Supplementary for Paper2Poster: Benchmarking
Multimodal Poster Automation from Scientific Papers

A Ablation Study

We conduct ablation studies to evaluate three key design choices in PosterAgent: (1) the binary-tree
layout strategy for layout planning; (2) the inclusion of a commenter module as a visual critic; and
(3) the use of in-context examples to enhance the visual perception capabilities of the commenter.

We define the following variants:

* Direct: replacing the binary-tree layout with direct layout generation by an LLM;
* Tree: using the binary-tree layout strategy but removing the commenter module;
* Tree + Commenter: including the commenter module but without in-context examples;

* Tree + Commenter + IC: the full system, with both the commenter and in-context examples.

All ablation variants are implemented using PosterAgent-4o, keeping all other components un-
changed to isolate the effect of each factor. We visualize and compare results across five randomly
selected papers from Paper2Poster, as shown in Figures 1 to 5.

When prompting the LLM to directly generate poster layouts (Direct), the results are often structurally
compromised (e.g., Figures 1a—3a), or resemble blog-style layouts that lack visual hierarchy and
appeal (Figures 4a,5a). Fine-grained layout components, such as text boxes and figures, are especially
challenging to synthesize in this setting: for instance, Figures1a—4a exhibit missing text boxes that
leave noticeable blank areas, and Figure 4a fails to preserve the correct aspect ratio of figures.

The Tree variant, which omits the commenter module, leads to severe layout defects across all
test cases (Figures 1b—5b), primarily manifesting as text overflow—where content spills outside its
designated textbox or section panel—resulting in overlaps with other text or visual elements.

Using Tree + Commenter, which includes the commenter but without in-context examples, yields
improved results compared to the variant without the commenter, but still exhibits noticeable issues.
As shown in Figures 1c,2¢,4c, and Sc, some degree of text overflow remains. Furthermore, Figures 3¢
and 4c highlight substantial unused white space that the commenter fails to flag in the absence of
in-context guidance.

Finally, the full Tree+Commenter+IC system achieves the best results, as detailed throughout the
main paper and demonstrated in Fig. 1d,2d,3d,4d.
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Figure 1: Ablation study on Agnostic Learnability of Halfspaces via Logistic Loss. Text overflow
areas are highlighted with red bounding boxes.
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Figure 2: Ablation study on Visual Correspondence Hallucination. Text overflow areas are highlighted
with red bounding boxes.
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Figure 3: Ablation study on Color Equivariant Convolutional Networks. Text overflow areas are
highlighted with red bounding boxes, large blank regions are highlighted with purple bounding boxes.
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Figure 4: Ablation study on CW-ERM: Improving Autonomous Driving Planning with Closed-loop
Weighted Empirical Risk Minimization. Text overflow areas are highlighted with red bounding boxes,
and large blank regions are highlighted with purple bounding boxes.
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Figure 5: Ablation study on DeepJoint: Robust Survival Modelling Under Clinical Presence Shift.
Text overflow areas are highlighted with red bounding boxes.
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B Additional Prompts

We present the prompts used by the planner module, covering three components: (1) the asset
matching prompt; (2) the painter prompt; and (3) the commenter prompt.

S Prompt: Asset Matching

System Prompt:
You are an expert assistant tasked with assigning images or tables to the most relevant poster
sections. You will be given:

* JSON content of the poster outline, including each section’s title and a brief description.
» A list of images (image_information) with captions and size constraints.
* A list of tables (table_information) with captions and size constraints.

Your goal is to produce a JSON mapping of each top-level section to exactly zero or one
image/table that best fits that section’s content. For each top-level section (named in the provided
JSON “json_content”), decide:

* Whether an image or table (or none) is most relevant to the section’s theme or description.
* If relevant, select the single most appropriate image or table to assign.
* Base this selection on the conceptual content described in the section (“research meth-

ods”, “results”, “conclusion”, etc.) and compare it with the captions of the provided
images or tables, choosing whichever fits best.

* If assigning an image, specify “image”: <id>, where <id>is the identifier of the chosen
image from “image_information”.

« If assigning a table, specify “table”: <id>, where <id>is the identifier of the chosen table
from “table_information”.

* Include an additional “reason” field briefly explaining why this assignment was made
(e.g., how the image/table relates to the section content).

* If no image or table is assigned to a given section, omit that section from the final JSON
(i.e., only list sections where you actually assign something).

Important Notes:

» The assignment should not be arbitrary. It must be logically consistent with the section’s
description and the provided caption for the image or table.

* Do not produce any layout properties or subsections here.

¢ The final output must be a single JSON object, mapping from section names to the
chosen image/table ID plus the “reason” field.

* If multiple images or tables are suitable, select the single best one and assign only that.

* If “image_information” or “table_information” is empty, you may end up assigning
nothing to any section.

Instructions:
1. Read and analyze the poster’s top-level sections from {{ json_content }}.
2. Look at {{ image_information }} and {{ table_information } }. Determine content-fit:

* If a section’s description or subject matter matches well with a given image/table
caption, consider assigning it.

* If multiple images or tables seem relevant, choose the single best fit.

* If none of the images or tables are relevant, or if none are provided, do not assign
anything for that section.

3. Produce a single JSON object. Each key is the exact name of a top-level section (e.g.,
"Introduction"”, "Methods", "Results"), and the value is an object with:

* "image": image_idor "table": table_id




e "reason": short explanation describing why the image/table is
assigned

4. If no assignment is made for a section, exclude that section from the JSON.

5. No image can be reused for multiple sections. Each image/table can only be assigned to
one section.

6. Ensure your final response strictly follows JSON syntax with no extra commentary.
Example Output Format:
{

"Introduction": {
"image": 1,
"reason": "Image 1 depicts the central concept introduced
in this section."

T,

"Results": {
"table": 2,
"reason": "Table 2 summarizes the key metrics discussed
in the results."

}
\J /

S Prompt: Painter

System Prompt:
You are an expert assistant tasked with producing bullet-point summaries for a given poster
section. You will be given:

* A JSON object summary_of_section that contains:

{
"title": "<section title>",
"content": "<full text description>"

3

* An integer number_of_textboxes, which can only be 1 or 2.

Your goal is to produce a JSON object representing the bullet-point text for this poster section.
Each “textbox” key (textbox1 or textbox2) maps to a list of bullet-point entries. Each bullet-
point entry must be a JSON object of the form:

{
"alignment": "left",
"bullet": true,
"level": <indent_level>,
"font_size": <integer>,
"runs": [
{
"text": "<bullet point text>"
# optionally "bold": true or "italic": true if needed
}
]
}
Instructions:
1. If number_of_textboxes = 1, your final output must only have:
{

"title": [ section title ],
"textboxl1": [ ... array of bullet items ... ]

3
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2. If number_of_textboxes = 2, then you must produce two keys: textboxl and
textbox2, and each must have the same number of bullet items. For example:

{
"title": [ section title ],
"textbox1": [... N bullet items ...],
"textbox2": [... N bullet items ...]
+

where both arrays have identical length.

3. Each bullet point is a JSON object with the structure shown above; you can create as
many bullet points as needed (following the constraint about textbox count).

4. Make sure your final output is valid JSON, with no extra keys or additional formatting.
5. Return only the JSON object, nothing else.
Example Output:
Example when number_of_textbozes = I:
{
"title": [
{

"alignment": "left",
"bullet": false,

"level": O,
"font_size": 60,
"runs": [
{
"text": "Methodology",
"bold": true
}
]
3
]’
"textboxl1": [
{
"alignment": "left",
"bullet": true,
"level": O,
"font_size": 48,
"runs": [
{
"text": "Key point about domain-invariant component analysis."
}
]
}’
{
"alignment": "left",
"bullet": true,
"level": 1,
"font_size": 48,
"runs": [
{
"text": "Supporting detail.",
"bold": true
}
]
}
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"text": "Additional commentary, bullet 2."

[

J

S Prompt: Commenter

System Prompt: You are an agent that is given three images:

* Negative Example: This image shows a bounding box with text overflowing outside it
(i.e., text crossing or cut off by the box).

* Positive Example: This image shows a bounding box with text that fits completely (i.e.,
no text crossing or cut off).

» Target Image: This is the final image you must analyze.
From the first two images, you learn to interpret:

1. Whether text is overflowing (text crossing, cut off, or otherwise cannot fully fit in the
box).

2. Whether there is too much blank space in the bounding box (i.e., the text is significantly
smaller than the box, leaving large unused space).

3. Whether the text and bounding box are generally well-aligned (no overflow, no large
blank space).

Then, for the Target Image, you must:
e If there is any overflow text, return "1".
e If there is too much blank space, return "2".
* If the text fits well (no overflow, no large blank space), return "3".

Instructions:
1. You are provided three images (negative example, positive example, and target).
2. Refer to the first two images (negative and positive examples) to understand:

* What text overflow looks like
* What too much blank space in a bounding box means
* How a generally well-fitted bounding box appears

3. Analyze the third (Target) image’s bounding box to check:

o If there is overflow text, return "1".
o If there is too much blank space, return "2".
» Otherwise (if everything looks good), return "3".

10
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~Cruca fo propagating uncertainty t object pose coverage.

o and pos
“Vaidated frameworon s b
robustand accurate resuls,

(b) PosterAgent-generated poster.
Figure 6: Posters for Conformal Semantic Keypoint Detection with Statistical Guarantees.

Multiple Kernel Learning (MKL) as Architecture Search —

(a) Author-designed poster.
Figure 7: Posters for Neural Tangent Kernels for Axis-Aligned Tree Ensembles.

e Sparse Parameterization for Epitomic Dataset Distillation
CRt

DK + 15NHK + RED?+TD)+ LD +1) < el

(a) Author-designed poster.

Campared sl o L i NTK 3 05 b
i for e maes o ecancy

ks sgntan iestone i NP hesry
oveoment

(b) PosterAgent-generated poster.

“SPEED addresies neficiences in curtent methods.

s Herarchial eaures
ceon high-resoltion datasets

&

ntroduces SAETs and SCMs for mproved efciency.

improves generalastion and robustness under torage consirants.

sytheti dtases.
syl network for mapping.

SPEED itroduces o universlparameteization forsynthetic daases.
Integrates matching objectives.

+SPEED provides anefficentsouton or dataset distlsion

(b) PosterAgent-generated poster.

Figure 8: Posters for Sparse Parameterization for Epitomic Dataset Distillation.
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PURDUE TRULY SCALE-EQUIVARIANT DEEP NETS WITH FOURIER LAYERS

UNIVERSITY Md Ashiqur Rahman — Raymond A. Yeh

Department of Computer Science, Purdue Universiy.
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(a) Author-designed poster.

ey

(b) PosterAgent-generated poster.

Figure 9: Posters for Truly Scale-Equivariant Deep Nets with Fourier Layers.

Identifying the Context Shift between
Test Benchmarks and Production Data
Matt Groh, MIT Media Lab E-|

Will your model work in production?
et | - 2

Exampl errors on out-of distrbution data
3

Consider the Data Generating Process
Distribution Shift Perspective Context Shift Perspective

Covariate SHIE: () # Pr ) a4 P,

ko) Sample Scloction Bias: when the data ditributicn is mising rekevsot
exsmpesor dmensions

Prior Probabilty SHI: Pe(s) # Prsn(s) 804 Pfe) = P ole)

marity: when the dats diccibution changes ver i or -

Concept St 7.2

)% Panalole)

Other Distelbution Shif: Advrsra Peturbadons: e e dciion o dt el 8

wny that dore ot affct human sk pecform

Contextual Dimensions in Human Centered ML Applications

n
Who is represented in the data? Who is annotating the data? When and where is data collected?
How do social, geographical, temporal, aesthetic, financial, and other idiosyncrasies influence the data?

Data Generation Process Desiderata for Dynamic Benchmarks

1. Prediction Task: What are the input features and output labels? eg.Dynsbench
2 . e withis

A : rate?
3. Ground Truth Annotatior

4.Data

(a) Author-designed poster.

Identifying the Context Shift between Test Benchmarks and Production Data

Matthew Groh"
MIT Media Lab, Cambridge, MA

osract _____________Joritte models

*Machine learning models often fail with production data.
+'Context shift’ describes changes in data generation causing
errors.

«Three methods to address context shift are proposed.
“Leveraging human intuition.
*Dynamic benchmarking.
“Clarifying model limitations.

Context sitt

«Context shift focuses on «Human intuition aids in identifying context shifts.

features. «Frameworks like Data Statements document data processes.
«Understanding data creation and curation iscrucial. | sIdentifying context shifts improves model robustness.
*Sample selection bias and adversarial perturbations are
key factors.

*Dataset benchmarks often fail to capture real-world task
complexity.
Thi f-distributic

o1 d i data.
«Facial recognition benchmarks often lack diversity.

meaningful

A Petions

Sampl sicionsr

o

X3

Model Cards help document data generation processes.
«Examples include skin color i facial recognition.
ige elicitation is a challenge being formalized.

i Fobabny S|

Dynamic Benchmarking

«Evaluates models on datasets from well-specified data
generation processes.
*Allows continual assessment of model performance across

Concat Dt

«Examples include dynabench for NLP tasks.
izes aligning prediction tasks with d goals.

Model Limitations

Othr Disribution skl

Origine Somple

et some «Clarifying mode limitations can reduce errors in production.
) : ) . “Implicit assumptions in tasks ike facial expression recognition
+Redquires learning the entire population’s ata s,
distribution. «Facial expression models may not account for diverse cultural
adriver of ale

«Differs from distribution shiftin its approach.

conctusion ]

«Combining machine learning with human intuition enhances
robustness.

«Future research should identify missing contexts in benchmarks.
«Collecting relevant data and adjusting models is essential.
«Clear communication of evaluated contexts is crucial.

(b) PosterAgent-generated poster.

Figure 10: Posters for Identifying the Context Shift between Test Benchmarks and Production Data.

D Cost Analysis

Using GPT-4o0 as the backbone for both the LLM and VLM components, the average cost of
generating a single paper with PosterAgent-4o is approximately:

98.1 x 1000

3 x 1000

1,000, 000

1,000, 000

x 20 = 0.55 USD,

based on OpenAI’s GPT-40 API pricing as of May 22, 2025.
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