
higher than that.

We show that the reward achieved running Algorithm 1 for T ′/2 steps is a constant fraction of
OPTT .

Each arm has been pulled T ′/(2k) times in the exploration phase. We know that f⋆(T ′) ∈
[12 maxi m̂

(i)
L ,maxi m̂

(i)
U ]. As before, we actually run Algorithm 1 with its parameter set to T ′/2−k .

Due to the diminishing returns property, we have that f⋆(T ′)
f⋆(T ′/2−k)

f(T ′′)
f(T ′)

f⋆(T )
f⋆(T ′′) ≤

T ′

T ′/2−k
T ′′

T ′
T
T ′′ ≤

4 · 2 · 2 = 16 . Thus, f⋆(T ) ≤ 2f⋆(T ′′) ≤ 4f⋆(T ′) ≤ 4maxi m̂
(i)
U , and c2 = 16. Now, the extent of

the interval is 128k , so the probability of choosing m̂ that is within a constant factor of f⋆(T ′/2−k)
is 1

log 128k . Now, we simply compute the reward achieved by the algorithm by applying Lemma 7.
The algorithm plays for T ′/2− k steps, while OPT plays for T steps. In particular:

ALGT ′/2 = V

(
T ′

2
− k, k

)
≥

OPTT ′/2−k

2c2

1√
k
≥

(
T ′

2 − k

T ′

)2
OPTT ′

2c2

1√
k

≥
(
1

2
− 1

4

)2 OPTT ′

2c2

1√
k
≥ 1

16

T ′2

T 2

OPTT

2c2

1√
k

≥ 1

16 · 16
OPTT

2c2

1√
k
.

Plugging in the computed value for c2 and considering the probability of choosing the correct
m̂ , we get ALGT ′/2 ≥ OPT/(8192 ·

√
k log(128 k)) .

Appendix B. Maximum Reward Objective

In certain situations, instead of trying to maximize the sum over rewards, we wish to just maximize
the maximum reward achieved in a single step. For instance, if we are training different machine
learning models, we care about the best performance the model can achieve, not the cumulative
performance over training iterations. Our upper bound results from the main paper all hold up to
constant factors for this objective, since we exploit the relationship between the maximum value of
a function with diminishing returns and the area under it in many places. Our lower bound result
also holds but requires a bit of care. In this section, we formally argue the small changes we make in
order for the results in the main paper to translate to this different objective.

B.1. Lower Bound

We use the same construction and game as before but now directly argue about the pull with maximum
reward rather than the sum. For this we have that the algorithm’s expected reward can be upper

14
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bounded as follows:

ALG = P [E] · Reward under event E + P [Ec] · Reward under event Ec (13)

≤
√
k

k
1 + 1 · 1√

k
=

2√
k

(14)

=
2OPT√

k
. (15)

So we have that the competitive ratio is at least Ω(
√
k) as before.

B.2. Upper Bound

The following facts allow us to directly translate the theorem statements to equivalent ones under
this new objective function.

Fact B.1 For a given function f satisfying the diminishing returns property, we can relate the area
under the function to its maximum value m as follows:

mT ≥
T∑
t=1

f(t) ≥ mT

2
.

Fact B.2 Out of a given set of functions F , each satisfying the diminishing returns property, define
f⋆
1 := argmaxf∈F f(T ) and f⋆

2 := argmaxf∈F
∑T

t=1 f(t) . Then, we have that f⋆
1 (T ) ≤ 2f⋆

2 (T ) .

Proof We have that:

f⋆
2 (T ) · T ≥

T∑
t=1

f⋆
2 (t) (16)

≥
T∑
t=1

f⋆
1 (t) (17)

≥ f⋆
1 (T ) · T

2
. (18)

Thus, we use that OPTT ≥
f⋆
1 (T )·T

2 .

Fact B.3 The maximum reward achieved in a single pull over the course of running the algorithm
is at least the average reward per pull over the pulls of the algorithm, which is exactly the sum of
rewards achieved by the algorithm, referred to as ALG in the main body of the paper, divided by T .

Putting these three facts together, we have:

1. Translating Theorem 8. The maximum pull by the algorithm is at least ALG/T , which by
the theorem is at least OPT/(8c2T

√
k) ≥ f⋆

1 (T )/(16c2
√
k) . Thus, the O(

√
k) competitive

ratio still holds.
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2. Translating Theorem 11. By the same argument above, we divide both sides of the result by
T and get that the maximum pull by the algorithm is at least 1/O(

√
k log k) fraction of the

maximum pull achievable.

3. Translating Lemma 12. By the same argument as before, we divide both sides by T to get
that the maximum pull of the algorithm is at least 1/(16384

√
k log(128k)) fraction of the

maximum pull achievable.

Appendix C. Extension to noisy rewards

C.1. Extension of Algorithm 1

Now, suppose that when we pull an arm, instead of getting the exact value of fi(ti), we get a reward
value f̂i(ti) ∈ [(1−ϵ)fi(ti), (1+ϵ)fi(ti)] . We now wish to achieve cumulative reward that competes
with the reward achieved by the best policy. The best policy is no longer necessarily a single arm,
since the hat reward functions could be slightly non-monotone. However, it suffices to compare to the
policy that plays the arm corresponding to the best pre-corruption arm f⋆ . This is for the following
reason. Let π be the policy that plays only f⋆ , and let π̂ be the policy that achieves the optimal
reward in the f̂ problem. Define V (·) to be the value of the policy in the argument under the original
problem and V̂ (·) be the value of the policy in the argument in the hat problem. Then:

OPTT = V̂ (π) ≥ (1− ϵ)V (π) reward at each step in hat problem at least 1− ϵ reward in original problem

(19)

≥ (1− ϵ)V (π̂) optimality of π for V (20)

≥ 1− ϵ

1 + ϵ
V̂ (π̂) reward at each step in original problem ≥ 1

1 + ϵ
of reward in hat problem

(21)

Thus, in the rest of this section until the end, we compare to V̂ (π) = OPTT , and then finally
we can lower bound that by the quantity in Eqn. 21.

We show that the same algorithm works with a minor modification. In particular, instead of
switching arms away from arm i when fi(ti) < m · ti/T , we now switch away from arm i when
f̂i(ti) < (1− ϵ)mti/T . Note that the algorithm therefore must have knowledge of the value of ϵ .

We must show two things: first, that as before, we never switch off the best arm; second, that
similar to before, playing an arm for time ti accrues at least a constant fraction of

(
ti−1
T

)2 OPTT
2c2

.

The first can be seen as follows: for an arm fi , as long as fi(ti) ≥ tim/T , we have f̂i(ti) ≥
(1− ϵ)fi(ti) ≥ (1− ϵ)tim/T , so we will continue playing that arm. In particular, this holds for the
best arm.

For the second, we prove a variant of Claim 5:

Claim 13 Suppose m ∈ [ 1c2 f
⋆(T ), f⋆(T )] . In the noisy case, if arm i is played by Algorithm 1

with the adaptation mentioned above for ti steps, then the algorithm receives total reward at least(
ti−1
T

)2 OPTT
2c2
· 1−ϵ
1+ϵ in those steps.

16
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Proof We know that arm i is played until f̂i(ti) < (1− ϵ)mti/T . This means the total reward from
this arm is:

ti−1∑
τ=1

f̂i(ti) ≥
(1− ϵ)m

T

ti−1∑
τ=1

τ (22)

≥ (1− ϵ)m

T

(ti − 1)2

2
. (23)

Since OPTT ≤ f̂⋆(T )T ≤ (1 + ϵ)f⋆(T )T ≤ (1 + ϵ)c2mT , the right hand side above is at
least 1−ϵ

1+ϵ

(
ti−1
T

)2 OPTT
2c2

.

Finally, we must incorporate this into the recursion of Lemma 6 and then change Lemma 7
slightly. In particular:

V (T ′, k′) ≥ 1

k′
OPTT ′+k′ +

(
1− 1

k′

)
min

0≤t≤T ′+k′−1

{
1− ϵ

1 + ϵ

(
t

T

)2 OPTT

2c2
+ V (T ′ − t, k′ − 1)

}
(24)

where we define V (T ′, k′) = 0 for T ′ ≤ 0 , ∀ k′.
Finally, we aim now to show that V (T ′, k′) ≥ 1−ϵ

1+ϵ

(
T ′

T

)2
OPTT
2c2

1√
k′
. The base cases go through

as before, since 1−ϵ
1+ϵ times the lower bound is only smaller than the lower bound for which we have

shown it. Further, let the inductive assumption be V (T ′′, k′′) ≥ 1−ϵ
1+ϵ

(
T ′′

T

)2
OPTT
2c2

1√
k′′

,∀T ′′ <

T ′ , k′′ < k′ . Now, we can lower bound the right hand side of Eqn. 24 by:

1− ϵ

1 + ϵ

(
1

k′
OPTT ′ +

(
1− 1

k′

)
min
t

{(
t

T

)2 OPTT

2c2
+

1√
k′

(
T ′ − t

T

)2 OPTT

2c2

})
.

Now, we can analyze everything multiplied by (1− ϵ) exactly as before, and we would prove the
following statement:

Theorem 14 Suppose that when we pull an arm i for the tith time, instead of getting value fi(ti) , we
get f̂i(ti) ∈ (1±ϵ)fi(ti) . Suppose we run the adapted version of Algorithm 1 as discussed above with
a parameter m ∈ [ 1c2 f

∗(T ), f∗(T )]. Then the recurrence given in Eqn. 24 evaluates as follows: for

all T ′ , V (T ′, k′) ≥ 1−ϵ
1+ϵ

(
T ′

T

)2
OPTT
2c2
· 1√

k′
. In particular, V (T, k) ≥ 1−ϵ

1+ϵ
OPTT

2c2·
√
k
≥
(
1−ϵ
1+ϵ

)2
V̂ (π̂)

2c2·
√
k
.

Finally, we can incorporate the extra switching steps to get a theorem like before with the same(
1−ϵ
1+ϵ

)2
multiplicative factor.

C.2. Extension of Algorithm 2

Now, we define:

m̂L =
f̂
(
T
2k

)
1 + ϵ

m̂U = 2k ·
f̂
(
T
2k

)
1− ϵ

.
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It is clear by our assumptions on f̂ and diminishing returns that f(T ) lies between m̂L and
m̂U . Further, it is clear that m̂U ≤ 2k 1+ϵ

1−ϵm̂L . The rest of the arguments go through, and now the

approximation factor is O
((

1−ϵ
1+ϵ

)2√
k log

(
1+ϵ
1−ϵ k

))
.

Note that this definition of m̂U could have also been used in the noiseless case with the same
guarantee. However, in practice we may get a better interval if we do what we originally had in the
algorithm.
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