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ABSTRACT

Model inversion attacks (MIAs) aim to reconstruct the private training data by
accessing a public model, raising concerns about privacy leakage. Black-box
MIAs, where attackers can only query the model and obtain outputs, are closer
to real-world scenarios. The latest black-box attacks have outperformed the
state-of-the-art white-box attacks, and existing defenses cannot resist them ef-
fectively. To fill this gap, we propose Stealthy Shield Defense (SSD), a post-
processing algorithm against black-box MIAs. Our idea is to modify the model’s
outputs to minimize the conditional mutual information (CMI). We mathemat-
ically prove that CMI is a special case of information bottlenecks (IB), and
thus inherits the advantages of IB—making predictions less dependent on inputs
and more dependent on ground truths. This theoretically guarantees our effec-
tiveness, both in resisting MIAs and preserving utility. For minimizing CMI,
we formulate a convex optimization problem and solve it via the water-filling
method. Adaptive rate-distortion is introduced to constrain the modification to
the outputs, and the water-filling is implemented on GPUs to address computa-
tion cost. Without the need to retrain the model, our algorithm is plug-and-play
and easy to deploy. Experimental results indicate that SSD outperforms existing
defenses, in terms of MIA resistance and model’s utility, across various attack
algorithms, training datasets, and model architectures. Our code is available at
https://github.com/ZhuangQu/Stealthy-Shield-Defense.

1 INTRODUCTION

Deep neural networks (DNNs) have driven widespread deployment in multiple mission-critical do-
mains, such as computer vision (He et al., 2015), natural language processing (Devlin et al., 2019)
and dataset distillation (Zhong et al., 2024b;a). However, their integration with sensitive training
data has raised concerns about privacy breaches. Recent studies (Fang et al., 2024b;a; 2025) have
explored various attack methods to probe these privacy, such as gradient inversion (Fang et al., 2023;
Yu et al., 2024b) and membership inference (Hu et al., 2021). Among the emergent threats, model
inversion attacks (MIAs) aim to reconstruct the private training data by accessing a public model,
posing the greatest risk (Qiu et al., 2024b). For instance, consider a face recognition access control
system with a publicly accessible interface. Through carefully crafted malicious queries, model in-
version attackers can infer the sensitive facial images stored in the system, along with the associated
user identities.

MIAs are divided into white-box and black-box (Fang et al., 2024c). White-box attackers know
the details of the model, whereas black-box attackers can only query the model and obtain outputs.
Black-box MIAs become more threatening than white-box because: (1) Black-box scenarios are
more common. As models grow larger nowadays, they are mostly stored on servers and can only be
accessed online, which are typical black-box scenarios. (2) Black-box attacks are more powerful.
The latest soft-label attack RLBMI (Han et al., 2023) and hard-label attack LOKT (Nguyen et al.,
2023) have outperformed the state-of-the-art white-box attacks. (3) Existing defenses cannot resist
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black-box attacks effectively. Existing defenses focus on modifying the weights and structure of
the model, but black-box attackers only exploit the outputs, and thus are less susceptible.

To address these concerns, we propose Stealthy Shield Defense (SSD), a post-processing algorithm
against black-box MIAs. As shown in Figure 1, the idea of SSD is to modify the model’s outputs
to minimize the conditional mutual information (CMI) (Yang et al., 2024). CMI quantifies the
dependence between inputs and predictions when ground truths are given. In Theorem 1, we prove
that CMI is a special case of information bottlenecks (IB), and thus inherits the advantages of IB—
making predictions less dependent on inputs and more dependent on ground truths. Under this
theoretical guarantee, SSD achieves a better trade-off between MIA resistance and model’s utility.
Without the need to retrain the model, SSD is plug-and-play and easy to deploy.
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Figure 1: An overview of Stealthy Shield Defense. The probability simplex is a triangle when the
number of classes is three. CMI is defined as I(X; Ŷ |Y ). According to our Theorem 1, minimizing
CMI makes the mutual information I(X; Ŷ ) minimized and I(Ŷ ;Y ) maximized. As shown by
Yang et al. (2024), minimizing CMI makes the outputs more concentrated class-wisely.

The contributions of this paper are:

• We introduce CMI into model inversion defense for the first time, and theoretically prove
its effectiveness.

• We propose a post-processing algorithm to minimize CMI without retraining models. In
our algorithm, temperature is introduced to calibrate the probabilities and adaptive rate-
distortion is introduced to constrain the modification to the outputs. We speed up our
algorithm by GPU-based water-filling method as well.

• Our experiments indicate that we outperform all competitors, in terms of MIA-resistance
and model’s utility, exhibiting good generalizability across various attack algorithms, train-
ing datasets, and model architectures.

2 RELATED WORK

2.1 MODEL INVERSION ATTACKS AND DEFENSES

Model inversion attacks (MIAs) are a serious privacy threat to released models (Fang et al., 2024c).
MIAs are categorized as white-box (Zhang et al., 2019; Chen et al., 2020; Struppek et al., 2022;
Yuan et al., 2023; Qiu et al., 2024a) and black-box. We focus on black-box MIAs, where attackers
can only query the model and obtain outputs. In this scenario, BREP (Kahla et al., 2022) utilizes
zero-order optimization to drive the latent vectors away from the decision boundary. Mirror (An
et al., 2022) and C2F (Ye et al., 2024b) explore genetic algorithms. LOKT (Nguyen et al., 2023)
trains multiple surrogate models and applies white-box attacks to them.

To address the threat of MIAs, a variety of defenses have been proposed. MID (Wang et al., 2020),
BiDO (Peng et al., 2022), and LS (Struppek et al., 2023) change the training losses, TL (Ho et al.,
2024) freezes some layers of the model, and CA-FaCe (Yu et al., 2024a) change the structure of the
model. However, black-box attackers only exploit the outputs, and thus are rarely hindered. The
defense against black-box MIAs is still limited.
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In this paper, we propose a novel black-box defense based on post-processing, without retraining
the model. Experimental results indicate that we outperform the existing defenses.

2.2 INFORMATION BOTTLENECK AND CONDITIONAL MUTUAL INFORMATION

Tishby et al. (2000) proposed the Information Bottleneck (IB) principle: a good machine learning
model should compress the redundant information in inputs while preserving the useful information
for tasks. They later highlighted that information is compressed layer-by-layer in DNNs (Tishby
& Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017). Alemi et al. (2017) proposed Variational Infor-
mation Bottleneck (VIB) to estimate the bounds of IB, and Wang et al. (2020) applied VIB in their
Mutual Information-based Defense (MID).

Yang et al. (2024) proposed to use conditional mutual information (CMI) as a performance metric for
DNNs, providing the calculation formula and geometric interpretation of CMI. By minimizing CMI,
they improve classifiers (Yang et al., 2025) and address class imbalance (Hamidi et al., 2024). By
maximizing CMI, they improve knowledge distillation (Ye et al., 2024a) and address nasty teachers
(Yang & Ye, 2024).

In this paper, we theoretically prove that CMI is a special case of IB and thus inherits the advantages
of IB. Furthermore, we propose a novel model inversion defense based on CMI.

3 PRELIMINARY

3.1 NOTATION

Let f : X → Y be a neural classifier, X ∈ X be an input to f , Y ∈ Y be the ground truth label,
Ŷ ∈ Y be the label predicted by f , and Z ∈ Z be the intermediate representation in f . Note that
Y → X → Z → Ŷ is a Markov chain. Let P be the probability function and P(x) := P{X = x},
P(y) := P{Y = y}, P(x, ŷ|y) := P{X = x, Ŷ = ŷ | Y = y}, etc. Note that P(x, y) is the private
data distribution.

Let ∆Y be the probability simplex with |Y| vertices. Let f(x) ∈ ∆Y be the output from the softmax
layer of f when x is input to f , and fŷ(x) ∈ [0, 1] be the ŷ-th component of f(x), ŷ ∈ Y. Note that
f(x) = argmax

ŷ∈Y
fŷ(x).

3.2 MODEL INVERSION ATTACKS

Let D ⊆ X× Y be the dataset learned by f . Note that the samples in D are i.i.d. to P(x, y). MIAs
aim to reconstruct D̂ as close to D as possible. Based on the access to f , MIAs are categorized as:

Hard-label: Attackers can query any x ∈ X and obtain f(x) ∈ Y.
Soft-label: Attackers can query any x ∈ X and obtain f(x) ∈ ∆Y.
White-box: Attackers know the details of f .

Hard-label and soft-label, collectively called black-box,1 are defended against in this paper.

3.3 MUTUAL INFORMATION-BASED DEFENSE (MID)

Wang et al. (2020) proposed to resist MIAs by reducing the dependence between X and Ŷ . The
dependence is quantified by the mutual information, which is defined as

I(X; Ŷ ) :=
∑
x∈X

∑
ŷ∈Y
P(x, ŷ) log P(x, ŷ)

P(x)P(ŷ)
. (1)

They reduced I(X; Ŷ ) to prevent attackers from inferring the information of D. However, low
I(X; Ŷ ) hurts the model’s utility. Especially, I(X; Ŷ ) = 0 iff X and Ŷ are independent, in which
case f is immune to any attack but useless at all.

1Some literature refers to hard-label as label-only, and soft-label as black-box.
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As an alternative, they introduced the information bottleneck (IB), which is defined as

I(X;Z)− λ · I(Z;Y ) (2)

where λ > 0. They used it as a regularizer to train f , minimizing I(X;Z) to resist MIAs while
maximizing I(Z;Y ) to preserve the model’s utility.

4 METHODOLOGY

4.1 CONDITIONAL MUTUAL INFORMATION-BASED DEFENSE

We aim to resist black-box MIAs where attackers cannot access Z, so we still minimize I(X; Ŷ )
instead of I(X;Z).

Furthermore, we observe that all MIA algorithms target one fixed label. Formally, let

Dy := {x ∈ X : (x, y) ∈ D}

be the sub-dataset whose ground truth label is y. For a given y ∈ Y, all attackers aim to reconstruct
D̂y as close to Dy as possible. Against their intention, we propose to minimize

I(X; Ŷ |Y = y) :=
∑
x∈X

∑
ŷ∈Y
P(x, ŷ|y) log P(x, ŷ|y)

P(x|y)P(ŷ|y)
. (3)

I(X; Ŷ |Y = y) quantifies the dependence between X and Ŷ when Y = y. We minimize it to
prevent attackers from inferring the information of Dy .

To protect the complete D, we minimize (3) for each y ∈ Y with the weight of P(y). It is equivalent
to minimizing the conditional mutual information (CMI), which is defined as

I(X; Ŷ |Y ) :=
∑
y∈Y
P(y) · I(X; Ŷ |Y = y). (4)

Theorem 1. CMI is a special case of the information bottleneck (2) when Z = Ŷ and λ = 1, i.e.

I(X; Ŷ |Y ) = I(X; Ŷ )− I(Ŷ ;Y ).

Our proof is provided in Appendix A. Our theorem proves that CMI inherits the benefits of IB in
two aspects:

• Minimize I(X; Ŷ ) to compress the redundant information in inputs, and decrease the de-
pendence between inputs and predictions. It improves the resistance to MIAs as shown by
Wang et al. (2020).

• Maximize I(Ŷ ;Y ) to preserve the useful information for tasks, and increase the depen-
dence between predictions and ground truths. It improves the utility obviously.

I(X;Z) in IB is challenging to calculate because the input space X and representation space Z are
both high-dimensional. Previous work could only approximate IB by variational bounds (Alemi
et al., 2017). Fortunately, as a special case of IB, CMI can be calculated directly (Yang et al., 2024).

4.2 MINIMIZE CMI VIA POST-PROCESSING

Previous work used CMI as a regularizer and minimized it during training models (Yang et al., 2024;
Hamidi et al., 2024; Yang et al., 2025). In contrast to them, we minimize CMI via post-processing.
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We transform CMI as follows:

I(X; Ŷ |Y ) =
∑
y∈Y
P(y)

∑
x∈X

∑
ŷ∈Y
P(x, ŷ|y) log P(x, ŷ|y)

P(x|y)P(ŷ|y)
, by definitions (3-4),

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log P(ŷ|x, y)

P(ŷ|y)
,

=
∑
x∈X
P(x)

∑
y∈Y
P(y|x)

∑
ŷ∈Y
P(ŷ|x, y) log P(ŷ|x, y)

P(ŷ|y)
,

=
∑
x∈X
P(x)

∑
y∈Y
P(y|x)

∑
ŷ∈Y
P(ŷ|x) log P(ŷ|x)

P(ŷ|y)
, by Markov chain Y → X → Ŷ .

Thus minimizing I(X; Ŷ |Y ) is equivalent to minimizing
∑

y∈Y P(y|x)
∑

ŷ∈Y P(ŷ|x) log
P(ŷ|x)
P(ŷ|y)

for each x input to f . For simplicity, we sample y ∈ Y with the probability of P(y|x) and minimize∑
ŷ∈Y P(ŷ|x) log

P(ŷ|x)
P(ŷ|y) instead.2 It is equal to the original objective in terms of mathematical

expectation. Next we need P(ŷ|x), P(y|x) and P(ŷ|y).
To get P(ŷ|x), we have P(ŷ|x) = fŷ(x) by the design of neural classifiers.

To get P(y|x), an intuitive idea is that P(y|x) = P(ŷ|x) for y = ŷ. But Guo et al. (2017) have
demonstrated that it is inaccurate in modern neural networks. Inspired by their work, we introduce
the temperature mechanism to adjust it.

To get P(ŷ|y), we have

P(ŷ|y) =
∑
x∈X
P(x, ŷ|y) =

∑
x∈X
P(x|y)P(ŷ|x, y) =

∑
x∈X
P(x|y)P(ŷ|x),

=
∑
x∈X
P(x|y)fŷ(x) = EX|Y=y[fŷ(X)] ≈ mean

x′∈Dy
fŷ(x

′),

where the “≈” is based on the fact that the samples in Dy are i.i.d. to P(x|y), and thus the sample
mean can estimate the conditional expectation. In practice we use the validation set as Dy , because
the training samples are overfitted by f , causing inaccurate estimation.

Now the objective becomes∑
ŷ∈Y
P(ŷ|x) log P(ŷ|x)

P(ŷ|y)
≈

∑
ŷ∈Y

fŷ(x) log
fŷ(x)

mean
x′∈Dy

fŷ(x′)
= KL(f(x)||mean

x′∈Dy
f(x′)),

where KL is Kullback-Leibler divergence, a binary convex function. To minimize it, we fix
mean
x′∈Dy

f(x′) for simplicity and modify f(x). Let p ∈ ∆Y be the modified version of f(x) and

our objective is KL(p||mean
x′∈Dy

f(x′)). Additionally, we constrain ∥p − f(x)∥1 ≤ ε to preserve the

model’s utility, where ε > 0 is the distortion controller.

In information theory, minimizing mutual information under bounded distortion constraints is
known as the rate-distortion problem (Shannon, 1959) for signal compression. If a signal has less
information, it is easier to compress, and a stricter distortion bound can be applied. Inspired by
their work, we introduce Shannon entropy to quantify the information in Ŷ when X = x, which is
defined as

H(Ŷ |X = x) := −
∑
ŷ∈Y
P(ŷ|x) logP(ŷ|x).

Our new constraint is ∥p−f(x)∥1 ≤ ε ·H(Ŷ |X = x), where the distortion bound is proportional to
the amount of information. It reduces the modification when the information is limited, and enhances
the compression when the information is abundant. We refer to it as adaptive rate-distortion.

2After sampling, we only need to consider one y ∈ Y and all ŷ ∈ Y, so we can solve it in O(|Y| log |Y|)
time (Algorithm 2). Without sampling, we have to consider all y, ŷ ∈ Y. The time complexity is Ω(|Y|2),
which is unacceptable when |Y| is large.
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Algorithm 1: post-processing to minimize CMI.
Input: original output f(x), temperature T , distortion controller ε, validation set D.
Output: modified output p.
Sample y ∈ Y with the probability of softmax(f(x)T );
qy ← mean

x′∈Dy
f(x′);

H ← −
∑

ŷ∈Y fŷ(x) log fŷ(x);
Solve the convex optimization problem and return the optimal p:

min KL(p||qy),

s.t. ∥p− f(x)∥1 ≤ ε · H,
p ∈ ∆Y.

(5)

Our defense is implemented by Algorithm 1. Without the need to retrain the model, it is plug-and-
play and easy to deploy.

Note that the qy, y ∈ Y can be calculated and stored in advance to reduce computation cost. If
the model owner differs from the defender, the owner only needs to provide the defender with qy

instead of D, avoiding communication cost and privacy risks.

(5) is a convex optimization problem that can be solved by existing optimizers. Furthermore, we
derive the explicit solution in Appendix B, calculate it by Water-Filling in Algorithm 2, accelerate it
by GPUs in Algorithm 3, and evaluate the computation cost in Appendix C.

5 EXPERIMENT

5.1 SETTINGS

Datasets. Following the previous work, we use CelebA (Liu et al., 2014) and FaceScrub (Ng &
Winkler, 2014) as private datasets. CelebA contains 10,177 labels and we only take 1000 labels
with the most images (Kahla et al., 2022). FaceScrub contains 530 labels and 43,147 images.3 All
images are cropped and resized to 64 × 64 pixels. We use 80% of the data for training, 10% for
validation, and 10% for testing. The validation set is used to select the best trained models, training
hyperparameters, and defense hyperparameters.

Models. VGG-16 (Simonyan & Zisserman, 2014) and IR-152 (He et al., 2015) are selected as target
models. They are trained with various defenses. The evaluation model is a FaceNet (Cheng et al.,
2017).

Attacks. We focus on state-of-the-art black-box MIAs, including BREP (Kahla et al., 2022), Mirror
(An et al., 2022), C2FMI (Ye et al., 2024b), LOKT (Nguyen et al., 2023) and RLBMI (Han et al.,
2023). We attack the first 100 labels in the private dataset, reconstructing 5 images for each label.
For BREP and LOKT, we use the FFHQ (Karras et al., 2019) to train GANs and surrogate models
under official settings. For Mirror and C2FMI, we adopt the 256 × 256 GAN trained on FFHQ
provided by (Karras et al., 2019). The generated images are center-cropped to 176 × 176 and then
resized to 64× 64.

Metrics. To evaluate the MIA resistance and model’s utility, we consider the following metrics:

• Attack Accuracy. The metric is used to imitate a human to determine whether recon-
structed images correspond to the target identity or not. Specifically, we employ an evalu-
ation model trained on the same dataset as the target model to re-classify the reconstructed
images. We compute the top-1 and top-5 classification accuracies, denoted as “acc” and
“acc5”, respectively.

3The original FaceScrub contains 106,863 images, but some images are unavailable because their URLs are
invalid.
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• Feature Distance. The feature is extracted from the second-to-last layer of the model. This
distance metric measures the average l2 distance between the features of reconstructed im-
ages and the nearest private images. Consistent with previous research, we use both the
evaluation model and a pre-trained FaceNet (Schroff et al., 2015) to generate the features.
The corresponding feature distances are denoted as σeval and σface. A lower feature dis-
tance indicates a closer semantic similarity between the reconstructed images and private
samples.

• Test Accuracy. The top-1 classification accuracy on the private test set. This metric is used
to evaluate the utility of the target model with defense.

• Distortion. This metric is used to quantify the modification to the predicted probability
vectors by defenses. We take the L1 distance between the outputs with and without defense.
It is denoted as “dist”.

All experiments are conducted by MIBench (Qiu et al., 2024b).

5.2 COMPARISON WITH STATE-OF-THE-ART DEFENSES

Table 1: MIA resistance of various defenses under soft-label attacks.

Mirror C2FMI
↓ acc ↓ acc5 ↑ σeval ↑ σface ↓ acc ↓ acc5 ↑ σeval ↑ σface

IR
-1

52
C

el
eb

A

None 10.0% 18.8% 2526 1.31 3.6% 8.0% 2521 1.36
MID 9.0% 17.6% 2448 1.23 0.2% 0.4% 2382 1.56
BiDO 4.8% 11.4% 2758 1.17 0.8% 3.8% 2598 1.31

LS 3.2% 7.8% 2602 1.33 1.4% 4.2% 2536 1.39
TL 6.6% 14.4% 2613 1.27 2.6% 7.0% 2528 1.37

SSD 1.2% 3.0% 2527 1.56 0% 0.4% 2377 1.67

IR
-1

52
Fa

ce
Sc

ru
b

None 39.6% 63.2% 2135 0.88 17.6% 41.2% 2196 1.03
MID 40.0% 61.2% 2152 0.96 3.2% 7.6% 3055 1.36
BiDO 31.0% 55.6% 2168 0.92 12.2% 25.6% 2528 1.14

LS 28.8% 56.8% 2286 0.90 11.0% 30.4% 2390 1.07
TL 31.2% 51.6% 2175 0.98 7.4% 21.0% 2341 1.24

SSD 22.8% 35.8% 2753 1.18 3.2% 7.2% 3107 1.38

V
G

G
-1

6
Fa

ce
Sc

ru
b

None 9.2% 24.8% 2740 1.02 5.8% 13.2% 2907 1.14
MID 17.4% 38.0% 2518 0.95 2.0% 7.0% 2986 1.22
BiDO 5.2% 17.2% 2911 1.06 5.0% 14.8% 2625 1.11

LS 13.8% 30.4% 2557 0.99 7.0% 20.4% 2662 1.08
TL 7.0% 18.6% 2777 1.06 7.6% 19.8% 2565 1.11

SSD 5.0% 13.8% 2970 1.17 0.8% 5.0% 3223 1.37

We compare our SSD with other state-of-the-art defenses, including MID (Wang et al., 2020), BiDO
(Peng et al., 2022), LS (Struppek et al., 2023) and TL (Ho et al., 2024). We adhere to the official im-
plementations for each defense, and the corresponding hyperparameters are detailed in Appendix D.

For soft-label attacks, the results are listed in Table 1. It can be seen that our SSD significantly
reduces the attack effect of Mirror and C2FMI, surpassing the other four defenses. In particular,
for the IR-152 model trained on FaceScrub, we increase the face feature distance from 0.88 to 1.18,
while the other defenses fall below 1.0.

For hard-label attacks, our SSD also shows a strong effect presented in Table 2. Note that LOKT is
the most powerful hard-label attack, and existing defenses cannot resist it. Our SSD drops the acc
of LOKT to 1/5 of the original. In addition, judging from the attack results of BREP, some defenses
are even advantageous to the hard-label attackers. This demonstrates the need to specifically design
black-box defenses.
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Table 2: MIA resistance of various defenses under hard-label attacks.

BREP LOKT
↓ acc ↓ acc5 ↑ σeval ↑ σface ↓ acc ↓ acc5 ↑ σeval ↑ σface

IR
-1

52
C

el
eb

A

None 7.2% 24.4% 1654 0.95 51.6% 74.4% 1469 0.85
MID 12.6% 28.8% 1973 1.28 29.8% 51.0% 1713 1.04
BiDO 13.0% 30.6% 1670 1.03 48.4% 66.8% 1551 0.95

LS 15.6% 40.0% 1584 0.97 52.0% 73.6% 1489 0.88
TL 10.2% 27.2% 1643 1.05 56.4% 74.6% 1510 0.92

SSD 0.4% 1.6% 2362 1.61 9.4% 17.0% 2077 1.30

IR
-1

52
Fa

ce
Sc

ru
b

None 31.8% 52.0% 2325 0.94 87.2% 94.8% 1209 0.68
MID 33.2% 52.4% 2177 1.09 63.8% 81.8% 1550 0.82
BiDO 24.8% 50.8% 2320 1.01 79.6% 93.6% 1345 0.77

LS 22.8% 44.6% 2506 1.00 81.2% 94.2% 1285 0.71
TL 17.8% 39.8% 2440 1.05 88.6% 98.0% 1213 0.73

SSD 5.2% 8.4% 2636 1.47 13.0% 22.8% 2279 1.29

V
G

G
-1

6
Fa

ce
Sc

ru
b

None 12.0% 29.2% 2643 1.06 68.2% 86.0% 1382 0.57
MID 14.6% 37.4% 2460 1.02 51.8% 78.0% 1521 0.60
BiDO 8.4% 25.0% 2676 1.10 63.2% 84.0% 1523 0.59

LS 13.4% 29.8% 2578 1.04 60.6% 83.6% 1467 0.65
TL 8.4% 26.0% 2626 1.08 50.0% 78.8% 1556 0.70

SSD 2.6% 7.6% 2689 1.48 23.4% 34.2% 2162 1.14

Figure 2 shows the reconstructed face images of attackers. It can be seen that with our defense, the
images reconstructed by attackers are largely different from the private images, which indicates that
our SSD is effective.

Label 14  65  17 
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Figure 2: The reconstructed images from IR-152 models trained on CelebA. Above are the ground
truth labels y and private sub-datasets Dy (4 samples shown). Below are the reconstructed datasets
D̂y (1 sample shown), over various attacks and defenses.
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The evaluation results for the target model’s utility are presented in Table 3. Our SSD not only holds
the highest test accuracy, but also the smallest distortion, which is only 1/2 to 1/4 of other defenses.

Table 3: Model’s utility with various defenses.

IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

↑ acc ↓ dist ↑ acc ↓ dist ↑ acc ↓ dist

None 92.1% 0 98.5% 0 92.9% 0

MID 86.8% 0.60 96.0% 0.31 87.2% 0.73
BiDO 86.6% 0.37 95.7% 0.13 88.6% 0.31

LS 86.9% 0.31 95.7% 0.10 88.7% 0.26
TL 86.5% 0.35 95.8% 0.12 88.0% 0.29

SSD 87.0% 0.18 97.4% 0.05 89.4% 0.18

5.3 ABLATION STUDIES

We conduct ablation experiments to explore the effects of temperature T and distortion controller ε
in our SSD. The results are shown in Figure 3.
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Figure 3: Ablation experiment results of IR-152 models trained on FaceScrub. (a) shows the result
attacked by BREP, and (c) shows the result attacked by Mirror. “no T.” denotes “no temperature
mechanism”, and “w/o Ada.” denotes “without adaptive rate-distortion”.

Figure 3(a) shows that as the temperature increases, the attacker’s accuracy decreases, and the recon-
structed images become more distant from the private images. This is because the sampling proba-
bility in Algorithm 1 is closer to the uniform distribution, which makes it easier to return misleading
labels to hard-label attackers. However, high temperature impairs the model’s accuracy, which is
shown in Figure 3(b). In addition, we find that neither the MIA resistance nor the model’s utility is
satisfactory without the temperature mechanism. This illustrates the necessity of our introduction of
the temperature mechanism.

Figure 3(c) and (d) similarly show that higher distortion controller ε strengthens MIA resistance
but impairs the model’s utility. In addition, without the adaptive mechanism, the attacker’s recon-
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struction distance is unaffected by ε, and the model’s distortion is very severe. This illustrates the
necessity of our introduction of the adaptive rate-distortion.

6 CONCLUSION

In contrast to previous researches on model inversion defense with a focus on white-box attacks, we
conduct a specific study on black-box attacks. Specifically, we investigate the impact of conditional
mutual information (CMI) and develop a CMI-based defense strategy. We conduct our defense in
the post-processing stage instead of re-training the model. Our method modify the model output
by reducing the dependence between model inputs and outputs. To further reduce the modifications
to outputs, we introduce an adaptive rate-distortion framework and optimize it by the water-filling
method. Experimental results demonstrate that our defense method achieves state-of-the-art (SOTA)
performance against black-box attacks. We hope that our findings will help shift attention toward
robust defense mechanisms in black-box settings and inspire further researches in this area.
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A PROOF OF THEOREM 1

I(X; Ŷ |Y ),

=
∑
y∈Y
P(y)

∑
x∈X

∑
ŷ∈Y
P(x, ŷ|y) log P(x, ŷ|y)

P(x|y)P(ŷ|y)
, by definitions (3-4),

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log P(ŷ|x, y)

P(ŷ|y)
,

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log P(ŷ|x)

P(ŷ|y)
, by Markov chain Y → X → Ŷ ,

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log

(
P(x, ŷ)
P(x)

/
P(ŷ, y)
P(y)

)
,

=
∑
x∈X

∑
ŷ∈Y

∑
y∈Y
P(x, ŷ, y) log

(
P(x, ŷ)
P(x)P(ŷ)

/
P(ŷ, y)
P(ŷ)P(y)

)
,

=
∑
x∈X

∑
ŷ∈Y
P(x, ŷ) log P(x, ŷ)

P(x)P(ŷ)
−

∑
ŷ∈Y

∑
y∈Y
P(ŷ, y) log P(ŷ, y)

P(ŷ)P(y)
,

=I(X; Ŷ )− I(Ŷ ;Y ), by definition (1).

B WATER-FILLING ALGORITHM TO SOLVE (5)

For brevity, let q := qy , f := f(x), and ε := ε · H. Then (5) is restated as

min KL(p||q),
s.t. ∥p− f∥1 ≤ ε,

p ∈ ∆Y.

(6)

Note that KL(p||q) quantifies the difference between p and q. When ∥q − f∥1 ≤ ε, the optimal
solution is p = q trivially. When ∥q− f∥1 > ε, the optimal p satisfies ∥p− f∥1 = ε. We consider
the case ∥q − f∥1 > ε in the following.

Obviously, the optimal p must be between q and f , i.e.
either qi ≥ pi ≥ fi or qi ≤ pi ≤ fi, for each i ∈ Y.

Additionally, due to ∥p− f∥1 = ε and p,f ∈ ∆Y, the optimal p satisfies∑
i∈Y : qi≥fi

|pi − fi| =
∑

i∈Y : qi<fi

|pi − fi| =
ε

2
.

Assume that {i ∈ Y : qi ≥ fi} = {1, 2, . . . , n} and {i ∈ Y : qi < fi} = {n + 1, n + 2, . . . , |Y|}.
Then (6) can be divided into two sub-problems, (7) and (8).

min
n∑

i=1

pi log
pi
qi
,

s.t.
n∑

i=1

pi − fi =
ε

2
,

pi ≥ fi, i = 1, 2, . . . , n.

(7)

min
|Y|∑

i=n+1

pi log
pi
qi
,

s.t.
|Y|∑

i=n+1

pi − fi = −
ε

2
,

pi ≤ fi, i = n+ 1, n+ 2, . . . , |Y|.

(8)

To solve (7), we introduce Lagrange multipliers λ ∈ Rn
+ and v ∈ R. The KKT conditions are

(pi − fi)λi = 0,

1 + log
pi
qi
− v − λi = 0.
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Eliminating λi ≥ 0 yields

(pi − fi)

(
1 + log

pi
qi
− v

)
= 0, (9)

1 + log
pi
qi
≥ v. (10)

When v > 1 + log fi
qi

, (10) implies pi > fi, and then (9) implies pi = qi exp(v − 1).

When v ≤ 1 + log fi
qi

, pi > fi implies
(
1 + log pi

qi
− v

)
> 0 contradicting (9), so pi = fi.

In summary,

pi =

qi exp(v − 1), v > 1 + log
fi
qi
,

fi, other.

Let w := exp(v − 1) and the optimal solution is

pi = max(wqi, fi), i = 1, 2, . . . , n, (11)

where w satisfies
∑n

i=1 pi − fi =
ε
2 .

Solving (8) similarly, the optimal solution is

pi = min(wqi, fi), i = n+ 1, n+ 2, . . . , |Y|,

where w satisfies
∑|Y|

i=n+1 pi − fi = − ε
2 .

We propose Algorithm 2 to calculate (11) efficiently. We ensure f1
q1
≤ f2

q2
≤ . . . ≤ fn

qn
by sorting,

and increase w to f1
q1
, f2
q2
, . . . , fn

qn
sequentially. Once

∑j−1
i=1 wqi − fi >

ε
2 when w =

fj
qj

, we know

that the proper w ∈ [
fj−1

qj−1
,
fj
qj
) and w =

ε
2+

∑j−1
i=1 fi∑j−1

i=1 qi
. Our algorithm is known as Water-Filling,

because w is like a rising water level, f1
q1
, f2
q2
, . . . , fn

qn
are like ascending steps, and ε

2 is like the total
volume of water. The time complexity is O(n log n) due to the sorting.

Algorithm 2: CPU-based Water-Filling.
Input: qi, fi for i = 1, 2, . . . , n.
Output: pi for i = 1, 2, . . . , n.
Reindex qi, fi so that f1

q1
≤ f2

q2
≤ . . . ≤ fn

qn
;

j ← 1;
fsum ← 0;
qsum ← 0;
while fj

qj
qsum − fsum ≤ ε

2 do
fsum ← fsum + fj ;
qsum ← qsum + qj ;
j ← j + 1;

end

w ←
ε
2 + fsum

qsum
;

Reindex qi, fi back to the original;
return max(wqi, fi) for i = 1, 2, . . . , n;

Algorithm 3: GPU-based Water-Filling.
Input: PyTorch tensors q,f of size n.
Output: PyTorch tensor p of size n.
Reindex q,f by torch.sort(fq );

fsum ← f .cumsum();
qsum ← q.cumsum();
mask← (fq qsum − fsum ≤ ε

2 );

j ← mask.argmin();

w ←
ε
2 + fsum[j]

qsum[j]
;

Reindex q,f back to the original;
return torch.max(wq,f);

To further accelerate Algorithm 2, we propose Algorithm 3, a GPU-based Water-Filling. Using
operators provided by PyTorch, we manage to eliminate the loop and branch in Algorithm 2, making
it completely sequential and suitable for GPUs. Algorithm 3 fully leverages the parallelism of GPUs
and reduces the computation cost, which is quantitatively described in the next section.
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C EXPERIMENTS ON COMPUTATION COST

We quantitatively demonstrate the efficiency of our Algorithm 1 by experiments. The experiment
settings are consistent with the main text. We take a batch with 512 test samples and let the model
infer 100 times on it. We record the time cost by torch.profiler, an official tool provided by PyTorch.
We exclude the time for I/O (i.e. the time from disk to memory, and from CPU to GPU), and only
include the time for forward propagation on GPU. Our experiment is conducted on one NVIDIA
GeForce RTX 3090. The results are in Table 4.

Table 4: Computation cost of Algorithm 1.

IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

Time without defense 18.63 s 17.70 s 5.65 s
Time with our defense 19.22 s 18.16 s 6.07 s

Percent of increased time 3.1% 2.5% 7.4%

It can be seen that we only increase the time by 2.5% to 7.4%. The higher percent on VGG is due
to the shallower model structure. In absolute terms, modifying 512 predictions for 100 times only
needs 0.5 seconds. If we take the I/O time into account, the percents will be small enough to be
ignored.

We further investigate the relationship between |Y| and the time cost of our Algorithm 3. We gen-
erate s ∈ R|Y| ∼ N(0, I) and let r ← softmax(10 · s). It is observed that the r generated in this
way is close to the real probability distributions. We use these r to simulate the real f(x) and qy ,
and let our GPU-based water-filling to find the optimal solution p. We take a batch with 256 pairs
(f(x), qy) and solve in parallel. The time costs are shown in Table 5.

Table 5: The relationship between |Y| and time cost of our Algorithm 3.

|Y| 101 102 103 104 105 106

Time 131 ms 132 ms 143 ms 163 ms 249 ms 1301 ms

It shows that even when |Y| reaches a million, solving 256 convex optimization problems only
takes 1.3 seconds. We believe that at this point, our post-processing will not be the performance
bottleneck, but the slow inferring and massive parameters of the target model will be.

D THE HYPERPARAMETERS FOR EACH DEFENSE

Table 6: The hyperparameters for each defense.

Defense IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

MID β = 0.005 β = 0.02 β = 0.015
BiDO λx = 0.001, λy = 0.01 λx = 0.005, λy = 0.05 λx = 0.0005, λy = 0.005

LS α = −0.05 α = −0.05 α = −0.05
TL Freeze the first 50% of the layers.

SSD T = 0.1, ε = 0.35 T = 0.1, ε = 0.5 T = 0.3, ε = 0.8

E EXPERIMENT UNDER RLB ATTACK

We conduct the experiment under RLBMI attack (Han et al., 2023) in this section. Consistent with
the main text, the target models are IR-152 trained on CelebA. Since RLBMI is computationally
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expensive, we only attack the first 10 labels and reconstruct 5 images for each label. The results are
shown in Table 7.

Table 7: MIA resistance of various defenses under RLBMI attack.

↓ acc ↓ acc5 ↑ σeval ↑ σface

None 32% 64% 2006 0.77
MID 30% 48% 2088 0.84
BiDO 16% 28% 2254 0.94

LS 12% 34% 2204 0.85
TL 22% 34% 2107 0.82

SSD 8% 12% 2480 1.26

It can be seen that our SSD is superior to other defenses.

F EXPERIMENTS ON HIGH RESOLUTION

To adapt to high resolution, we choose Mirror as the attacker. The prior distribution is StyleGAN2
trained on FFHQ with a resolution of 1024 × 1024. The generated images are center-cropped to
800 × 800 and resized to 224 × 224. The target models are ResNet-152 trained on FaceScrub, and
the evaluation model is an Inception-v3. Since high resolution is computationally expensive, we
only attack the first 10 labels and reconstruct 5 images for each label. The attack results are shown
in Table 8 and the models’ utility and settings are shown in Table 9. It can be seen that our SSD still
achieves the best MIA robustness, with a good utility.

Table 8: MIA resistance of various defenses under high-resolution Mirror attack.

↓ acc ↓ acc5 ↑ σeval ↑ σface

None 70% 94% 195 0.84
MID 62% 90% 183 0.76
BiDO 66% 86% 194 0.90

LS 48% 82% 202 0.87
TL 58% 92% 191 0.80

SSD 42% 66% 211 1.13

Table 9: Model’s utility with various defenses.

↑ acc ↓ dist Settings

None 98.5% 0 –

MID 96.7% 0.30 β = 0.005
BiDO 96.3% 0.09 λx = 0.15, λy = 1.5

LS 96.5% 0.11 α = −0.01
TL 96.7% 0.19 First 70% layers

SSD 97.0% 0.05 T = 0.3, ε = 1

G DISCUSSION ON ADAPTIVE ATTACKS

In this section we discuss adaptive attacks, where attackers are aware of our defense and take targeted
actions.
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In our opinion, if attackers know our defense, their best strategy is:

1. Query the same x repeatedly and count the frequency of different outputs.
2. Estimate our sampling probability P(y|x) by the frequency they count.
3. Infer our true prediction P(ŷ|x) by the P(y|x).

If an online server detects such pattern of queries, it can block them. Step back and consider again,
we propose a memory-free and low-cost improvement to block such adaptive attacks:

Design a hash function h : X → N, where X is the input space and N is the set of integers. When
users/attackers query x, we take h(x) as the random seed for sampling, ensuring same-input-same-
output. However, attackers can add subtle perturbations to x, therefore our h needs to be robust. For
example, it can be

h(x) :=

m∑
i=1

⌊k · zi(x)⌋, (12)

where z(x) ∈ Rm is the penultimate layer feature in target model, and k is the sensitivity coefficient.
Note that z(x) are commonly used to evaluate the similarity between two images, i.e., the closer the
two z(x) are, the more similar the two x look. The larger k is, the more numerically sensitive h is,
and the more random our defense is.

How to evaluate and improve h is a new and interesting topic, worth studying deeply in the future.
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