6 Supplementary Material

6.1 Network Architectures

All the neural networks we implemented in this work are Convolutional Neural Networks. In par-
ticular, we use Deep Spatial Autoencoders (DSAE) [15], that autonomously extract keypoints from
RGB observations as a form of information bottleneck. This resulted in a strong regularisation
during the training phase.

The inputs are 64 x 64 RGB images, from which we extract from 4 to 16 keypoints based on the task.
For all the networks described in this work, we train a DSAE with an L2 reconstruction loss in image
space, to learn to extract keypoints in the form of (z;, y;). We the give the array of K keypoints as
an input to a feed-forward network to predict the actions, the current stage, or the proximity to the
bottleneck pose.

For additional details, the reader can find our code on our website.

6.2 Additional Experiments

Comparing Time and Sample Efficiency of Self-Replay against Baselines

We designed our method to minimise the amount of human effort needed to teach a robot everyday-
like manipulation skills. In fact, our method only needs one demonstration from the human operator
and one environment reset to learn autonomously how to solve the task also when facing novel
initial configurations, as demonstrated in Section 4. In this section, we show how time efficient,
and also sample efficient, is our method compared to the baselines presented in Section 4.2. When
talking about time efficiency, we refer to the time that the human operator needs to spend in any
phase of the training, either providing demonstrations or resetting the environment. When talking
about sample efficiency, we refer to the number of datapoints needed to learn to solve the task by
each method. Despite our method is able to autonomously gather large datasets without the need for
human supervision or intervention, we still show how the Coarse to Fine decomposition makes our
method more sample efficient than the baselines.

We compare Active Self-Replay against other state-of-the-art Imitation Learning baselines intro-
duced in 4.2, Latent Motor Plans (LMP) and Relay Imitation Learning (RIL). We recorded the time
needed to provide demonstrations to each method, and tested their performance on a set of test con-

£
g
g
H
H
3
2

hs

Reconstruction

Q&
\’@e\«\O
o
(u1v1),
(u2,v2),

(us,va), Reconstruction Decoder
Spatial .
softArgmax .

(m:,vvs). \

Keypoints

‘njey ‘uuoNyleg .
ooy ‘wwonyea ||
“njey ‘wioNydIeg .

Legend

v

vy Convq\ulronal layer with the
va associated operations

a

© Acti
Control Action B Fully connected layer with

Encoder
the associated operations

L Special Operation
Policy I::> s P

‘nioy ‘wonyowg
‘njoy ‘uonyoies

Figure 5: General neural network architecture used in this work, inspired by [32, 15]. We show in
this figure the policy network 7. The other networks have an almost identical structure, with the
only difference being the last layer of the fully-connected network.

11

Performance over Time: Fork Performance over Time: Stack

2

8

—+— RIL —+— RIL
—— LMP —— LMP
—e— DDPGD @ —e— DDPGfD

—a— Active Self-Replay —a— Active Self-Replay

Test Time performance in %

Test Time performance in %
-] &

0 15 20 = Y] 0 5 10 15 0 = 0
Operator time in minutes Operator time in minutes

Performance over Time: Cut Performance over Time: Hammer

o = AL —e— RIL
—a— LMP a —e— LMP
p =—— DDPGfD —s— DDPGfD

—a— Active Self-Replay 30 s Active Self-Repla

Test Time performance in %
Test Time performance in %

L] 5 10 15 20 F-} 30 o 5 10 15 20 s 0
Operator time in minutes Operator time in minutes

Figure 6: In these plots, we compare the time efficiency against task solving performance of Self-
Replay and various baselines.

figurations of the task over time. Our method only receives a single demonstration and does not
require any further supervision, hence the time needed to train it is a couple of minutes of operator
time. We also compared to Deep Deterministic Policy Gradient from Demonstrations (DDPG{D).
We provided one demonstration and then supervised the autonomous Reinforcement Learning phase,
by both providing rewards and resetting the environment. We tested the performance of the method
over time as well.

In Figure 6, we show how our method can achieve the best performance on all the tasks, while also
requiring an order or more of magnitude less time from the human operator. We also tested the sam-
ple efficiency of the various methods, by training them on the same amount of datapoints, gathered
either by Self-Replay, demonstrations, or autonomous exploration in Reinforcement Learning. As
we show in Figure 7, our method obtains a better sample efficiency than the others. This is mostly
due to the Coarse to Fine structure of our method: the policy network only needs to learn how to
align the end-effector to the bottleneck pose, moving in free space, without the need to learn the fine
manipulation skill, e.g. cutting, stacking, picking objects. By replaying the expert’s demonstration,
we allow the policy to only focus on the accurate alignment.

These experiments additionally show that RIL and LMP require around 40-50 demonstrations to
reach the performance we obtain with a single demonstration, hence being 40x to 50x more time
expensive than Self-Replay.

Reinforcement Learning from Demonstrations We tested a recent state-of-the-art Reinforcement
Learning from Demonstration technique: Deep Deterministic Policy Gradient from Demonstrations
(DDPG({D) [23, 22]. We provided a demonstration to bootstrap the exploration phase of the algo-
rithm. We use a sparse reward as in [23], provided by the expert to the algorithm at training time,
rewarding the robot if the task is successfully completed. The operator hence needs to spend time
recording the demonstrations and supervising the learning phase both for providing the rewards and
resetting the environment after each training episode. Engineering an automatic system to reliably

12

Performance over Datapoints: Fork Performance over Datapoints: Stack

=—a— RIL 70 === RIL
70—y LMP =—e— LMP
=—+— DDPGfD €0 =—a= DDPGfD
—e— Active Self-Replay —a— Active Self-Replay

2

w
]

&

a0

w
8

Test Time performance in %
-]

Test Time performance in %

5

0 500 1000 1500 2000 2500 o 500 1000 1500 2000 500
Number of datapeints used to train Number of datapaints used to train

Performance over Datapoints: Cut Performance over Datapoints: Hammer

—a— RIL —a— RIL
—— LMP 70— LMP

=—a— DDPGfD =—s— DDPGfD

—a— Active Self-Replay 8 —a— Active Self-Replay

an

30

20

Test Time performance in %
Test Time performance in %

500 1000 1500 2000 500 o 500 1000 1500 2000 2500
Number of datapoints used to train Number of datapoints used to train

Figure 7: In these plots, we compare the sample efficiency against task solving performance of Self-
Replay and various baselines.

provide the reward would have also required a considerable engineering effort. Even with an order
of magnitude more operator’s time spent on supervising the learning phase with respect to the op-
erator’s time needed in our method, DDPGfD was not able to solve even the simpler tasks, as also
observed in [3]. As showed in [22], these methods can require even million of time-steps, and are
better suited to simulators, where environment resets are automatic. Detailed results can be found in
Table 1.

Robustness to Distractors While our method gathers data autonomously by only observing the ob-
jects composing the task, we empirically investigated the performance of the method to solve the
task at test-time in the presence of additional, unseen objects. Furthermore, we move the lighting
source during testing, to additionally test the method’s robustness to visual distractors. This consid-
erably changes the visual aspect of the environment, as can be seen in Figure 8. The keypoints based
neural architecture we use, described in 6.1, autonomously learns to track the objects of interest with
keypoints. This generates a strong regularizing effect: as we show in Figure 8 and in the videos in
our website, the keypoints appear to be largely unperturbed by the presence of distractors, as they
are trained to only extract relevant features to the task. We included videos of tasks with visual
distractors on our website that better illustrates the method’s robustness.

We empirically tested the performance of our
method to solve tasks in the presence of dis- Table 3: Percentage of successes in the presence
tractors. As the results in Table 3 show, the of visual distractors in the environment.

task solving performance does not drop consid-

erably, hence showing robustness to unseen ob- Task

jects in the environment. We train our method ~_ Distractors Cup Cut Fork Hammer
as described in Section 4.2, only using the ob- Without 85 65 80 70
jects relevant to the task. We then setup 20 dif- With 80 50 70 65

ferent configurations of the task by moving the

13

https://www.robot-learning.uk/self-replay

Figure 8: An example of the robustness of our method to visual distractors. From left to right:
original image, network reconstruction, and visualisation of the keypoints autonomously learnt by
the network. The robot is trained to pick up the hammer and hit the green target, and the keypoints-
based Deep Spatial Autoencoder learns to focus on those objects. By adding distractors (one more
for each row), the reconstruction stay mostly unchanged, showing that the network is not confused
by the unseen objects. In the last row, me move the task’s objects, and can see how the reconstruction
is able to follow that movement, hence showcasing how the network is able to predict the objects’
poses. It can also be seen that the keypoints remain mostly unchanged: this shows that the network
output is not influenced by distractors, and becomes a function only of the task’s objects. We strongly
suggest to watch the video on our website that better visualizes how the keypoints learn to track only
the task’s objects. Additional videos on our website demonstrate the method robustness to these
visual distractors.

objects on the table, and we additionally ran-
domly place a set of distractors.

Replicating the Interaction Trajectory vs. Learning an Interaction Policy In the recent robot
learning literature, policies are often times learned from data using a function approximator, like
a neural network. We designed a set of experiments to show that learning a policy for the inter-
action phase from demonstrations does not bring any observable benefits with respect to replay-
ing the operator actions during the interaction phase, while requiring more human effort. We
provided one demonstration for each task and ran Active Self-Replay to train our framework of
networks (Sec. 3.2). We additionally trained a policy network fpc with 10 human demonstra-

14

https://www.robot-learning.uk/self-replay

Figure 9: An example of the Hammer task with additional distractor objects. Additional videos on
our website demonstrate the method robustness to these visual distractors.

tions using Behavioural Cloning, collected starting from poses sampled close to the bottleneck
pose and then recording RGB observations and actions in the end-effector frame in the form of

{(00,a0),--.,(or,ar)} tomap fpc(ot) — as.

We tested both methods on a test of 10 novel configurations of three of our tasks (Table 4). Since
we’re only interested in comparing the interaction phase, we used the same bottleneck reaching
network trained with Active Self-Replay on each test configuration to reach the bottleneck. When
the robot predicted that the bottleneck had been reached, we recorded the current pose of the robot
(which may also differ from the ground-truth bottleneck pose, as it is the result of the estimations of
the networks) and ran the interaction phase replaying the actions seen during the demonstration. To
then test the policy, we reset the pose and the objects as they were before the interaction. We then
executed the interaction by predicting actions from RGB observations o; using the trained policy
network fpc.

During the experiments, we observed that, of-

ten, the end-effector was able to precisely reach Table 4: Percentage of successes of replicating

the bottleneck pose, thanks to the experience the operator’s actions during the interaction phase

gathered with Self-Replay. Therefore, repli- against using a policy learned from demonstra-

cating the recorded actions was sufficient to tions.

successfully solve the task, and the learned Task
olicy did not increase the robustness of the

fnechd. On particularly challenging configura- Method P&P Cut Insert Stack

tions of the objects, the alignment was not pre- Ours 9 70 80 80

cise, but this resulted in both methods failing. Policy 90 80 70 80

Results therefore show that learning the inter-

action phase from demonstrations does not provide any statistically significant benefit (Table 4).

15

https://www.robot-learning.uk/self-replay

6.3 Algorithms

Algorithm 1: Self-Replay

Inputs: bottleneck pose s, v, dataset D = {} ;
for M in number of re-training iterations do
Sample a random state K times to gather new experience data
Reach random pose in the workspace
s < sample state in robot workspace;
move_to(sg);
while bottleneck pose has not been reached do
Move back to the bottleneck recording observations and actions;
s¢ < compute_state()
ot < get_observation()
ay < compute optimal action as s, n — S¢;
execute(ay)
D+ D+ {Ot, at}
end

end

Algorithm 2: General Data

Collection Steps Algorithm 3: Test Time Task Solving
Inputs: A human Inputs: number of task stages /V, object manipulation
demonstration, from which actions a.,0:7,,0:N» stage-recognition network ng,, ,
we extract: number of task policy network for each stage my g, , task completion
stages N, object reaching network for each stage g, ;
states - 0., object while task is not completed do
manipui:ltion actions # While goal has not been reached
Uy 0T 0N while reached = False do
forﬂ/}\’. in number of task oy < Capture RGB image from camera ;
stages do # Predict the current stage of the task
collect data through J < nan(ot) ; o .
Self-Replay # Reach the goal state to start object interaction
Dy < self_replay(s, n); at = mjp,(04): o
replicate object Execute action a; # Predict if the bottleneck
interaction pose has been reached
Go to State s, | reached < 1j9,;
Execute actions a, n; # Replicate object interaction
Proceed to next stage | Execute actions a~ 1y N;
L N« N+1

16

7 Effects of the COVID-19 pandemic on the experiments

Due to the governmental restrictions during the COVID-19 pandemic, we were unable to conduct
experiments in our institution’s laboratory. Therefore, we decided to set up a robotics laboratory at
home, building a smaller, 6-DOF manipulator with a parallel gripper: the TinkerKit Braccio. Despite
the small size of this robot, we were able to conduct all the experiments successfully and answer
the above questions, albeit with a reduced workspace. Nevertheless, the results obtained here can
effortlessly be replicated on a larger robot.

A set of videos can be found on our website that show how the tasks and experiments we designed
demonstrate the ability of our method to learn multi-stage tasks. The main difference between the
robot we used and an industrial grade robot is the size of the workspace, the dexterity of the arm and
its precision. We argue that, as demonstrated in [3], the use of an industrial grade robot could even
improve the performance of our algorithm, and allow us to tackle more complex and precise tasks.
As future work, we will extend our work and deploy it on the robots in our laboratory as soon as the
governmental restrictions are relaxed.

17

	Introduction
	Related Work
	Method
	Background on Coarse-to-Fine Imitation Learning
	Tackling Multi-Stage Tasks: Overall Architecture
	Providing the Demonstration
	Collecting Data via Self-Replay

	Experiments
	Experimental Setting and Tasks
	Results

	Conclusions
	Supplementary Material
	Network Architectures
	Additional Experiments
	Algorithms

	Effects of the COVID-19 pandemic on the experiments

