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A.1 Theoretical results

Proposition 1 (Equivalence of the single and multi-cause PO’s conditional expectation). Under the
sequential ignorability assumption [53] that ∀ak ∈ Ωk and a−k ∈ Ω−k,

if A−k(ak) =a−k, Y (ak) = Y (ak,a−k). (8)
Y (ak,a−k) ⊥⊥ A−k(ak)|X, (9)

We have the following equivalence:

P(Y (ak,a−k)|X) = P(Y (ak)|X,A−k(ak) = a−k) (10)

Proof: We start by recognizing the right hand side of the Equation 10 follows

P
(
Y (ak)|X,A−k(ak) = a−k

)
= P

(
Y (ak,A−k(ak))|X,A−k(ak) = a−k

)
by Eq. 8

= P
(
Y (ak,a−k)|X,A−k(ak) = a−k

)
,

∀ak ∈ Ωk and a−k ∈ Ω−k, where the second equality holds by Equation 8. Furthermore, by Equation
9, we have for all a−k ∈ Ω−k

P
(
Y (ak,a−k)|X,A−k(ak) = a−k

)
= P

(
Y (ak,a−k)|X

)
.

Combining the previous two equations, we immediately see that P(Y (ak,a−k)|X) =
P(Y (ak)|X,A−k(ak) = a−k), ∀ak ∈ Ωk and a−k ∈ Ω−k, which concludes the proof.

Proposition 2 (Identification of the single-cause causal effect). With the single-cause consistency
and unconfoundedness assumptions and the multi-cause overlap assumption (Section 2), i.e.

∀k ≤ K, ∀ak ∈ {0, 1}, if Ak = ak,Y
′
k(ak) = Y′k (11)

Y′k(ak) ⊥⊥ Ak |X′k, ∀ak ∈ {0, 1}, ∀k ≤ K (12)
P(A = a|X) > 0,∀a ∈ Ω, if P(X) > 0 (13)

we can estimate the combined single-cause PO as follows:

P(Y′k(ak)|X′k) = P(A↓−k|X
′
k, Ak = ak) · P(Y |X′k,A

↓
−k, Ak = ak). (14)

where we denote X′ := (X,A↑−k) as the combined confounders and Y′ := (Y,A↓−k) as the
combined outcomes (Equation 3). The probabilities are evaluated under the conditions X′ = x′,
Ak = ak, and A↓−k(ak) = A↓−k = a↓−k.

Proof. We start the proof by recognizing that the LHS can be decomposed into two terms by Bayes
rule: P(Y′k(ak)|X′k) = P(A↓−k(ak)|X′) · P

(
Y (ak)|X′,A↓−k(ak)

)
. Hence to prove Proposition 2,

we only need to show:

P
(
A↓−k(ak)|X′

)
= P

(
A↓−k|X

′, Ak
)
, (15)

P
(
Y (ak)|X′,A↓−k(ak)

)
= P

(
Y |X′, Ak,A↓−k

)
, (16)

Also note that the single-cause unconfoundedness assumption (Equation 12) implies the following
two equations by the properties of conditional independence [12].

A↓−k(ak) ⊥⊥ Ak|X′ (17)

Y (ak) ⊥⊥ Ak|X′,A↓−k(ak) (18)

To prove Equation 15, we treat A↓−k as the “outcome”, Ak as the single cause and X′ as the
confounders. We immediately observe that unconfoundedness is satisfied by Equation 17. Moreover,
consistency A↓−k = A↓−k(ak) if Ak = ak is implied by Equation 11. The multi-cause overlap
assumption (Equation 13) implies single-cause overlap P(Ak|X′) > 0. Based on these three
assumptions, Equation 15 is given by the standard CATE identification theory [56].
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Equation 16 can be proved in a similar fashion. Here we treat Y as the outcome, Ak as the single
cause and

(
X′,A↓−k(ak)

)
as the confounders. From Equation 11 and 18, we observe that the three

assumptions are satisfied. Invoking the standard identification theory again, we obtain

P
(
Y (ak)|X′,A↓−k(ak)

)
= P

(
Y |X′,A↓−k(ak), Ak = ak

)
The consistency assumption 11 states that when Ak = ak, A↓−k(ak) = A↓−k(Ak) = A↓−k. Hence,
we can replace A↓−k(ak) on the right hand side with A↓−k to obtain Equation 16, which concludes
the proof.

A.2 Analysis of CFR in the multi-cause setting

The counterfactual regression method (CFR) was proposed by [57] as a principled way of estimating
single-cause CATE. Many methods in the literature extends CFR or uses it as a component. Examples
include DR-CFR [22], DragonNet [58], and CEVAE [38]. Given its popularity, we present a
theoretical analysis of CFR in the multi-cause setting, generalizing the original analysis presented
in [57]. From the analysis, we highlight the challenge of applying CFR in the multi-cause setting.
Although the following analysis is for CFR, we believe similar results also hold for the various
extensions of CFR mentioned above.

Review of CFR. The CFR architecture contains two components: (1) an invertible representation
network Φ(·) : RD → R that transforms the covariate X into a real number r, and (2) for each treat-
ment a ∈ Ω, a prediction head ha(·) : RD → R that predicts the PO Y (a) based on representation
r. Since there are 2K treatments in the multi-cause setting, CFR will include 2K prediction heads.
Denote Ψ as the inverse of Φ. Define the factual loss of treatment a as

εF (a) =

∫
`Φ,ha(x)P(X = x|A = a)dx, (19)

where `Φ,ha is a loss function such as the squared error (Y (a)− Ŷ (a))2 for treatment a evaluated at
x. Similarly, the counterfactual loss of treatment a is defined as

εCF (a) =

∫
`Φ,ha(x)P(X = x|A 6= a)dx. (20)

Note that the counterfactual loss is evaluated using the individuals who did not receive treatment a.
The overall counterfactual loss is the average of the treatment-specific counterfactual losses:

εCF =
1

2K

∑
a∈Ω

εCF (a). (21)

Proposition 3 (Error bound on the counterfactual loss). Suppose the function `Φ,ha(Ψ(r)) ∈ G,∀a ∈
Ω, where G is a set of functions. The counterfactual loss εCF is bounded by

εCF ≤
1

2K

∑
a∈Ω

εF (a) + IPMG

(
P(r|A = a),P(r|A 6= a)

)
,

where IPMG stands for the Integral Probability Metric of function family G.

Proof. We start the proof by computing the difference between the treatment-specific factual and
counterfactual losses:

εCF (a)− εF (a) =∫
`Φ,ha(x)

(
P(X = x|A 6= a)− P(X = x|A 6= a)

)
dx

=

∫
`Φ,ha(Ψ(r))

(
P(r|A 6= a)− P(r|A 6= a)

)
dr

≤ supg∈G

∫
g(Ψ(r))|P(r|A 6= a)− P(r|A 6= a)|dr

= IPMG

(
P(r|A = a),P(r|A 6= a)

)
,
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where we (1) apply the definition 19 and 20, (2) use the invertibility of Φ to change the variable
x into r, (3) use the property of the supremum operation and (4) apply the definition of IPM. The
proposition can be proved by plugging the above equation into the definition 21 and rearranging the
terms.

Comments on Proposition 3. Proposition 3 demonstrates that balancing distribution via IPM does
not scale to the multi-cause setting. In order to minimize the bound on the counterfactual loss εCF ,
the CFR network needs to find representation r’s such that

∑
a∈Ω IPMG

(
P(r|A = a),P(r|A 6= a)

)
is small. However, the summation involves 2K terms, each of which involves calculating the IPM
between two distributions. Evaluating a single IPM can already be computationally challenging, e.g.
it might involve calculating the Wasserstein distance [71], let alone evaluating 2K of them. Moreover,
the probabilities P(r|A = a) and P(r|A 6= a) are not known a priori, but have to be approximated
with finite samples. With a large number of treatments, it is questionable whether there will be enough
data to approximate these probabilities. Last but not least, even if the IPM terms are well-minimized,
it is still challenging to minimize the factual loss

∑
a∈Ω εF (a) because 2K prediction heads ha need

to be trained with finite data. In conclusion, Proposition 3 is a negative finding that discourages us to
directly apply distribution balancing via IPM to the multi-cause setting.

A.3 Interpretation of the assumptions

In this section, we further discuss the various assumptions mentioned in the main text. In particular,
we will provide interpretations, examples and additional references.

The consistency assumption and extensions. As a reminder, we restate the standard consistency
assumption [55] and the extensions we used in the main text.

if A = a, Y (a) = Y Sec. 2.1

if A1 = a1, A
↓
−1 = A↓−1(a1) Eq. 11

if A−1(a1) = a−1, Y (a1) = Y (a1,a−1). Eq. 8

In a nutshell, the consistency assumption offers a way to link the observed factual world with the
various potential worlds. Under consistency, the factual world is the potential world that corresponds
to the observed treatment variable.

While the consistency assumption is widely used in the literature, it may not always hold in practice.
A well-known example is the so-called spill-over effect [3], where the treatment decision on one
patient generates an effect on another patient. In this case, additional adjustments (and assumptions)
will be necessary to account for the inconsistency. Our current work focuses on the case where
consistency holds and we leave the violation of consistency in the multi-cause setting to future work.

The unconfoundedness assumption and extensions. As a reminder, we restate the standard uncon-
foundedness assumption [24] and the extensions we used in the main text.

Y (a) ⊥⊥ A |X, ∀a ∈ Ω(
Y (a1),A↓−1(a1)

)
⊥⊥ A1|X,A↑−1, ∀a1 ∈ Ω1. Eq. 12

Y (a1,a−1) ⊥⊥ A−1(a1)|X, ∀a1 ∈ Ω1. Eq. 9

Equation 12 directly mirrors the standard unconfoundedness assumption, where we treat the combined(
Y (a1),A↓−1(a1)

)
as the “outcome”, A1 as the cause and

(
X,A↑−1

)
as the confounders.

Equation 9 is a strengthened version of the standard unconfoundedness assumption. Note that this
equation concerns with the independence of the potential cause A−1(a1) rather than the cause A1.
Equation 9 is a standard assumption in estimating the indirect causal effect from the mediators [53].
[45] provides ways to verify this assumption when the causal DAG is known.

A.4 Formalism using do-operation

In the main text, we presented the problem formulation in the potential outcome framework [55]. For
completeness, here we present an alternative formalism using do-operation [46]. We highlight that
one can derive the same SCP algorithm using either formalism.
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Disease Medications Reference

Asthma Inhaled corticosteroids; Long-acting β2-agonists; Leukotriene receptor agonists [41]
Cancer Dipyrone, Morphine, Fentanyl, Dexamethasone, Metoclopramide [33]
COPD Inhaled corticosteroids, Inhaled anticholinergics, Diuretics, Proton pump inhibitors [14]
Crohn’s disease IBD drugs, Non-narcotic analgesics, GI symptomatic drugs [9]
Diabetes Sulfonylureas, Biguanides, α-Glucosidase inhibitors, Insulins [17]
Heart failure ACE inhibitors, ARBs, β-blockers, Spironolactone [40]
Hypertension ACE inhibitors, NSAIDs, Acetaminophen, Glucocorticoids, Erythropoietin [42]
Schizophrenia Antipsychotics, Antidepressants, Benzodiazepines [66]

Table 4: Examples of Polypharmacy in complex systemic diseases.

CATE estimation using do-operation. Consider the causal graph in Figure 6 (1), where as usual A
represents the causes, Y represents the outcome and X represents the covariates. The multi-cause
CATE can be defined using do-operation [46]:

τ(a,a′,x) = E(Y |X; do(A = a))− E(Y |X; do(A = a′))

where the condition is taken with respect to X = x. Since the covariates X satisfies the backdoor
criterion in the causal graph (Figure 6 (1)), one can express the do-operation using conditional
expectation [46]:

E(Y |X; do(A = a)) = E(Y |X,A = a) (22)
Note that the conditional expectation in the rhs can be estimated from observed data.

(1) (2)

Figure 6: Causal graphs.

SCP using do-operation. Now we consider estimating the causal effect of intervention on a single
cause A1 (the same analysis holds for any Ak with k > 1). We assume that the causal structure
between (A1, . . . , AK) is acyclic, i.e. the causal graph is a DAG without any loop [46]. Due to the
acyclic structure, we can partition the aggregated cause A into three parts: (1) the single cause A1,
(2) the single cause’s descendants A↓−1 and (3) its non-descendants A↑−1. The causal graph after
partitioning is illustrated in Figure 6 (2). Note that we also allow A↑−1 to directly influence A↓−1

without going through A1. As we can see, an intervention do(A1 = a1) will influence both Y and
A↓−1:

P(Y,A↓−1|X,A
↑
−1; do(A1 = a1)) =

P(Y,A↓−1|X,A
↑
−1, A1 = a1),

(23)

where we translate the do-operation (LHS) into a conditional expectation (rhs) because the variables
(X,A↑−1) block the backdoor paths between the “outcome” (Y,A↓−1) and the cause A1. Of course,
the conditional probability on the rhs can be estimated in two steps: P(A↓−1|X,A

↑
−1, A1 = a1)

(potential cause) and P(Y |X,A) (PO). This mirrors the identification result we derived in Proposition
2 using the PO framework. Moreover, in the second step P(Y |X,A) is equal to our ultimate goal
P(Y |X, do(A = a)) by Equation 22. Hence, we can see that the augmented dataset generated by
SCP is indeed relevant to the goal of multi-cause CATE estimation (similar to Proposition 1).

A.5 Importance of multi-cause CATE estimation in medicine and beyond

Traditional clinical trials are designed to measure the efficacy and toxicity of a single drug. However,
in reality a single drug may not be enough to cure the disease. As a result, it is a common clinical
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DAG Aggregated Var. Advantage

(1)   None Obtain the true confounders directly from the causal graph and (2)

(2) Use separate models to estimate the potential causes

(3) The standard SCP setting

(4) The ablated SCP setting

(4)

(3)(2)(1)

More
Knowledge

Less
Knowledge

Figure 7: Causal graphs with different levels of structural knowledge. From (1) to (4), the amount of structural
knowledge decreases as more variables are aggregated. The standard SCP algorithm operates in setting (3).

practice to prescribe multiple drugs together (known as polypharmacy, [21]). In order to design the
best treatment plan, the clinician needs to know the combined effect of multiple drugs, which is a
multi-cause CATE estimation problem.

Polypharmacy is highly prevalent in elderly patients who suffer from multiple chronic diseases.
According to several large-scale international studies, around 50% of the elderly population in
developed countries take five or more drugs; around 10% take ten or more drugs [18, 6, 39]. Moreover,
polypharmacy is also common among patients who suffer from complex systemic diseases such as
chronic obstructive pulmonary disease (COPD). These diseases often impact the patient’s physiology
in complex ways and therefore require multiple medications. In Table 4, we list several examples of
such diseases and the medications commonly prescribed together.

Excessive polypharmacy (taking unnecessary medications) increases the financial burden as well
as alleviates the risk of adverse effects. According to one highly-cited study [39], nearly 50% of
the elderly population take one or more medications that are not medically necessary. Excessive
polypharmacy is also known to increase the mortality for many common diseases [17, 66, 40]. With a
multi-cause CATE estimation algorithm, the medical researchers can better understand the combined
treatment effect of multiple drugs — a step towards precision medicine.

Beyond medicine, estimating multi-cause CATE can also be used to support complex decisions in
marketing [5, 75], education [19], policy making [61], and more.

Potential negative impact Any treatment effect algorithm could be used negatively if the user
intentionally chooses to worsen the outcome. This is very unlikely in our case because the intended
users of LHM are clinicians.

A.6 SCP with different levels of causal structural knowledge

The standard SCP algorithm assumes that we can partition the aggregated cause A into three parts:
(1) the single cause A1, (2) the single cause’s descendants A↓−1 and (3) its non-descendants A↑−1 (the
same analysis holds for any Ak with k > 1). This assumption captures the prior knowledge about the
causal structure between the variables. In this section, we discuss the scenarios where we have more
(or less) knowledge about the causal structure and how we can adapt the standard SCP algorithm to
utilize such knowledge.
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Algorithm 1 Single cause perturbation.
Input: Observational dataset D0 = {xi, yi,ai}i∈[N0], auxiliary regression algorithm A (here:
DR-CFR), final multi-cause PO-estimator fθ
for k ∈ [1,K] do

Fit f̂A↓−k(ak)(·) with A to estimate A↓−k(ak) using the observed data D0 (Eq. 15).

Fit f̂Y (ak)(·) with A to estimate Y (ak) using the observed data D0 (Eq. 16)
Initialize the kth augmented dataset Dk = ∅
for i ∈ [1, N0] do

Perturb the kth cause: a′ik = 1− aik
Set a↑i,−k(a′ik) = a↑i,−k (Eq. 2)
Set a↓i,−k(a′ik) = f̂A↓−k(ak)(xi,a

↑
i,−k, a

′
ik)

Set ỹki := y(a′ik) = f̂Y (ak)(xi,a
↑
i,−k, aik,a

↓
i,−k(a′ik))

Combine the causes ãki := (a′ik,ai,−k(a′ik))
Add new data point (xi, ỹ

k
i , ã

k
i ) to Dk

end for
end for
Obtain the augmented training data DTr = {Dk}k∈[0,K]

Train fθ to estimate E[Y |X,A] using DTr (Eq. 1)
Output: A trained multi-cause PO predictor fθ

Figure 7 illustrates four settings (1)-(4) with a decreasing amount of structural knowledge. The
scenario (3) corresponds to the setting where the standard SCP operates. In comparison, the causal
graph in scenario (2) contains the links between all pairs of causes Aj , Ak. The additional knowledge
might enable us to better estimate the potential cause. For instance, we can leverage the causal
structure to learn separate models forA2 = f2(A1,X), A3 = f3(A1,X) andA4 = f4(A3,X) rather
than learning a joint model (A2, A3, A4) = f(A1,X), which is less parsimonious. However, in
practice, our ablation study in Section 5.1 indicates that the performance gain of scenario (2) might
be very marginal because the gain is small even when the potential cause is set to be the ground truth.

In scenario (1), we have knowledge about the links between all pairs of variables including the ones
between the covariates X. This might enable us to better estimate the outcome Y under SCP. For
instance, from the DAG we can see that the covariate X1 alone is enough to block the backdoor path
between Y and A1, i.e. it is a true confounder. The remaining covariates X2 to X4 only influence
the outcome Y but not the cause A1. Having a smaller set of confounders generally improves the
estimation accuracy [13]. In comparison, the standard SCP does not assume such knowledge. As a
result, we use DR-CFR to learn the true confounders from the data rather than obtaining it directly
from the causal graph. Details of DR-CFR is given in Appendix A.8.

Finally, the scenario (4) contains the least structural knowledge. From this causal graph, we cannot
identify which variables are causally modulated by a single cause. To apply SCP in this setting, we
could assume that all other causes are under the influence, i.e. A↓−1 = A−1. This corresponds to the
ablated version we examined in Section 5.1, which performs slightly worse than the standard version.

A.7 Pseudocode of SCP

The Pseudocode is presented in Algorithm 1.

A.8 Details of DR-CFR

SCP uses the DR-CFR algorithm to solve the auxiliary tasks [22]. DR-CFR contains the following
networks:

• Three representation networks to learn the latent factors Γ(x), ∆(x) and Υ(x).

• Two outcome predictions networks, each for one treatment: h0
(
∆(x),Υ(x)

)
,

h1
(
∆(x),Υ(x)

)
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Figure 8: Causal DAG of DR-CFR. Dashed circles denote the latent variables. Shaded circles denote observed
variables.

• Two propensity networks to model the probability of treatment assignment:
π0(t|Γ(x),∆(x)), π(t|∆(x))

The causal DAG assumed by DR-CFR is presented in Figure 8. The latent factor Γ(x) only impacts
treatment assignment but not the outcome, whereas the latent factor Υ(x) only impacts the outcomes
but not the treatment. The latent factor ∆(x) is the true confounding factor that both impacts the
treatment and the outcomes. To predict Y (ai), we use the linear layer as the final layer in the outcome
prediction network. To predict the binary A↓−1(a1) we use the sigmoid function as the final layer. In
our implementation, each element in A↓−1(a1) corresponds to one output neuron, and all outputs are
issued simultaneously. One could alternatively predict the elements in A↓−1(a1) one by one to better
capture their inter-dependency (e.g. using a recurrent output layer). However, the ablation study in
Section 5.1 shows that our current implementation already achieves comparable performance with
the Oracle Cause model.

The DR-CFR is trained using the following objective:

J =
1

N

N∑
i=1

ωiL
[
yi, h

ti
(
∆(xi),Υ(xi)

)]
+

1

N

N∑
i=1

−log[π0(ti|Γ(xi),∆(xi))]+

αMMD
(
{Υ(xi)}ti=0, {Υ(xi)}ti=1

)
,

where ωi is the inverse propensity weight, L is the factual prediction loss (MSE for continuous
outcome and cross entropy for binary outcomes), MMD is the maximum mean discrepancy between
two samples.

A.8.1 Why is the standard DR-CFR inadequate for the multi-cause setting?

Remember that the standard DR-CFR attempts to find an outcome specific factor Υ that is unrelated
to any cause in A. Hence, when there are multiple causes, DR-CFR may struggle to find such
factor (it may not even exist). Moreover, the standard DR-CFR uses the multi-head neural network
architecture and the IPM regularization that do not scale to large treatment spaces (as we discussed in
Appendix A.2)

In contrast, SCP avoids these issues by using DR-CFR in step one for single-cause estimation. Here,
for each single cause Ak the DR-CFR algorithm may find a different decomposition. In other words,
the factors Υk Γk and ∆k will be specific to the single cause being considered. This allows the
algorithm to exploit the fine-grained causal structure between covariates X and the individual causes.

Conceptually, while the standard DR-CFR decomposes the covariates X, SCP decomposes the
treatment A – it exploits the structure between the multiple causes to improve performance.

A.9 Extended related works.

� Mediation analysis (MA). The traditional goal of MA is to decompose the total effect of a single-
cause into various direct and indirect effects [68], and methods generally target population average
effects, and not CATE [28]. Conversely, the CATE literature explicitly excludes mediators from
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Table 5: Simulation parameters. Bold values are the defaults.

Parameter Description Range

K Number of causes 2, 5,7, 10
D Number of confounders 10,20, 30, 40
N0 Training sample size 400, 700, 1400, 2000
pd Sparsity interaction 0.05, 0.1, 0.15, 0.2
ps Sparsity single variable 0.1,0.3, 0.5, 0.8
pv Sparsity single variable 0.1,0.3, 0.5, 0.8
α Confounding level 1, 3, 5, 7

sd(ε) Cause noise 0.01, 0.3, 0.5, 0.8
φ(·) Output function identity, sigmoid

covariates X; only pre-treatment variables/confounders are considered [69, 23]. Finally, we note
that our setting is not the standard setting of mediation analysis; we are not aware of any prior work
making a link between multi-cause treatments and mediation analysis.

A.10 Simulation details.

Table 6: Hyper-parameter values and search ranges.

Parameter Value/Range Algorithm

Batch size [50,100,200] All
Hidden dim Uniform[10,40] All
Confounder rep dim Uniform[10,40] DR-CFR, SCP
Outcome rep dim Uniform[10,40] DR-CFR, SCP
IPM weight [0,1] DR-CFR, CFR, SCP
Learning rate 0.005 All
Hidden layer 1 All
Max training epoch 100 All

Simulation parameter range and the default values. Table 5 lists the range of simulation parame-
ters with the default values bolded. The confounding level is controlled by scaling the vector v in
Equation 6 by a factor α, i.e. v′ = α · v (bigger α, higher confounding).

The results in Figure 5 corresponds to a typical simulation with all settings set to the default. The
ones in Figure 4 corresponds to a simulation with K = 10 causes and other settings set to the default.

Hyper-parameter search. We perform hyper-parameter tuning for all algorithms compared in the
experiments. We use randomized search to choose the hyper-parameters that achieve the highest
prediction accuracy of the factual outcomes on the validation set. The search range of the hyper-
parameters are shown in Table 6.

Computational resources The simulations were performed on a server with a Intel(R) Core(TM)
i5-8600K CPU @ 3.60GHz and a Nvidia(R) GeForce(TM) RTX 2080 Ti GPU. All individual
simulations were finished within 1 hour.

A.11 Real data experiment details

Description of the dataset. We obtained de-identified COVID-19 Hospitalization in England Surveil-
lance System (CHESS) data from Public Health England (PHE) during the first peak of the pandemic,
which contains the medical records of 4,714 ICU admissions from 94 NHS trusts across England.
The patient covariates X includes the demographics and the medical conditions prior to the infection.
The summary statistics of these covariates are provided in Table 7. The dataset also records the
medical treatments administered to the patients. There are five types of medical treatments (causes)
in total, and the frequency of each type is summarized in Table 8. The five causes can be combined
to give 32 treatment plans in total (e.g. starting with noninvasive ventilation and then switch to
invasive ventilation). The frequency of the 32 treatments is plotted in Figure 9. As we can see, many
treatments have low frequencies (and hence low propensity scores), which may affect the performance
of the propensity weighting methods.
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Covariate Prevalence Count

pneumonia 25% 1168
ARDS 15% 709
coinfection 1% 51
chronic_respiratory 5% 248
asthma 9% 410
chronic_heart 5% 251
chronic_renal 3% 132
chronic_liver 1% 41
chronic_neurological 2% 72
diabetes 15% 712
immunosuppression 3% 147
obesity 9% 432
hypertension 21% 969
sex_male 71% 3349
age (median) 58 -

Table 7: Summary statistics of the covariates.

Cause Percentage Count

oxygen via cannulae or mask 15% 686
highflow nasal oxygen 3% 141
noninvasive ventilation 16% 748
invasive mechanical ventilation 43% 2026
anticovid19 treatment 6% 300

Table 8: Summary statistics of the causes.
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Figure 9: Observed frequency of the 32 treatments.

For SCP, we assume that the five causes do not have direct causal interaction, i.e. A↓−k = ∅, ∀k ≤ K.
In particular, our clinical collaborators belief that the milder form of respiratory support (e.g. oxygen
via annulae or mask) does not causally modulate the more aggressive form of respiratory support
(e.g. invasive mechanical ventilation), and vice versa. The anti-viral treatments are also assumed to
be administered independently of the status of respiratory support.

License and anonymity Access to the CHESS is regulated. We have signed an end user license
before access to the data was granted. All data were pseudonymized in CHESS.

Hyper-parameter search. We use the same strategy to tune hyper-parameters as in the simulation
study (described in Section A.10).

Calculation of Spearman’s Footrule distance. The Spearman’s Footrule distance measure the
disagreement of two rankings [31]. Here the ground truth ranking of the treatments is given by the
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Figure 10: Performance of CFR and DR-CFR significantly degrade as the number of causes K increases. Left
panel: the linear setting with identity output function. Right panel: the nonlinear setting with sigmoid output
function.

(A) (B)

Figure 11: Performance of SCP under different levels of confounding. Left panel: SCP improves the balancing
of the observational data. Right panel: the improvements in balancing associates with the reduction in RMSE.

true potential outcomes (treatments with larger POs are ranked higher). Similarly, the predicted
ranking is given by the predicted POs.

Given two rankings π and σ, the Spearman’s Footrule distance is defined as

D(π, σ) =
∑
a∈Ω

|π(a)− σ(a)|

In other words, it is the L1-distance between the ranking vectors.

A.12 Additional simulation results.

A.12.1 Standard CFR and DR-CFR under perform in the multi-cause setting

In Figure 10 we present the performance of CFR and DR-CFR under different numbers of causes K.
These two algorithms are developed for single-cause CATE estimation. As expected, the standard
CFR and DR-CFR are not performing well in the multi-cause setting: their performance is even
much worse than covariate adjustment (NN) when K ≥ 3. This is probably because the multi-head
architecture and the IPM regularization deteriorate as the number of causes increases (Appendix A.2).

A.12.2 Improvements in balancing and reduction in RMSE

We generated a range of observational datasets with varying confounding levels, and use SCP to
augment each dataset. Figure 11 (A) shows that SCP’s augmented data is consistently more balanced
than the observational data (also see Section 5.1). To contextualize the effect of better balancing, we
compare the estimation accuracy of the NN trained on the observational data and the one trained
on the more balanced augmented data. Figure 11 (B) shows that training on the more balanced
augmented data leads to consistent performance improvement across different levels of confounding.
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Figure 12: Performance of SCP under different levels of structural sparsity and confounding.

A.12.3 Simulations with varying structural sparsity and confounding levels

Figure 12 shows the additional simulation results under varying structural sparsity and the confound-
ing levels. Here the structural sparsity is controlled by pv and pu (the details were given in Section
5.1). A higher pv means more covariates will modulate treatment assignment while a higher pu
means the causes will interact with each other more often.

The confounding level is controlled by scaling the vector v in Equation 6 by a factor α, i.e. v′ = α ·v
(bigger α, higher confounding). The random noise ε involved in the treatment assignment process
also modulates the level of confounding (a higher noise level leads to less confounding).

As we can see, SCP outperforms the benchmarks in all cases, often by a significant margin. Its
performance is also relatively stable in the various settings.
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