Appendix

Additional Notation Ford € N, we use V; : R — R™+D? to denote the degree-d Veronese
mapping, where the outputs are corresponding to monomials of degrees at most d.

A Additional Technical Background

For completeness, we start with the definition of the classic LWE problem. Note that Definition @]
generalizes this definition, so we will not use the definition below directly.

Definition A.1 (Classic Learning with Errors Problem). Let m,n,q € N, and
let Dsamples Dsecrets Dnoise be distributions on Zy, Zy, Zg respectively. In the
LWElassic (M, Dsample; Dsecret; Dnoise, m0d,) problem, we are given m independent samples (x, y)
and want to distinguish between the following two cases:

(1) Alternative hypothesis: s is drawn from Dgecret- Then, each sample is generated by taking
X~ Dsamplea % ~ Dyoise and letting Y= mOdq(<X7 S> + Z)

(i) Null hypothesis: x, y are independent and each has the same marginal distribution as above.

Throughout our proofs, we need to manipulate discrete Gaussian distributions that are taken modulo
1 and those with noise added. Due to this, it will be convenient to introduce the following definitions.
Definition A.2 (Expanded Gaussian Distribution from RY). For o € R, let D%?pind denote the
distribution of x” drawn as follows: first sample x ~ U (R}) (using the Lebesgue measure on RY),
and then sample x’ ~ D%, tx.o

Definition A.3 (Collapsed Gaussian Distribution on R}). We will use D%‘i}ﬁpse to denote the

distribution of mod; (x) on R}, where x ~ Dﬁﬂﬁ.

We will also need the following fact, which can be easily derived from known bounds in literature.
For completeness, we provide the full proof in Appendix [A.1]

Fact Ad. Letn € N,o € Ry, e € (0,1/3) be such that o > \/In(2n(1 + 1/¢))/m. Then, we have

Ppesears(®) p g (mody (o))
= =1+0/(e) ,
PD@L ) (t) PDH(;%llapse (m0d1 (Jt))
, e

forallt € R", and

Dgpan
drv (;’,Dﬁ&,l dry (D U(RY)) = exp (~9(0%)) -

We will also need the following well-known fact in our proof.
Lemma A.5 (Corollary 3.10 of [Reg09]). Letz € R", 01,09 € Rs(. Assume that

1/3/1/0f + |zll3/03 = ne(L) ,

and further suppose that x ~ DJZ\{WH and x' ~ Dﬁg. Then the distribution of (x,z) + x' is within
O(e) total variation distance to DV, EeTToT (ne(L) is the smoothing parameter of a lattice, and is
Zll207 T3

defined in Definition[A.7})

A.1 Proof of Fact[A.4]

We start by recalling the definition of a lattice.

Definition A.6 (Lattice). Let B = (vq,va, -+ ,V,) be a set of n linearly independent vectors in R”.
The lattice L = L(B) defined by B is the set of all integer linear combinations of vectors in B, i.e.,
theset {v € R": v =377 | a;v;,a; € Z}.
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Since we only use the integer lattices Z", we will only introduce notation as necessary. For a more
detailed introduction about lattices, the reader is referred to [MGO2].

Partially supported Gaussian distributions (Definition [2.T)) behave similarly to continuous Gaussian
distributions. The similarity can be quantified based on the so-called smoothing parameter of a lattice
defined below.

Definition A.7 (see, e.g., Definition 2.10 of [Reg09]]). For an n-dimensional lattice L and € € R,
we define the smoothing parameter n.(L) to be the smallest s such tha p1/s(L*\{0}) <e

Lemma A.8 (see, e.g., Lemma 2.12 of [Reg09]). For any n € N and ¢ € R, we have that

ne(Zn) < /In(2n(141/€)) )

The main lemma we will use here is that, when o is larger than the smoothing parameter, the
normalizing factor remains roughly the same after a shift by an arbitrary vector v, as formalized
below. (Note that in the discrete Gaussian case, the two sides would have been equal.) This
property follows from the proof of [MR0O7, Lemma 4.4], in which it was shown that p, (L + v) €
[(1 —€)det(L*), (1 + €) det(L*)]; the lemma then follows since det((Z™)*) = 1.

Lemma A.9 (IMRO7]). Letn € Nye € (0,1) and o > n(Z"). Then, for any v € R", we have that
po(Z™+v) €l —e1+¢.

We are now ready to prove Fact[A.4]

Proof of Fact[A.4] Letr = mod,(ct). Notice that

Pajoyonggpmma(t) 1

= - Py -P
Pom (6] Py, (&) LU0 Poy

RN, 1 R™,1
= o Pt )

1 _Po (ot)
(t) po(Z" +r)

1 ) P1 (t)
(t) po(Z" +r)

 pe(Z7 )

(Lemmai@l@ 1
l1+e

=1+0(e) .

Notice also that

PDD(;c;Lllapsc (I‘)

s =P collapse (I‘)
Pygny(r) Dago

= Z po(u+r)

uezn
= po(Z" +r)
Ppy. (t)

R™,1

Pamropgpe(€)

where the last equality follows from the previously derived equality above. These prove the first
equality in Fact[A4]

2Note that L* denotes the dual lattice of L; it contains all y such that (x,y) is an integer for all x € L.
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Next, note that pointwise closeness immediately yields the same bound on the TV distance. Therefore,
we have

drv ((1/0) 0 DEP, DY, ) s drv (D55, URY)) < e < exp(~0(0?)) ,

where the second inequality follows from our choice of o. O

B Hardness of LWE with Binary Secret, Continuous Samples, and
Continuous Noise

The main theorem of this section is a reduction from LWE(n, Z,, Z!, DY/, mod,) to

LWE(m, R}, {#1}", DA mod, ). The purpose of this reduction is to massage the LWE problem
into its variant with binary secret, continuous samples and continuous noise, so we can further reduce
it to the Massart problem.

We reiterate that this reduction between LWE problems follows from the previous works [Mic18a,
GVV22||; we provide the full proof here for completeness. The main theorem regarding the reduction
is presented below.

Theorem B.1. Letn,m,l,q € N, 0,0’ € R, where the parameters satisfy:
1. log(q)/2" = M) (where w(1) goes to infinity as n goes to infinity),
2. 0 =w(y/log(mn/d))
3. n > 2llogy(q) + w(log(1/6)), and
4. ¢’ = c\/no/q, where cis a sufficiently large constant.

Suppose  there is no T 4+ poly(m,n,llogq,log(1/6)) time distinguisher for
LWE(n,Zé,Zé,D/Z\{U,modq) with €/m advantage. Then there is no T time distinguisher
for LWE(m, R}, {£1}", N,/, mod;) with 2¢ + O(9) advantage.

Before we prove Theorem [B.T] let us note that combining it with Assumption [2.4]yields Lemma2.3]

Proof of Lemma[2.3] We take n = 1%, m = 20(lﬁ/), g =1, and ¢ = VI, where @ > 1 and
8" > ' € (0,1). Then, from Assumption it follows that there is no 20" ’*) time algorithm
to solve LWE (n, Zé, Zfl, DN modq> with 2707 /%) advantage.

Zyne/2>

We take § to be a sufficiently small constant and apply Theorem Then we have that no 20(»*/*)

/H,/D( n n .
)Ry, {+1} ,szo(nl/(m)ﬂmw,/a),modl) with 1/3

time algorithm can solve LWE ( 20(»
advantage. We rename 3 = '/aand v = 1/(2a) +1/2 — 4'/a. By taking o« > 1 and 8/ < 1

to be arbitrarily close to 1 and 7 to be arbitrarily large constant, we can have 8 € (0, 1) to be
arbitrarily close to 1 and ~y to be arbitrarily large. Then there is no 20("”) time algorithm to solve
LWE (200”), RY, {£1}", DYoo) modl) with 1/3 advantage.

Given the above, by a standard boosting argument, it follows that there is no 20("”) time algorithm
to solve LWE (20<"">, Ry, {1}", DY), modl) with 2-°") advantage. 0

From Z, Secret to Binary Secret We require the following lemma from [GVV22] that reduces
the classic LWE problem with Z, secret to an LWE problem with binary secret.

Lemma B.2 (Theorem 7 from [GVV22]). Let q,l,n,m € N and 0 € R,. Assum-
ing that there is no time T + poly(l,n,log(q),log(1/d)) algorithm for solving TWE(n +
1, Zfl, Zf], DJZ\{U, mod,) with advantage (e — 6“~(1))/(2m), there is no time T algorithm for solv-
ing LVVE(m,Z;”rl7 {:tl}"*l,DJZ\{U,,modq) with € advantage, as long as the following holds:
log(q)/2" = 6, o > 4./w(log(1/3)) +logm +logn, n > 2llog,(q) + w(log(1/5)), and
o' =20vn+ 1.
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From Discrete To Continuous In the next step, we show that adding a small amount of Gaussian
noise on y will render the discrete Gaussian noise close to continuous Gaussian noise.

Lemma B.3 (Lemma 15 from [GVV22]])). Let n,m,q € N, 0 € Ry, c be a sufficiently
large constant and suppose that ¢ > +/clog(m/d). Suppose there is no distinguisher for
LWE(m, Zy, {£1}", DQ{U, mody) running in time T + poly(m, nlog(q),log(1/9)) with € advan-
tage. Then there is no T-time distinguisher for LWE(m, Zy, {+1}", DN mod,) with € + O(5)

advantage, where
o' > +/a? + clog(m/é) .

Proof. We will give a reduction argument. Take 0,qq4 = V0’2 — 2. Then for each sample (x, y)
from LWE(m, Zy, {+1}", D/Z\{U, mod,), we return

(x,mod; (y + €)) where e ~ DY

Tadd
as a sample for LWE(m, Zg, {+1}", DX mod,).

Suppose that the input instance is in the alternative hypothesis case. We need to argue that after
running the reduction algorithm, the new noise z + e has at most O(d/m) total variation distance
from D{T\,/ . From Lemma we have that for a sufficiently large constant ¢, (z 4 €) is within
O(8/m) total variation distance to Df,\( . With m samples, this only decreases the distinguishing
advantage by at most O(9).

Suppose that input instance is from the null hypothesis case. We need to show after the reduction
algorithm, both x and y have the same marginal as in the previous case. It is easy to verify that after
the reduction, x will have the same marginal as in the previous case. For y, the marginal distribution
of y in the previous case is U (R, ) by symmetry. Similarly, in the null hypothesis case, the distribution
of y is also U(RR,) by symmetry. O

We now show that adding a small amount of Gaussian noise on the samples will render the samples
continuous; at the same time, this extra Gaussian noise on samples can be interpreted as some extra
Gaussian noise on the labels.

Lemma B.4 (Lemma 16 from [GVV22]])). Letn,m,q € N, 0 € R, c be a sufficiently large constant.

Suppose that ¢ > cn'/?\/log(mn/$). Suppose there is no T + poly(m,n,log(q),log(1/6))-
time distinguisher for LWE(m, Zy, {£1}, DY mod,) with € advantage. Then there is no T-time

distinguisher for LWE(m, Ry, {+1}, DN mod,) with e + § advantage, where

ol

o' = /02 + enlog(mn/s) .

Proof. We will give a reduction argument. Taking 0,44 = 4/ #, then for each sample (x,y)
from LWE(m, Zy, {£1}", DY mod,), we return

(mod,(x + x'),y) ,where x’ ~ Dﬁ{wadd
as a sample for LWE (m, Ry, {£1}", DN mod,).
Suppose the input instance is in the alternative hypothesis case. We need to show the following:

(2) mod,(x + x') is close to U(R7); and

(b) y = mod,({(mody(x + x’),S) + 2’), where 2’ is the noise in this new LWE instance
we generated. We need to show z’ has distribution close to a independent Df,v, noise
(independent of mod,(x + x')).

For (a), from the symmetry of x and x + u where u € Z?', we have

dry(mody(x 4 x'), U(R})) = drv(mod,(x + x)[mod, (x + x') € [0,1]", U(RY))
= dTV (HlOdl (X/), U(R?)) .
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From Fact we know that for a sufficiently large constant ¢, the distribution of mod,(x’) is
O(6/m) close to U(RY).

For (b), consider x ~ U(Zy),s ~ U({£1}"),z ~ DY and y = mod,((x, S) + z). Then the new
sample satisfies

y = mod,({mod,(x +x),8) + (=(x', 8) + 2)) ,

where the new noise is 2’ = —(x’, S) + z. We now verify the distribution of noise. Conditioned
, . / / partial N
on a fixed x + x’, we have noise as —(x’, S) + z, where x’ ~ Dy s i7n 000 @0d 2 ~ D3’ From

Lemma|A.5| we have that the distribution of noise is O(§/m) close to D’U\,/ , for sufficiently large c.
Overall, with m samples, the distinguishing advantage has decreased by at most O(9).

If the input instance is from the null hypothesis case, it is easy to verify that after the reduction, both
x and y will have the same marginal as in the alternative hypothesis case. O

The final step is to rescale the sample and noise by 1/g.

Lemma B.5. Suppose there is no T + poly(m,n,log q) time distinguisher for the distribution
LWE(m, Ry, {+1}", Dé\[, mod,) with advantage €. Then there is no T time distinguisher for the

distribution LWE(m, Ry, {£1}", D{T\{, mod;) with advantage €, where o' = o /q.

Proof. This follows simply by rescaling samples by 1/¢ and changing mod, to mod;. Note the size
of the secret remains unchanged here, but the noise is scaled by 1/g. O

Putting Things Together: Proof of Theorem Now we are ready to prove Theorem|5.1

Proof of Theorem Suppose there is no T’ + poly(m, n, 1, log ¢,log(1/6)) time distinguisher for
LWE(n, Z,, Z,, D} ;,mod,) with ¢/m advantage. Then, by applying Lemma we have that
there is no 7"+ poly (m, n,log ¢, log(1/6)) time distinguisher for LWE(n, Zfl, {£1}, D’Z\{UI ,mody)
with 2¢ + 6“»(1) advantage, where o = 20+/n + 1.

Then, we apply Lemma [B.3] Lemma [B.4] and Corollary [B.5] It follows that there is no time
T distinguisher for LWE(m, RY, {£1}™, N/, mod;) with 2¢ + O(§) advantage, where o’ >
Vo3 + enlog(mn/d)/q.

Recalling that o = w(y/log(mn/s)), o1 = 20y/n + 1 and o’ > /a7 + cnlog(mn/§)/q, we have

that o/ = ¢y/no/q is sufficient. O

C Omitted Proofs from Section

This section includes additional details of our Massart halfspace hardness reduction, and contains the
proofs omitted from Section 3]

We start with Figure[T} which shows a rough flow chart of the reduction algorithm and its relation
with the relevant theorems and lemmas.

18



m samples from an instance of
LWE(m, R?, {+1}", DY mod,)

(x,9)
\ 4
(x,9)
\ 4
Algorithm 2: Algorithm 1:
an algorithm reducing a rejection sambling
LWE to learning PTF .
with Massart r?oise algorithm alternative hypothesis:
X €] Lemma 3.5.
P null hypothesis:

Lemma 3.6
alternative hypothesis:

Lemma 3.9
null hypothesis:

A Lemma C.8
degree-d
\Veronese mapping
A

(Va(x"),y') €--mmmmmmmmmmmmee Theorem 3.2

algorithm for
Massart(m’, N,n, OPT)

Figure 1: Reducing LWE to Learning Halfspaces with Massart Noise. The diagram shows which
step of the analysis each lemma is used for and which case of the input LWE instance (alternative/null
hypothesis case) for the reduction algorithm. Lemma [3.5](resp. Lemma[3.6)) analyzes the properties
of x” when the input LWE instance is from the alternative hypothesis case (resp. null hypothesis case).
Lemma [3.9| (resp. Lemma C.8)) analyzes the properties of (x’,y') when the input LWE instance is
from the alternative hypothesis case (resp. null hypothesis case). Theorem[3.2]analyzes the properties
of (Va(x'),y’) for the input LWE instance from both cases.

C.1 Illustration of Hard Instances

For the sake of intuition, we additionally present the following figures to illustrate the ideas behind
our construction. Figure [2]illustrates the original [DK22] construction, as discussed in Section 3]
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-7t -6t -5t -4t 3t 2t -1t Ot 1t 2t 3t at 5t

Figure 2: The original SQ-hard construction in [DK22]| (specifically, the univariate distribution in the
hidden direction). The red part corresponds to Pr[y = +1]Pixs|(y=+1)](-); the blue part corresponds

to Pr[y = 71}P[xs|(y:_1)] ()

As discussed in Section [3.2] if we try to replace the “hidden direction discrete Gaussian” with its
noisy variant, we will get a construction as the one illustrated in Figure 3]

o il ﬂﬁﬁrﬂ

-7t -6t -5t -4t -3t -2t -1t ot 1t 2t 3t 4t 5t

Figure 3: The [DK22] construction with a noisy “hidden direction discrete Gaussian”. The red part cor-
responds to Pr[y = +1]Pixs|(y=+1(-), and the blue part corresponds to Pr[y = —1] Pixs|(y=—1y()-
Notice the thin green intervals where g:gifﬂ;":iii:g;
close to equally likely in these regions, and thus violate the Massart noise condition. (Notice that,
Priy=+1] Py (y=41) (")
Prly=—1]Pjes | (y=—1)) (")

is close to 1; the labels +1 and —1 are

is close to 1;

as we explained in Section , there are other places where
however, the density of these regions is negligible.)

Our idea is to modify the above construction by carving empty slots on the support of x* | (y = —1),
so the “clean” version of the construction (using the “hidden direction discrete Gaussian” without
noise) is as presented in Figure [d]
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ofwﬂmtmﬂﬂﬂﬂw | mM 1] T —

-2t -1t ot 1t 2t 3t 4t 5t

Figure 4: The modified hardness construction with the clean “hidden direction discrete Gaussian™.
The red part corresponds to Pr[y = +1]Pjxs|(y=+1)](-) and the blue part corresponds to Pr[y =
—1]Pixs|(y=—1)](-). Compared with the original construction, we carve empty slots on x* | (y = —1)
for the problematic part to fit in. Since the total mass we carve out is at most a constant fraction, this
causes the density to increase by at most a constant multiplicative factor.

With the noisy “hidden direction discrete Gaussian”, the modified construction is as presented in
Figure[3]

-3t -2t -1t ot

Figure 5: The modified construction with the noisy “hidden direction discrete Gaussian”. The
red part corresponds to Pr[y = +1]Pys|y—+1))(-) and the blue part corresponds to Pr[y =

1] Pps|(y=—1)] (*)-

It is worth noting that even this modified construction does not perfectly satisfy the Massart condition.
However, the part that violates the Massart condition is negligibly small, thus it is very close to a
distribution that perfectly satisfies the Massart condition.

C.2 Omitted Proofs from Section 3.1]

Here we give the proof for Lemma[3.3] Lemma[3.3]is stated only for the sake of intuition, and is not
needed for the proof of our main theorem.
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, . £ £
Proof of Lemma[3.3] Notice y = mod; ((s, x)+z). We rename the variables as Xyew ol L

scale
Oscale aNd zZpew = 2 then we have

N
x' ~ (1/0;cale) © Dxnew—i-Z”,o" ‘(y = y/)

scale

where Xpew ~ U(RY), 2Znew ~ D{,\/ are independent and y = mod; ((S, Xnew) + Znew ). This is the
exact same distribution we calculated in the proof of Lemma 3.5] (after we rewrote the distribution in
Lemma[3.5). The same calculation gives the lemma statement here. O

C.3 Omitted Proofs from Section 3.3
C.3.1 Analysis of Algorithm[]

We first prove that the parameters defined in Algorithm I]are well posed. In particular, we need to
show that the expression inside the square root in Step [3]of Algorithm|[I]is positive.

Observation C.1. Let SR, 0scale be as in Algorithm|I} Then SR > 1/2 and (1 — SR)o2.,,, >
SR(o/v/n)2.

Proof. The first three conditions of the parameters in Conditionyield (t+e€)o <2to < 2ty/n <
2/+/clog(n/¢), which is at most 1/8 for sufficiently large c. This implies that SR > 1/2.

Moreover, from our choice of 04410, We have

(1-SR)jo2,, _ SR(IL=SR) _ (1/2)((t+%>) _,
SR(o/vn)?  ((t+k—=1)o)> = ((t+e€)o)? '

O

We note that Observation [C.T]implies that the expression inside the square root in Step [3| of Algorithm
[T)is positive; therefore, 044 in Step [3]is real. It is also useful to observe some other properties of the
parameters that will be useful later in the proof of Lemma[3.5]

Observation C.2. Letr SR, 04cale be as in Algorithm Then oycale and SR =

> _ 1

= 2(t+k—P)v/n
Tscale

U:cale+azdd+02/n.

Proof. The observation ogae > m follows from SR > 1/2 (Observation b and
2
Oscale = %. Then SR = W follows from the definition of 0,44 in Algorithm

O

We next prove a lower bound on the acceptance probability of Algorithm [T}

Lemma C.3. Ify ~ U(Ry), then Algorithmaccepts with probability at least Q(W)

Proof. The probability of a sample not being rejected by the first rejection in Step[T]of Algorithm|[T]is

A ({H(:wke B}) > min W AB) > A(i)ite;w) 0 </\(B)§Z—1/))> |

where the inequality holds because ﬁ is monotone increasing for k¥ € B. Conditioned on

t2
t+k—1)
3/4sincet + k — 1 < t+ e < 2t. Therefore, a sample is accepted with probability at least
Q (A(B)(;fw))_ ]

t

passing the first rejection, the second round rejects with probability 1 — 0 =, which is at most
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C.3.2 Proof of Lemma[3.3

Proof of Lemma[3.5] We first prove property (i). We first review the definition of Dflg‘i“gtg’e.
We have (x,y) from the alternative hypothesis case of the LWE problem. Namely, thls means
we have an unknown s € {+1}" and independently sampled x ~ U(R?) and z ~ D. Then
y = mod; ({x,s) + z). We reject unless y = m for some k& € B. Then the secondary rejection
step rejects with probability 1 — . We calculate 0,44 and osca1e Which only depend on y

and output a sample

t2
(t+k—)2

x' ~ (1/050316) ° DXNJrXadd*FZ",Uscalc ’

where X,qq ~ DﬁR}CL Let k be the value such that 3y = W Then since y ~ U(R;)

»0add”

1 2
alternative t
Dievs 0(/0 Hees) ((t+k —W) [(1/ Oscate) © Dl e | (= y/)} v

(y:wfwﬂd’“

(y:w«k—w)ﬂdk'

(1= ).

X / [(1/05031‘3) © Dx+x1dd+anU<cmle
B

Taking the proper scaling factor gives

Dta,l:?wr?gfgvc = W /B |:(1/Usca1e) o Dx+xadd+Znyo'scale

We will prove that for any fixed &, letting x), ~ (1/0scale) © DN,

X+Xadd +Z™,0scale

that
Pyss (u) = (1 £ 0O(0))Ppw N (u).

*D
k4(t+k—1)Z,0gignal “noise

We use O'add and o’ to denote the specific values of 0,qq and gca1e for y = ﬁ Then

scale

k
N
Dag, = (1/0scate) © Drctpaat2m e | (y = M)
k
= (1/0scate) © Ditod, (e xuaa) 127 rnemse | (y = t+(k—w)>

k
(1/Jscale) ODmodl(x+x1dd)+Z O cale | <y - t—‘r(k‘—?ﬂ)) ’

where x/ ;4 ~ DRn . Now we will attempt to reason about this random process and replace it
with something equ1valent Letting Xpew = mod; (X + X, 44) and znew = —(X44,S) + 2, We notice
that

Y= m0d1(<xneW7 S> + Znew) .
We show that X, and 2y are independent before conditioning on y, therefore we can instead
consider the random process as sampling independent X, v and zpe and then conditioning on y.
Note that Xpew = mod; (x + x.44) ~ U(RY). If we condition on any fixed x/ ,,, the conditional
distribution of Xey is always U(IRY), therefore x; 44 and Xyey are independent. Since both x4
and z are independent of X, ¢y, we have that z,ey = —(x;dd, s) + z is also independent of Xy -
Therefore,

Dy = (1/o, oDV | (mod; ((Xnew,S) + Znew) = ¥')

bcale) Xnew +2™,0. 10

wljl\?re we can interpret Xpew and zneyw as independent samples Xpew ~ U(RT) and zpew ~
D

o2 +sl30,

N : n N
Now let w ~ (1/0%....) © DxncmrZ”,a;wle' Since Xpew ~ U(RY), we have Dyf /. ol

DexPand . From the lower bound of 0,1 in Observation [C.2{and Condition (iii) in Cond1t1on ,

n
R T scale

we have
clog(n/d) .

1 1
Leale = > >
Tscale = 5t + k- d)v/n ~ Atyn
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Therefore, applying Fact[A:4]yields
Polu) = (1£ 0(6) Ppy, (u).

Since s € {£1}" and mod; (Xnew) = mod; (0%, W), we have that

m0d1 ( <XneW7 S)) = mOdl ( <aécalew’ S>) :

‘We can now rewrite the distribution as

k
_ N _
Dx;€ - (1/0—;:&16) o ‘Dmod1(erx;ddH»Z”,U;wlC | (y - t_|_(k_¢)>

| (m0d1(<xnewvs> + Znew) = t+(l~f—1/)))

= (1/0—écale) © DQ{]CW+Z" o’

" scale

k
= w | (0t (e} + 2n0) = =5 )

k—1)
/ S i
=w ‘ <m0d1(USCa1e||S”2W + Znew) = H(k?w)) 7
where
Pu() = (1£.06)) Py, (w)
and

~ DN
Zew ~ D oo,
are independently sampled (this follows from Xpe, and z,y being independent, since w solely

depends on Xy, ). The above form allows us the explicitly express the PDF function as follows:

Pa(u) ocPus(u) Y Pap (i = lcareIsll2u)

. k
€Lt =

x(1£0@) Y Ppy(u)Ppy (i = 0leatoIsll2u)

2 2572
. o lIsli5e
i€Z 2%add

k
t+(k—1)

(1 0(4)) 3 Pp (u) Ppy (i —u) .

02/n+a’2
i€l en ™2 (2t mrit=y) 24

scale o
scale

. def  [o2 2 . .
Letting o = %, we notice that « = 1/1/SR — 1 from Observatlon Thus, we can
scale

write
Py (u) o<(1 £ O(6)) > Ppy (u)Ppy (i — u)
ieo‘;:allen_l/Q(ZJrH’(]:%w))

(14 0(5)) > exp

ieo;:alle”_l/Q(Z"" t+(1§7¢) )

o2 a?

(@ +1)u? 2 2w>>

a2 +1 o?

(0424*1)71 + 042(012+1)71

( i2 ((042—|—1)1/2u—(a2—|—1)1/22')2))

x(1+ 0(5)) > Ppx (e + 1)) Ppx (u—(a®+1)71) .

(a241)=1/2 a(a241)=1/2
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Notice that (a? + 1)~! = SR from Observation Thus, we get

Py (1) ox(1 £ 0(3)) > Ppy_(SRi)Ppx__ (SRi —u)

P k
€T a1 1/2(Z+t+(k—w))

x(1 £ 0(5)) > Pox ()Ppx (i—u) .

. VSR VI=SR
ZESRJ& alen 1/2(Z+ t+(k—1) )

Since ogcale =

(t+k w)f from Steplof Algorlthml

Pys(u) x(1+0(8)) > Ppv_(i)Ppx__(i—u).

VER VI=SR
i€k+(t+k—1))Z
N
Notice the expression here is propotional to the convolution of DI€+ (t+k—)Z,VBR and D VTSR’
Therefore, we have
Pplw) = (£ 0Py oy (W)
=+ 0(5))PDﬁF(ﬂ+k*w)Zxasignal*D‘/’V;xoise (u) -
Now we can plug this back and calculate [D?lgﬁzngtgve} as follows:
P (u) = ! Pys(u)dk
e ™ = XB) Jp
1
= 7)\(3) (1£0(0)) /B PD?@(Hk—wz,osigml*Dﬁioisc (u)dk .

Note that inside the integration is the convolution of two distributions, D,C (k) Z, 0 gnar and

DN Since Dﬁﬁ ... 1sindependent of k, we can interpret it as added after the integration. Therefore,

Onoise
P Hatternative S(U> = (1 + 0(6)) (u)
(D3] [fB S augnaldk*D{,\C‘oise]

=(1£00)Pprpy (u),

where
Osignal = VSR,
and
Onoise = V1 —SR =2(t+¢)o
This proves property (i).

k : alternatlve
m, lettlng Xk ~ Dt €,1,B,5

is nearly independent of x/$ in the sense that forany [ € Randu € R" 1,

Now we prove Property (ii). We prove that for any fixed y =

_ k
(y = m) then X
we have that

/1ls ;

Pyisjgs—(u) = (1£0(8)) Ppw

rn—17

(u) .

Following the same notation we used for proving Property (i), we can rewrite the random process as

k k
N _ _
(1/0scate) © Dytxpaa+2m 0emte | (y = t—l—(k—w)> =w | <mod1( OleatolSl2W® + Znew) = t-l-(k—w)) ;
where
Py(u) = (1+0(0))Ppy, (u),
and

Znew ™~ DN

Vo a2+|s ”2‘7add
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are independently sampled (before conditioning). Therefore, we have that

Px;+s|x;§=z(u) = P[wls|(mod1(aécalc|\s||2ws+zmw):my\(ws:z)] (u)

u)

[wis|(modl(a;mle|\s||2z+znew):Wk_w))A(ws:z)} (
= P[WLS‘WS:” (u) .

Recall that the PDF of w is pointwise close to a Gaussian, as shown earlier in proof for Property (i),
therefore, we obtain

Pyrisjs— (1) = Pyisjws—i(1) = (1 £ 0(6)) Ppr_ (u) .

rn—1

Considering that x’ ~ DA% is a mixture of xj, ~ DfSPatve | (y = H(%w)) for different

values of k, it follows that

Pyiapes(0) = (14 0(6)) Ppx

rn—11

(u) .
O

We also give the following claim obtained from Lemma 3.5] which will be useful when we prove the
Massart condition in Lemma[3.9]

Claim C.4. The exact PDF function of the distribution D' in Lemma|3.5|is

Pou) = i) S g € 4 DB ).

Proof. This follows from expanding the expression of D’ in Lemma We have
Pp/ =
D (u) [ k] (u)

X( f A+(f+k ¥)Z,0gignal

L (u)dk .
B / k+(t+k P)Z, USIgndl}

Notice that

pasignal(u)
pasignal(k + (t + k - w)Z)

}(u):l(uek—i-(t—i-k—w)z)

DN
|: k+(t+k—4)Z,05ignal

Then using that asignal VSR >1/2 (Observatlon and > +/clog(n/0) for a sufficiently

large ¢ (Condition , we have that ogignat/(t + k — ¢) > \/ c log (1/9) for a sufficiently large ¢.
After that, an application of Lemmal[A.9|gives that

P0semas (R (EHh=P)Z) = (t+h—=10) ™1 Do 1k ) (B (R =) +2) = (1£0(8)) (t+k—) " .

Plugging this back, we obtain

Ppo(u) = 1?\*(235) /B(t +h—P)L(u€k+ (t+k—)L) poyn (w)dk
_ 11[(255) /B(t k- ) 26; [L(w =K+ (t+ k — 1)i)] Py (w)dk
_ ;9((;)) > [/B (u=Fk+ (t+k— )i )dk] Poigner (1)
_ f’(g >r i T €4+ (54 DB =)o (4) - =
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C.3.3 Proof of Lemma[3.6

Proof of Lemma[3.6] We first review the definition of D' 5 5. Let (x,y) be drawn from the
null hypothesis case of the LWE problem. This means that we have x ~ U(R}) and y ~ U(R;)

independently. In this case, we reject unless y = m for some k € B. Then the secondary
rejection step rejects with probability 1 — ﬁ We calculate 0,44 and osca1e Which only depend
on y, and output a sample

/ N
X~ (1/050319) © DX+Xa<1d+Z”
Therefore, the distribution D"}, 5 5 is a mixture of

sO0scale

where x,4q4 ~ Dﬁﬂ, P

(1/Usca1e) °© DxN+xadd+Zn7Uscale | (y = y/) ’
for different values of y/'.

We prove that for any fixed ¢/, the following holds:

P (W) = (1£06)) - Ppy,  (w).

(1/USC316)ODxN+xadd+Z”,a [(y=y")

scale
!
scale

N N
(1/Usca10) o Dx+xadd+Z",asca1e | (y = y/) :(1/Jsca10) © Dmodl(x+xadd)+Z",ascale | (y = y/)

We use a;dd and o to denote the specific values of 0444 and ogcate for y = 3’. Then

_ / N o
*(1/O-scale) © Dmod1 (x4 4 q)+Zm 0l | (y =Y )
_ / N
*(1/Jscale) o ‘Dmod1 (x4x gq) 27,0l 1o ?
where X/, ;4 ~ Dﬁfl’oécale. Since x is always drawn from U (RY) and x/,, is independent of x, then
mod; (x + X, 44) is also drawn from U (R?). Thus, we can write
N _ pmyexpand
X+Xqq+L" 02 0 RY0cate

Applying Fact[A.4] the lower bound of oscale in Observation [C.2]and Condition (iii) in Condition [3.1]
yields

Plugging this back, we obtain that

P[ (u) .

| (y =¢') for different 3/, we

R™,1

=(1+0(5))-P
(1/0seare)o DYy oo 1=9")] (W) =1 £009)) - Ppy,
Then, since D?‘E“b) B.5 is a mixture of (1/0cale) © DXNeradd T o
get that

Ppo (1) = (1£0(3)) - Ppx (u).

t,e,, B, R™,1

C.3.4 Proof of Lemma|3.9

Before we prove Lemma[3.9] we restate the definition for B_ as a refresher. B_ is defined by carving
out O(t/e) many empty slots in [t/2, t] in order to make the problematic part of x%|y = +1 to fit in
(see Figure ] and Figure5). To define B_, we need to first define a mapping ¢ that maps a location to
the corresponding place we need to carve out on B_. The function g : R — [—1.5¢, 0.5¢] +— [0.5¢, ]
is defined as follows: for ¢ € Z and b € R;, we have that
b . .
. def | = +t/2 ifi>0;
t+t/2+0b) = < it
glit+i/2+b) {§+—5+t/2 iti <o0.
Then B_ is defined as follows:
B_ ¥t/2,t/2 + €
i1 i1
- | g(it—2ceit)) = |J g(lit+ (i + De it + (i + 1)e + 2c'e])
i=g—1 i=g—1

—t1 -1

- U glit+G+De—2deit+ i+ D))~ | g(lit.it +2cd) .
i=—t-1 i=—1-1

€
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Proof of Lemma[3.9, We will prove that there is a distribution D*""¢3d such that
dry (Dtruncated “paltemative) — () (§ /m/) and there is a degree-O(t/€) PTF sign(p(+)) such that

1. Pr(y )~ prruncatea [sign(p(x)) # y] = exp(—Q(t*/€?)); and,

2. Dtruncated gatisfies the O(n) Massart condition with respect to sign(p(x)).

We first give some high level intuition for Dtruncated First, we recall that DEtsEatve js the 1 — 17 :
mixture of D?leteﬁagf s and nyfﬁ;ﬂ‘fg‘f s with +1 and —1 labels, respectivelyﬂ Also we recall that
both D?let‘jzrf%‘f 5 and D,’il:jr_la’%"_e, s are noisy “hidden direction discrete Gaussians” which are close
to continuous Gaussian on all except the hidden direction s, and on the hidden direction, they are
close to a linear combination of discrete Gaussian plus an extra continuous Gaussian noise (as shown
in Lemma [3:3)). The idea here is to truncate that extra continuous Gaussian noise on the hidden
direction to obtain Dtruncated,

Now we formally define D'runcated jn the following way. We will first define distributions D{runcated
and Dtruncated gych that

dTV(l)Eiruncated7 D?}sﬁzzﬁ%iﬁ&) — O(é/m’) ,
and
dy (DI, DRt ) — O(s /)
;H[l)erll we take Dlt’runcath as the 1 — ) : 7 mixture of Duneated apd ptruncated with +1 and —1
abels respectively.
We define Diruncated pelow; Diruncated ig defined analogously. We specify D{rineted o satisfy the

following requirement: Let x’ ~ Djf““cated and x ~ Dflgﬁiagie s- Forany [ € R, we specify the
conditional distribution of Py/1s|yss_; to be:

PX/lex/s:l - leslxs:l .
Since the conditional distributions on L s are the same, to define Dfﬁuncated, it remains to specify

. s
[Dfuncated]s  According to Lemma [3.5| property (i), [Dtalgtif)iaté‘f 6] is pointwise close to the

convolutional sum of a distribution D’ and noise drawn from Dﬁi - Here we use D', (resp. D”) to

. S . S
denote the corresponding D' for [ Dglternetive | (resp. | Ditirnagive (|7, This is

P{Daltcrnativc ]S(U) =(1=+ 0(5))PD’+*D{T\" ) (u) -
toe, 4, By ,8 noise
We define a truncated noise distribution A/truncated ¢4 replace D{,\/H iea? @S follows:
Ppy  (u) if |u] <,

noise

PNtruncate (u) 0.8 .
otherwise ,

where ¢’ is the parameter in Condition We now define [Djf““cated]s as pointwise close to the
convolution sum of the distribution Dﬁr and noise from A/truncated namely,
P[Dalternative ;]s (u)

t,e, 4, By 6 P

P D;*Ntruncated (u) s
D' xDY (u)

noise

P[Dgrruncated]s(u) X

P[Dalternative } s (u)

te,py,By,6

where = (14 O(6)). Dtruncated jg defined in the same manner.

PD,Jr*D/U\Cmisc ()
truncated alternative
Now we bound dry (DY s DN E5). We first define
P[Dalternative ] s (U)
tie,py By ,8

fu) =

P runcate
PD;*DN’ (U/) Dir*./\/’t ted (’Z,L) ?

9noise

That is, DE%SEP24Ve js the joint distribution of (x,y) such that with probability 1 — 7 we sample x ~

alternative alternative

Dy B s and y = +1; and with probability n we sample x ~ D (™5™ s andy = —1
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and notice that

Ppyspuncatea (1) = ( /R f(u)du)l fu).

We then bound [, f(u)du. Note that

0 = Pl o) = (1£06) [

tie,py,By 6 R

du

/ Pp, () Prisuncatea (u — t)dt — / Pp, (t)Ppy  (u—t)dt
R

Pnoise

< (1+0(5) / P, (t / | Puesncnes(u = 1) = Poy (1) did

Inoise

— (14 0(5)) / ‘PNmmcm (1) — Ppx (u)‘ du

= (1+ 0(3))2dry (N'rumeated DN -y
Therefore, we have that [, f(u)du = 1 & O(dyy (Ntruncated DN

Onoise
truncated alternative
dTv(D Dt et By, 6) we have

s
truncated alternative _ truncated]® alternative
dTV(D » Dy 67w+7B+;5) = dry ([D-i- ] ) {Dt7€,¢+73+75} )

1

)). To bound our objective

du .

P[D:_mncatedr(u) - P[Dmltern'mtlve

te, iy, By,8

]S(U)

R
By the triangle inequality, we can write

: 1
truncated alternative
dry (DY ' Dicy Bye) < 5
R

f(u) - P[Dalternatwe
4,6

ey, B

) du + % /]R ‘f(u) - P[Dgrruncaced]s(u) du

O (dTV (Ntruncated DN

O'n0|<9

u)du — 1‘

-0 (dTV (Ntruncatcd, DN ))

Onoise

oleo(agl))
.

From Condition (iv) in Condition and opoise = 2(t
thus,

€)o, we have that ( 6) > log(m’/9);

dy (Dipuneeted, pliemative ) — O(3 /)
The same holds for Dtruncated  Therefore, we have that
drv (Dtruncated’ DlaSI’%eFrnative) — (1 o n)dTV(D:Lruncated7 D?};i};iigﬁié) + ndTV (Dtruncated Dalte“i%%\ieﬁ)
=0(5/m’) .
Before we continue with the rest of the proof, we require the following claim about the support of
these distributions.
Claim C.5. The support of distribution D', is
U it + (i + Ve it] U (| it it + (i + 1)e]

€7 i€Zy

and the support of distribution Djf‘mcated is

U lit+ (i + e~ deit + U | fit — et + (i + 1)e + ce] .
i€z i€z
Similarly, the support of distribution D’ is a subset of
U lit+t/2+ G+ Deit + /21U [it +/2,it + /24 (i + 1)e]
€7 i€z
and the support of distribution D'r'n°a%d i q subset of

U lit+t/2+ (i + De—cejit+t/2+ U | [it+t/2 = cejit+t/2+ (i+1)e+ e .
i€Z_ i€Zy
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The above claim directly follows from Claim [C.4] the definition of these distributions, and the fact
that the support of N/truncated jg [ c’e ¢/¢].

Now we continue with our proof. With our definition of Dt"""cated it remains to prove that there is a
PTF sign(p(+)) satisfying the following:
1. Pr(x ) prruncatea [sign(p(x)) # y] = exp(—Q(t*/€?)); and

2. Dtruncated gatisfies the O(n) Massart condition with respect to sign(p(x)).

From the way we defined D*"u"¢ated and Property (ii) of Lemma we know that for u € R"”
Prpuuncatea[y = +1 | x = u] = (1 £ O(9))Prpuuncatea[y = +1 | x* = u’] .

Since (1 £ O(9)) = O(1) and t/e = Q(1), therefore, it suffices to prove these statements on the
subspace spanned by s: there is a degree-O(t/¢) PTF sign(p((s, -))) such that

1. Pr(, )~ [prruncateajs [sign(p((s, z))) # y] = exp(—Q(t*/€?)); and

2. [Dtruncated] ® satisfies the O(7) Massart condition with respect to sign(p((s, z))),

where we abuse the notation slightly and use [D'"neated]® o denote the 1 — 7 : 7 mixture of

[Diuncated]s gpg [ptruncated]s with +1 and —1 labels repectively. We consider a degree-O(t/€)
PTF sign(p(u)) such that

+1 ifue U [it+(i+De—Ceit+cegU U [it — e it + (i + 1)e+ ] ;
sign(p(u)) = i€ €Ly
—1 otherwise .

Notice that according to Claim[C.7} the domain with value +1 can be written as the union of O(t/)
many intervals, thus the above function must be realizable by taking p as a degree-O(t/¢) PTF.

For item 1, from Claim the support of +1 samples ([Druncated]®) jg

U [it + (i 4+ 1)e — e, it +'e] U U [it —ce,it+ (i+1)e+ ¢,
i€Z_ i€Zy

and the support for -1 samples ([Dtuncated]®) jg a subset of

U lit+t/2+ (i + De—ceit+t/2+ U | [it+t/2 - cejit+t/2+ (i+1)e+ e .
i€z i€z,
(The above follows from Claim|[C.4]) For |i + 1| < ¢/(2€) — 1, these intervals have length at most
t/2 — e+ 2c’e < t/2, thus do not overlap (for sufficiently small ¢’). Therefore, this PTF makes no
mistake fori € [—t/(2¢),t/(2¢) — 2], i.e., at least for u € [—t?/(2¢),t?/(2¢) — 2t]. Thus, its error
is at most exp(—Q(t%/¢)?).

For item 2, we show the following:
) Hfue Y it+(@E+1e—Ceit+ U |J [it — e it + (i + 1)e + c'¢] then
i€Z_ i€y
Pr(x7y)N[Dtruncatcd]5[y = +1|$ = u] >1- O(T}) .

(i) Otherwise,
P[Dtrllncated]s‘(y:+1)(u) =0.

Item (i) is straightforward, as from Claim|C.5} the support of D'runeated | (y = 41) (i.e., Diuncated)

is U [it+ (i+1e—Ceit+e)U it — c'e, it + (i + 1)e + ’€]. Since all the support is in
i€Z_ i€y

item (i), in the “otherwise” case, it must be the case that Py puuncated]s|(y—11) (u) =0.
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For item (i), we recall that [ D'"unated]® i5 the 1 — 7 : ) mixture of Dfruncated apd ptruncated yyith
+1 and —1 labels respectively. Therefore, we need to show for

u € U [it + (i +1)e — e,it + ] U U [it —ce,it + (i +1)e+ ¢,
€7 €7
we have that
Ppusuncarea (1) = Q( Ppsncarea ()

Since Dfruncated gpd ptruncated gre pointwise close to the convolution sums of D', or D’ and

Ntruncated regpectively, the above amounts to

’

/ Ppriruncated (u’)PD/+ (u—u)du' =Q (/ Pprorancatea (u') Ppr (u — u’)du’) .

—c’e —c'e

Therefore, it suffices to prove foru € |J [it + (i + 1)e — 2c¢, it + 2] U | [it — 2ce, it + (i +
i€Z_ i€l
1)e + 2¢'€], it holds that

Ppy, (u) = Ppr (u)) -
‘We will consider

we | Jlit+ (i+1)e—2ceit+2ceu | [it —2ce it + (i + 1)e + 2ce]
i€Z_ i€Z4

for three different cases:

(A) |i+1] <t/(2¢) -1,
(B) t/(2¢) — 1 < |i +1| < t/e, and,

©) li+1] >t/e.
For case (A), we begin by recalling that the support of D’ is
U lit +t/2+ G+ De,it + /2] U (| [it + /2,0t + /24 (i + 1) .
i€Z_ i€Z
For case (A), the support of both D', and D’ are intervals with length at most ¢ /2 — € (see Claim|C.5).
Thus, the gaps between D', intervals and D’_ intervals are at least e. Any v for case (A) is at most
2¢'e far from a D', support interval, where ¢’ is sufficiently small, combining with the fact that gaps

between D', intervals and D’ intervals are at least ¢, this makes u not inside the support of D’ .
Therefore, for any w in case (A), we have that Pp (u) = 0, which implies Pp/, (u) = Q(Pps (u)).

For case (B), we note by Claim[C.4] we have

P () = 3055 S g €2 G DB~ D0

and

_ e 1 L
P, (W) = 355 % L S it D0 Doy ().

Note that since ¢/(2¢ — 1) < |i + 1| < t/e, thus these intervals has lenghth at most ¢, the D (resp.
D_) intervals do not overlap with other D (resp. D_) intervals. Therefore taking i = |u/t],

Ppr (u) = /\(B(_a)(fi)—i-ﬂl (u € iELJZit—i—t/Z-i- (i +1)(B- —t/2)> )

and

Pp, (u) = )\(B_(:))(fi)—&—ll <u € ieLJZit—&- (i + 1)[0,6]) .
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LetS_ = Jit+t/24+ (i+1)(B- —t/2)and S; = | it + (i + 1)[0, €]. Therefore it suffices to
i€L i€Z
show that
A(B-) = QA(By)) = Qe)
and for any w in case (B)
u € S_impliesu € S, .

A(B-) = Q(e) follows from the definition of B_, since

t_q t_q
B_Et/2,t/2+¢— | gllit—2ceit]) — | glit+ @+ e, it + (i + D) + 2¢'€])
i=t—1 =t —1
—5e—1 51
— U gllit+ G+ De—2deit+ i+ D) — | gt it +2ce]) .
= to1 i—t

Therefore, recall the definition of the mapping g, we get that

. 2c t2c

MB_)>e—4 g |CZ,|626—4E 2626—166/629(6),
it 2e
=

where the last equality follows from the fact that ¢’ is a sufficiently small constant. To prove for any
u in case (B)
u € S_ impliesu € S5 .

We prove the contrapositive, let u be in case (B) and u ¢ S, then calculations show

t_q t_q
we |J git—2deit)u |J g(it + (i+ e it + (i + e + 2ce) 2)
i=£—1 i=£—1
—t 1 —£-1
U U glit+G+De—2deit+@+1Dehu |J  g(litit +2¢€]) . 3)
i=—1-1 i=—Li-1

Notice that those intervals are exactly the intervals we carved out. Thus, u ¢ S_ . (We note that the
intuition behind this is the following. For the interval [g(a), g(b)] we carved out on B—, we made
[a, b] missing from the support of D’ . So what we did can be thought of as carving these intervals to
make the supports of D', and D’ having 2¢’e gaps between each other for ¢/(2¢) —1 < [i+1| < t/e.

This ensures that after applying the A/trneated noise, their supports still do not overlap.) This
completes the proof for case (B).

It remains to analyze case (C). By Claim[C.4] we have that

Pp (u) 55 Yier L (u € it + s + (i 4 1) (B = 4)) oy (0)

Pp(u) P i (u € it + o + (i + 1)(B- = ) o ()
_ <ZieZ € it + ¢y + (i +1)(By — 1/J+))>
Sz mllu it +yo + (i +1)(B- —p)) )
where the second equality follows from A(B_) = Q(A(B;)) = Q(e). Since B_ is a subset of
[t/2,t/2 + €], thus

> “Tlnl(u € it +(i+1)(B_—y_)) <> ﬁl (weit+t/2+ (@+1)([t/2,t/2+€ —t/2)) ,
1€EZL €L

therefore
Pp (u) 0 Yz e L(u € it + (i + 1)[0, ¢])
Pp(u) Y mlu it +t/2+ (i +1)([t/2,t/2+¢ —1/2)) |

Thus we just need to show the following claim to finish case (C).
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Claim C.6. For
= U [it+ (i+1)e—2c€, it +2¢ €] U U it —2c e, it + (i4+1)e+2ce]
1€{Z_:|i+1|>t/€e} 1€{Zy:|i+1|>t/e}

we have that
Dicz \iJlrl\ 1(u € it + (i + 1)[0,€])
Yien —”il‘ L(ueit+t/24+ G+ 1)([t/2,t/2+ ¢ —1t/2))

=Q(1).

The idea is to determine for both the numerator and denominator which values of i cause the
corresponding indicator function to be 1. Notice for (—oo, —t2 /e — t) U (t? /¢ — t, oc), the indicator
function in the numerator it + (i + 1)[0, ¢/2] will have length at least t. Thus for u € (—o0, —t2/e —
2t+2¢'€)U(t2 /e —2c'€, 00), u must be in at least one of these intervals in the numerator. In particular,
there must be j < k such that the non-zero terms in the numerator correspond to the indicator terms

with j < i < k. Therefore, the numerator is Zf: y |i-s{1\'

Then we examine the terms for the denominator. For convenience, we use [JU™Merater gpd ppumerator
(resp. [denominator gpd pdenominatory o denote the left endpoint and right endpoint of the ith term
in the numerator (resp. denominator). Since the j — 1th term in the numerator is not satisfied,
w > rRUpeTater Since ppuperator > penominator we know that u > 7™ mOr thus the j — 2th
term in the denominator cannot be satisfied. Then, since the (k + 1)-st term in the numerator is not
satisfied, we know that u < l};ﬂ‘erator. Since lgf{leramr < lgi“lommator, u < lgi“lommamr, thus the
(k + 1)-st term in the denominator is not satisfied. Now we have that the denominator is at most
k

Z 1
i=j—1 |i+1]"

Then, we just need to prove for any j,k € Z and j < k (since from the j-th to k-th term in the
numerator are satisfied, it must be that £ < —1 or j > —1), it holds that

Y
i=j Jit1]
k 1
Zi:j—l [i+1]

This is easy to see, since the denominator has at most one term more than the numerator and all terms
are of comparable size. This completes the proof for Lemma[3.9] O

=Q(1).

Now we prove the following helper lemma for Lemma[3.9]
Claim C.7.

U [it + (i+ 1)e — e, it + 'e] U U [it — e, it + (i + 1)e + €]
i€z i€Zy

can be equivalently written as the union of O(t/€) many intervals on R.
Proof. We notice that for |i + 1| > t/e, the interval terms inside the union has length at least ¢,

therefore they overlap with each other and cover the whole space. Thus, we can rewrite the expression
as

U lit+ (@ +1)e—deit+eJu | it — e it + (i +1)e+ el

i€Z_ €2y
=(—o00, —t*/e —t + €]
U U [it + (i + 1)e — e, it + e} U U [it — e it + (i + 1)e + €]
i€{Z_|i+1|<t/e} 1€{Z4|i+1|<t/e}

U[—t?/e —t —cle,00) ,

which is the union over O(t/€) many intervals. O
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C.3.5 Null Hypothesis Analysis for Algorithm

Here we analyze the null hypothesis case by showing that for (x,y) ~ D8 x and y are almost
independent. For Dg‘%lF, we establish the following property.

Lemma C.8. For any u € R", we have that

Pryyopu [y = +1 ] x = u] = (1£ 0(3))(1 — ).

Proof. This lemma follows directly from Lemma|[3.6] since

Pyjy=+1)(0), Pxj(y=—1)(u) = (1 £ 0(0)) Ppy; (u).

R7 1
Also the marginal probability is Pr[y = +1] = 1 — n. Therefore, for any u € R",
Pri g ly=+1[x=u] = (1£0(3))(1 —n) .

C.4 Proof of Theorem[3.2]

Proof of Theorem[3.2] We  give a  reduction from LWE(m,R?, {£1}", N, mod;)
to Massart(m’, N,n, OPT). Suppose there is an algorithm A for the problem
Massart(m’, N,n, OPT) with 2¢ distinguishing advantage such that (a) if the input is from the
alternative hypothesis case, A outputs “alternative hypothesis” with probability «; and (b) if the input
is from the null hypothesis case, A outputs “alternative hypothesis” with probability at most o — 2¢’.

Given mn samples from LWE(m, RY, {£+1}", N;, mod; ), we run Algorithm 2] with input parameters
(m/,t,€,8,n'), where & and 1’ /n are sufficiently small positive constants. If Algorithm [2|fails, we
output “alternative hypothesis” with probability e and “null hypothesis” with probability 1 — . Other-
wise, Algorithmsucceeds, and we get m’ many i.i.d. samples (x1,¥y1), (X2,y2) -+ , (Xm/, Yms) €
R™ x {£1} from Dpry (they are i.i.d. according to Observation[3.8). With d = c(}t\//e), where cis a
sufficiently large constant, we apply the degree-d Veronese mapping V, : R™ — R* on the samples
to get (Va(x1),v1), (Va(x2),92) -+, (Va(Xm), yms) € RN x {£1}. Then we give these samples
to A and argue that the above process can distinguish LWE(m, R}, {£+1}", N, mod;) with at least
€' — O(0) advantage.

We let Dy denote the distribution of (Vy(x), y), where (x,y) ~ Dprr (Dprr depends on s and
which case the original LWE samples come from). We note that the samples we provide to the
Massart distinguisher are m’ many i.i.d. samples from Dyrrp. We claim that if we can prove the
following items, then we are done.

1. In the alternative (resp. null) hypothesis case, Algorithm 2] in the above process fails with
probability at most 1/2.

2. Completeness: If the LWE instance is from the alternative hypothesis case, then Dy has at
most O(§/m’) dry distance from a distribution D and there is an LTF h such that

(@) Prixy)~p[h(x) # y] = exp(—Q(t"/€%)), and
(b) D satisfies the 7 Massart condition with respect to to the LTF h.

3. Soundness: If the LWE instance is from the null hypothesis case, then Ropr(Drrr) = Q(n).

Suppose we have proved the above items. In the alternative hypothesis case, the above process
outputs “alternative hypothesis” with probability at least « — O(9), since D is at most O(6/m’)
in dpy distance from Dyrr. Then, in the null hypothesis case, the process outputs “alternative
hypothesis” with probability at most o — €¢’. Therefore, the distinguishing advantage is at least
¢ — O(d). Now it remains to prove these three items.

For the first item, recall that for each sample, Algorithm [2| uses Algorithm |l| to generate a new
sample. If Algorithm [T]accepts, it outputs a new sample. According to Lemma|[C.3] it accepts with

probability Q(%) Under our choice of 1, this is at least Q(e/t) (since we have shown that
A(By), A(B-) = Q(e) in the proof of Lemma [3.9)and ¢ is either ¢, = 0 or ¢_ = t/2). With
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m' = c(e/t)m, where ¢ > 0 is sufficiently small and m(e/t)? is sufficiently large, by applying the
Hoeffding bound, one can see that Algorithm succeeds with probability at least 1/2.

For the second item, suppose that the initial LWE samples are from the alternative hypothesis case.
Then, in the proof of Lemma [3.9] (at the beginning of the proof), we have shown that there exists
a distribution Dgyaeated (denoted by D'""#**d in the proof of Lemmal[3.9) within total variation
distance O(6/m’) from Daltsrnative and a degree-d PTF sign(p(x)) such that

L. Pr(y )~ piruncarea [sign(p(x)) # y) = exp(—Q(t*/€?)]; and

2. Diuncated gagigfies the O(n') Massart noise condition with respect to sign(p(x)).

With 7’ /n being a sufficiently small constant, the second item satisfies the 1 Massart noise condition.
Then, letting Diacated denote the distribution of (Vy(x),y) where (x,y) ~ Dgticated 'one can
see that Difuncated jg at most O(5/m') in total variation distance from Dyrr. Let h denote the
corresponding LTF such that h(V;(x)) = sign(p(x)). Then, after the Veronese mapping, it must be
the case that:

L. Pr(y ) pimneatea[(x) # y] = exp(—Q(t*/e?)); and
2. Dirpncated gagigfies the 17 Massart noise condition with respect to h(x).

This gives the second item.

For the third item, if the initial LWE samples are from the null hypothesis case, then according to
Lemma|[C.8] for any u € R,

Pr sy pt [y = 1| x = u] = (14 0(8)) (1 — /).
Therefore, Ropr(Dprr) = Q') = Q(n), thus Ropr(Drrr) = (n). This completes the
proof. O

D Putting Everything Together: Proof of Main Hardness Result

Applying Theorem [3.2] together with Lemma[2.5]yields our main theorem:

Theorem D.1. Under Assumption for any ( € (0,1), there ex-
ists X > 0 such that there is no NOUEN)_time algorithm that solves

Massart (m’ = NOWe*N) N n=1/3, OPT = 1/210g17< N) with 1/3 advantage.

Proof. We first take y = 0.01¢. For Lemma[2.5] we take 8 = 1 — 0.1¢ and v = —5. For Theorem
[B2] we take

1. t = n05-02C

2. e=0(n"19),

3. § be a sufficiently small constant,
4. n=1/3, and,
5

. m' = c¢(e/t)m, where c is a sufficiently small positive constant.

One can easily check that the conditions in Condition [3.T] are satisfied. According to our parameters
of choice, the remaining parameters for the hardness are:

nl=0:2¢)
9

1. N =nOt/e) < p0(

2. OPT = exp(—Q(t4/e2)) = 272" ") < (2=n""¢ < 2=106" N for any constant c,
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0(1ogT=0T5¢ N
3.m! = cle/thm = Qn=01-02020(n")) > 20! 5 N <Og . >
NO(logX N)’ and

4. the time complexity lower bound is

2Q(n1—0.1C) _ Ncu(logx N) ]

Therefore, according to Theorem there is no N©0°g* N)_time algorithm that solves

Massart(m’ = NOWs*N) N p = 1/3 OPT = 1/2'¢' °N) with 1/3 advantage. This com-
pletes the proof. O

The above theorem gives the following corollary. We note that Corollary [D.2]implies our informal
Theorem[I.2] and Corollary [D.2] has stronger parameters.

Corollary D.2. UnderAssumption forany ¢ € (0, 1), there exists x > 0 such that no N O(log™ N)

time and sample complexity algorithm can achieve an error of 20008’ “ N) . OPT in the task of
learning LTFs on RN with ) = 1/3 Massart noise.
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