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ABSTRACT

Open-vocabulary object detection (OVOD) aims to detect novel objects beyond
the training categories. Recent approaches extend conventional detectors to OV
detectors by combining their detector scores with zero-shot classification scores
of pre-trained vision-language models such as CLIP, which is capable of identi-
fying various visual concepts via language descriptions. However, such a sim-
ple score-level combination struggles to balance the localization and classifica-
tion of novel objects: CLIP encodes global semantics for accurate classification
but exhibits limited sensitivity to localization precision when scoring proposals,
whereas the detector provides robust localization yet tends to misclassify novel
objects as background. Instead of a trade-off, our goal is to leverage the com-
plementary strengths of CLIP and the detector. To this end, we propose the
Multi-level CLIP Transfer (MCT-Det) strategy, which effectively transfers con-
text, alignment, and generalization knowledge from CLIP to the detector at three
distinct levels. Specifically, for each region proposal: 1) At the feature-level,
we refine region features by dynamically integrating CLIP’s global context via
cross-attention to improve localization. 2) At the embedding-level, we integrate
the region representations of CLIP and the detector into a unified embedding to
couple image-text alignment with localization-awareness for reliable recognition.
3) At the score-level, we follow previous methods to exploit CLIP’s zero-shot
classification ability via the scores combination strategy. Building upon F-ViT,
our MCT-Det achieves comprehensive improvements and outperforms state-of-
the-art methods, with 52.9 APnovel

50 on OV-COCO and 39.8 mAPr on OV-LVIS
using ViT-L/14.

1 INTRODUCTION

Object detection is a fundamental task in computer vision that aims to localize and categorize ob-
jects within images, serving as a cornerstone for higher-level applications such as Embodied Intelli-
gence, especially in visual navigation, object manipulation, and autonomous exploration. It has seen
remarkable progress with models such as YOLO series (Redmon et al., 2016; Tian et al., 2025),
R-CNN series (Girshick et al., 2014; Ren et al., 2015; He et al., 2017), and DETR series (Carion
et al., 2020; Zhu et al., 2020; Zhang et al., 2022). However, due to the scarcity and high cost of
large-scale annotated detection data, these detectors are typically constrained to the closed-set - the
recognizable categories are predefined and fixed during both training and testing, making them ill-
suited for real-world scenarios where object categories often extend beyond the scope. To address
this limitation, open-vocabulary object detection (OVOD) (Zareian et al., 2021) has been formu-
lated, which incorporates language modality as auxiliary guidance to enable recognition of novel
and unseen categories, thereby significantly enhancing the practicality and scalability of detectors.

Recent advances in vision-language models, such as CLIP (Radford et al., 2021), have demonstrated
impressive zero-shot recognition capabilities and provided strong support for OVOD methods. To
avoid costly additional training, F-ViT (Wu et al., 2023b) directly adopts the CLIP visual encoder as
a frozen backbone in a standard Mask R-CNN detector. During inference of F-ViT, the trained de-
tector head provides detection boxes and masks, while the final scores are computed as the geometric
mean of CLIP and detector scores. With its ease of training and extensibility, F-ViT has become
a widely adopted base framework in the OVOD task. Recent works mainly focus on enhancing the
region-text alignment of ViT-based CLIP models (Jing et al., 2024; Li et al., 2024; Qiu et al., 2025;
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Figure 1: Failure case of score-level combination: CLIP assigns similar scores to poor and well-
located boxes while the detector misclassifies novel objects as background. In some cases, the
combined score fails to reflect the relative quality of boxes, hindering the detector’s post-processing.

Wang et al., 2025b; Xie et al., 2025) for better region-level recognition, while still following the
F-ViT pipeline that relies on score-level combination for open-vocabulary classification.

The score-level combination effectively exploits CLIP’s zero-shot classification capability and sig-
nificantly improves the performance on recognizing novel objects, however, a notable precision
gap remains between novel and base categories (for F-ViT using ViT-B/16 CLIPSelf as backbone,
APbase

50 is 54.2 while APnovel
50 is 33.6). Based on experimental analysis in Sec. 4.2, we argue that

relying solely on the score-level combination is insufficient to overcome the inherent limitations of
both CLIP and the detector. For each region proposal, CLIP scores provide accurate classification
results yet lack sensitivity to the proposal’s localization quality. In contrast, detector scores reflect
the localization quality well, but tend to recognize unseen objects as background. As illustrated
in Fig. 1, the score-level combination serves as a trade-off between CLIP and detector scores, and
remains insufficient to integrate localization with classification, resulting in similar scores of propos-
als with different localization quality. To better exploit the complementary strengths and overcome
the respective limitations of CLIP and the detector, it is necessary to explore integration strategies
beyond the score-level.

In this paper, we propose MCT-Det, a Multi-Level CLIP Transfer strategy that effectively leverages
the complementary strengths of CLIP and the detector. For each region proposal: 1) At the feature-
level, we employ cross-attention-based feature interaction between the region features encoded by
CLIP and the detector, which transfers CLIP’s global context to enhance the region awareness for
better localization. 2) At the embedding-level, we establish a direct connection from CLIP’s region
embedding to the detector’s embedding, which transfers CLIP’s image-text alignment capability
for better classification. We further unify the regression and classification heads to better couple
localization and recognition. 3) At the score-level, we follow previous methods to combine CLIP
and detector scores through geometric mean, which transfers CLIP’s zero-shot classification results
to the OVOD task. By modifying the OVOD framework, our approach is compatible with recent
advances in enhancing CLIP’s region-awareness, allowing for further gains with stronger backbones.

Our observations and contributions can be summarized as follows:

• We experimentally analyze the F-ViT and reveal that the score-level combination is inadequate
to overcome CLIP’s insufficient localization capability and the detector’s limited classification
capability when detecting novel objects.

• We propose MCT-Det, which builds upon F-ViT and leverages the complementary strengths of
CLIP and the detector through feature-, embedding-, and score-level transfer strategies.

• Extensive experiments demonstrate that MCT-Det significantly improves the detection perfor-
mance on novel categories and surpasses state-of-the-art methods, achieving 52.9 (+8.5 gain
over baseline) APnovel

50 on OV-COCO and 39.8 (+4.9 gain) mAPr on OV-LVIS using ViT-L/14
as the backbone.

2 RELATED WORK

Close-set object detection. Close-set object detectors are limited to a pre-defined set of categories,
meaning they can only recognize objects encountered during the training phase. These detectors
are generally categorized into region-based, pixel-based, and query-based models. Region-based
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detectors (Girshick et al., 2014; Ren et al., 2015; He et al., 2017) first generate region proposals,
followed by classification and refinement. Pixel-based detectors (Redmon et al., 2016; Tian et al.,
2025) directly classify and predict bounding boxes over pre-defined anchor boxes or pixels. Query-
based detectors (Carion et al., 2020) adopt a transformer decoder to decode object queries to boxes.
Despite the high detection accuracy, these close-set detectors are restricted to detecting the pre-
defined categories and fail to generalize to unseen categories, limiting their applicability in real-
world scenarios.

Open-vocabulary object detection. Open-vocabulary object detectors can recognize arbitrary cat-
egories by training with only the detection annotations of base categories. To achieve such gen-
eralization, existing methods typically introduce the language modality as the auxiliary, either by
incorporating extra training data or by harnessing vision-language models. OVR-CNN (Zareian
et al., 2021) pretrains the visual backbone on image-caption pairs and fine-tunes with detection an-
notations to learn OVOD. Some methods generate detection pseudo-labels to train the detector with
a larger vocabulary, e.g., from image-level labels (Zhou et al., 2022), from image-caption data (Gao
et al., 2022), from unlabeled images (Zhao et al., 2022). GLIP (Li et al., 2022) and GroundingDINO
(Liu et al., 2024) regard the detection task as the grounding task and jointly learns object localization
and vision-language alignment. Several works follow DETR-style detectors that detect objects via
queries (Zang et al., 2022; Wu et al., 2023c; Li et al., 2023; Zhang et al., 2025; Wang et al., 2025a).
Recently, utilizing pre-trained vision-language models for OVOD has become a popular approach,
as they offer transferable image-text alignment for strong zero-shot recognition capability.

Utilizing CLIP for OVOD. CLIP (Radford et al., 2021), a powerful and widely adopted vision-
language pre-training method, is capable of aligning a broad range of visual and textual concepts
and demonstrates impressive zero-shot recognition performance. Various methods attempt to utilize
CLIP for the OVOD task by transferring its knowledge to the detector. ViLD (Gu et al., 2021) dis-
tills CLIP’s knowledge to the detector by aligning RoI features with CLIP features, and combining
the scores of both CLIP and the detector via geometric mean. RegionCLIP (Zhong et al., 2022)
adapts CLIP models for better region-level visual representations that enable fine-grained region-
text alignment. To avoid the need for costly retraining, F-VLM (Kuo et al., 2022) adopts a frozen
pre-trained CLIP visual encoder as the backbone of the two-stage detector and trains only the detec-
tor head, while maintaining the score-level combination strategy. F-ViT (Wu et al., 2023b) further
extends the framework by using the self-distilled ViT-based CLIP models as the backbone. DST-Det
(Xu et al., 2023) treats background proposals as novel categories during training, and adopts a self-
training strategy to enhance the detection performance of novel objects. VMCNet (Gao et al., 2025)
adds a CNN branch besides the ViT-based CLIP backbone to leverage the strengths of different net-
works. Many recent works (Jing et al., 2024; Li et al., 2024; Qiu et al., 2025; Wang et al., 2025b; Xie
et al., 2025) focus on bridging the distribution gap between image-level pretraining and region-level
perception of ViT-based CLIP models, while still using the F-ViT framework that relies on score-
level combination to enable open-vocabulary recognition. In contrast, our MCT-Det utilizes CLIP’s
knowledge through a multi-level transfer strategy, leveraging the complementary strengths of CLIP
and the detector to improve OVOD performance.

3 METHOD

In this section, we first briefly introduce the definition of the OVOD task and the motivation of our
approach, followed by a detailed description of our proposed Multi-Level CLIP Transfer frame-
work, which effectively transfers CLIP to the OVOD task through deep integrations at the feature,
embedding, and score levels.

3.1 PRELIMINARY

Task formulation. Given a set of base categories CB and a set of novel categories CN , where
CB ∩ CN = ∅. During training, the open-vocabulary detector has access only to the detection
annotations of CB , while at test time it is required to detect arbitrary objects that belong to CB ∪CN

(Zareian et al., 2021). A common approach is to replace the classifier weights of conventional
detectors with text embeddings of candidate category names, thereby performing open-vocabulary
classification by computing similarity scores between the visual and textual embeddings.

3
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Figure 2: Overall architecture of MCT-Det.

Motivation. F-ViT (Wu et al., 2023b) extends Mask R-CNN (He et al., 2017) to the open-vocabulary
setting by employing frozen CLIP vision encoders as the backbone and combining the CLIP and
detector scores. However, there still exists a significant performance gap between novel and base
categories in F-ViT. Based on the experimental analysis in Sec. 4.2, we conclude that the score-level
combination serves as a trade-off between CLIP and detector scores, with only partial integration of
CLIP’s classification capability and the detector’s localization capability. CLIP, through large-scale
pretraining, possesses strong image-text alignment capabilities and excels at classification, but is
weak in localization due to its global alignment pre-training task. In contrast, the detector, trained
with annotations of base categories, is proficient in class-agnostic object localization but struggles
to generalize its classification ability to novel categories. Thus, we are motivated to explore new
transfer strategies that can better leverage the complementary strengths of CLIP and the detector.

3.2 OVERALL ARCHITECTURE

The overall architecture of MCT-Det is illustrated in Fig. 2. We build our framework upon F-ViT,
retaining the frozen CLIP backbone and the score-level combination. On top of this baseline, we
further introduce two additional transfer strategies: 1) the feature-level interaction that enriches
the region features with global context for better localization, and 2) the embedding-level fusion
that injects image-text alignment priors to region embeddings for better classification. Together
with the score-level combination that trades off between classification and localization, the multi-
level strategy effectively transfers CLIP’s context, alignment, and generalization knowledge to the
detector.

Given I as the input image, the CLIP backbone first encodes the multi-scale feature maps Fm(I)
and the top-level feature map Ft(I), then the RPN generates region proposals b based on Fm(I):

Fm(I) = {F1(I), F2(i), ..., Ft(I)} = Backbone(I)

b = RPN
(
ϕ
(
Fm(I)

))
(1)

where ϕ(·) stands for FPN. Subsequently, the region features of both detector and CLIP are cropped
using RoIAlign. The feature-level interaction is introduced at this stage to transfer CLIP’s global
context knowledge, enriching region features with semantic information beyond the detector’s orig-
inal scope. Next, the RoI Head predicts class-agnostic boxes and masks, and encodes region em-
beddings based on integrated region features. The embedding-level fusion is applied at this stage to
transfer CLIP’s image-text alignment priors, yielding unified embeddings that inherit both CLIP’s
classification ability and the detector’s localization ability. Finally, we retain the score-level combi-
nation in F-ViT to transfer CLIP’s generalization capability, utilizing zero-shot classification results
within the detection task.
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Figure 3: (a) The architecture of the feature interaction module consists of SA-CA-FFN. (b) The
separated Classification and Regression Head, which share input features and generate embedding
and box delta, respectively. (c) The proposed Unified Head, where the intermediate feature is repur-
posed as the localization-aware adaptation to CLIP embedding.

3.3 FEATURE-LEVEL INTERACTION

Feature-Level Interaction transfers CLIP’s global context to the detector. For each region proposal
bi, both CLIP’s region features f iCLIP and the detector’s region features f iDet are cropped using
RoIAlign from different sources:

f iCLIP = RoIAlign
(
ψ
(
Ft(I)

)
, bi

)
f iDet = RoIAlign

(
ϕ
(
Fm(I)

)
, bi

)
(2)

where ψ(·) denotes the projection layer of the CLIP visual encoder. f iCLIP is cropped from the
top-level feature map Ft(I), which encodes rich global context and semantics but lacks sufficient
fine-grained details crucial for detection tasks. On the contrary, f iDet is cropped from multi-scale
feature maps Fm(I), enhancing localization-sensitive details at the expense of global information.

To enrich the detector features with global semantic context, we introduce a cross-attention module
that enables interaction and fusion between CLIP and detector features. As illustrated in Fig. 3a, we
adopt a decoder-style architecture (SA-CA-FFN), which consists of a self-attention block, a cross-
attention block, and a feed-forward network, each equipped with residual connections to ensure
stable feature transformation. Given the detector’s region feature f iDet, we first capture intra-region
dependencies with a self-attention operation. Subsequently, we employ CLIP’s region feature f iCLIP
as the key and value in a cross-attention block to inject CLIP’s global semantic information. The
resulting fused feature is refined through a feed-forward network FFN(·) to obtain the final enhanced
RoI feature f̃ iDet. This process can be formulated as follows:

f̂sa = f iDet +MHSA(f iDet)

f̂ca = f̂sa +MHCA(f̂sa, f
i
CLIP, f

i
CLIP)

f̃ iDet = f̂ca + FFN(f̂ca) (3)

where MHSA(·) and MHCA(·) denote the multi-head self-attention block and multi-head cross-
attention block, respectively. Through the cross-attention mechanism, global context information is
dynamically integrated to enhance localization while preserving classification accuracy, resulting in
a performance gain rather than a trade-off.

3.4 EMBEDDING-LEVEL FUSION

Embedding-Level Fusion transfers CLIP’s image-text alignment priors to the detector. Region
embeddings refer to the final feature representations of candidate regions. In the F-ViT framework,
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both CLIP and the detector independently produce region embeddings. The detector’s embeddings
tend to overfit to base categories, while CLIP’s embeddings fail to capture localization quality. As a
result, they both fail to provide reliable detector scores.

We argue that an ideal region embedding should jointly encode the object category information and
the proposal’s localization quality, with both aspects can be reflected in the scores. To this end,
we build a direct connection from CLIP’s region embedding eiCLIP to the detector’s region embed-
ding eiDet, yielding a unified embedding ẽiDet that achieves image-text alignment with localization-
awareness. Moreover, as shown in Fig. 3c, instead of using separate branches (Classification Head
and Regression Head in Fig. 3b), we design a unified head that utilizes the intermediate features as
localization-aware adaptations of CLIP’s embeddings, with the final output being box deltas:

ẽiDet = Norm(eiCLIP) + Norm(eiDet) = Norm
(
Mean(f iCLIP)

)
+Norm

(
RegFC1(f̃

i
Det)

)
∆box = RegFC2

(
ReLU(eiDet)

)
(4)

where eiCLIP is obtained by applying mean pooling Mean(·) on f iCLIP, and eiDet denotes the inter-
mediate feature obtained from the Regression Head, specifically the output of its first fully connected
layer RegFC1(·). Norm(·) represents L2 normalization, as the two embeddings differ in scale and
distribution, normalization aligns them and enables effective fusion. In this way, the detector studies
class-agnostic localization-aware knowledge and refines CLIP embeddings according to the local-
ization quality of proposals. By simplifying the detector’s training objective, we alleviate overfitting
and obtain reliable region embeddings, which in turn lead to significant improvements in detection
accuracy.

3.5 SCORE-LEVEL COMBINATION

Score-Level Combination transfers CLIP’s zero-shot classification capability to the detector. Same
as F-ViT, CLIP scores siCLIP and detector scores siDet are obtained through computing cosine simi-
larity with text embeddings tj of each class j:

siCLIP = Softmax
( 1
T
[cos(eiCLIP, tbg), cos(e

i
CLIP, t1), . . . , cos(e

i
CLIP, tc)]

)
siDet = Softmax

(1
τ
[cos(ẽiDet, tbg), cos(ẽ

i
Det, t1), . . . , cos(ẽ

i
Det, tc)]

)
(5)

where cos(a, b) = aT b/(∥a∥∥b∥), and CLIP scores use a fixed temperature T while detector scores
adopt a learned temperature τ . We feed the words of category names with predefined prompt tem-
plates (e.g., ”a photo of the in the scene”) into the CLIP text encoder, and average the embeddings
over all templates to obtain text embeddings t. We retain the score-level combination strategy in
F-ViT, as the CLIP scores provide strong zero-shot classification capability that can classify a wide
range of visual concepts. The final scores si are a combination of both the detector scores and the
CLIP scores through geometric mean:

si =

{
siCLIP(j)

α · siDet(j)
(1−α) if j ∈ CB

siCLIP(j)
β · siDet(j)

(1−β) if j ∈ CN

(6)

where α, β ∈ [0, 1] are the weights for base and novel categories, respectively.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of the proposed method. We first describe the
experimental setup, followed by an analysis of the score-level combination to justify our motivation.
Next, we conduct ablation studies to verify the effectiveness of each proposed transfer strategy.
Finally, we compare our method with state-of-the-art approaches to demonstrate its competitiveness.
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Figure 4: Empirical motivation. (a) The respective detection and classification performance of CLIP
and detector scores highlights their complementary strengths. (b) Training each component with
novel-category annotations demonstrates the necessity of strengthening the classification head.

4.1 EXPERIMENT SETUP

Benchmark details. We evaluate our method on OV-COCO (Lin et al., 2014; Zareian et al., 2021)
and OV-LVIS (Gupta et al., 2019; Gu et al., 2021) benchmarks.

• OV-COCO benchmark. OV-COCO divides COCO into 48 base categories and 17 novel cate-
gories. The model is trained on 48 base categories with 107,761 images and 665,387 instances,
and then evaluated on all 65 categories with 4,836 images and 33,152 instances. We follow previ-
ous works to use the Average Precision (AP) of predicted boxes under the Intersection over Union
(IoU) threshold 0.5 of novel categories (APnovel

50 ) as the main metric.
• OV-LVIS benchmark. OV-LVIS treats 461 common and 405 frequent classes as base categories,

and regards 337 rare classes as novel categories. The model is trained on 866 base categories
with 100,170 images and 1,264,883 instances, then evaluated on all 1203 categories with 19,809
images and 244,707 instances. We follow previous works to use the mean AP of predicted masks
across IoU thresholds from 0.5 to 0.95 of rare categories (mAPr) as the main metric.

Implementation details. We follow the settings of F-ViT (Wu et al., 2023b) for fair comparison. We
adopt ViT-based EVA-CLIP models (Sun et al., 2023) fine-tuned with CLIPSelf (Wu et al., 2023b) as
the backbone, and use Faster R-CNN (Ren et al., 2015) for OV-COCO and Mask R-CNN (He et al.,
2017) for OV-LVIS, both are with FPN (Lin et al., 2017). Text embeddings are obtained by encoding
each category name with multiple template prompts through the CLIP text encoder, and averaging
the resulting vectors, including an additional embedding for the “background”. Our experiments are
conducted using 4 NVIDIA RTX 3090 GPUs with 8 samples per card, and the models are optimized
using AdamW (Loshchilov & Hutter, 2017) with a learning rate of 5e-5 and weight decay of 0.1. We
train the model for 3 epochs on OV-COCO and 48 epochs on OV-LVIS. For feature-level interaction,
we employ one SA-CA-FFN block with a head number of 4. An exception is for training models
with ViT-B on OV-COCO, where we use 16 samples per card and a learning rate of 1 × 10−4. For
score-level combination, we set α = 0.0 and β = 0.5. More details are provided in Appendix A.1.

4.2 EMPIRICAL MOTIVATION

We first conduct experiments to validate our motivation. The training and testing are conducted on
the OV-COCO and follow the settings of F-ViT, adopting ViT-B/16 (fine-tuned with CLIPSelf (Wu
et al., 2023b) using image patches) as backbone and Faster R-CNN as detector.

Limitation of the score-level combination. As formulated in Eq. 6, the final scores are combined
as the geometric mean of CLIP scores and detector scores. To justify this design, we separately
evaluate each score in two aspects: 1) the detection performance on novel categories (APnovel

50 ), and
2) the Top-1 classification accuracy on ground-truth boxes of novel objects (Top-1novel

acc ). Results in
Fig. 4a show a clear trade-off. CLIP scores exhibit strong classification ability across categories but
are insensitive to the localization quality of proposals, resulting in poor detection accuracy when di-
rectly applied. In contrast, detector scores are reliable for both localization and classification of base
categories, yet generalize poorly to novel categories. The score-level combination provides a rea-
sonable solution to balance the two scores, but fails to fully exploit their complementary strengths.
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Table 1: Ablation studies. We evaluate the effectiveness of each transfer strategy on detection
performance, as well as the design of the detector head.

Method
Transfer Detector

Heads APnovel
50 APbase

50 AP50
Feature Embedding Score

F-ViT - - ✓

Reg & Cls

33.6 54.2 48.8

Variants

- - - 5.3 54.4 41.6
✓ - ✓ 35.2 55.9 50.5
- ✓ ✓ 41.3 54.4 51.0
✓ ✓ ✓ 42.3 55.1 51.8

MCT-Det ✓ ✓ ✓ Unified 43.1 55.1 52.0

Impact of novel-category training on different components. In the trainable part of F-ViT, the
Region Proposal Network (RPN) and the Regression Head (Reg Head) generate and refine the pro-
posals for localization, and the Classification Head (Cls Head) produces proposals’ visual embed-
dings for classification. We train two F-ViT models with the same architecture but different data: 1)
an open-vocabulary detector trained only on base categories, and 2) a conventional detector trained
on both base and novel categories. By exchanging intermediate outputs, we can isolate the con-
tribution of each component. As shown in Fig. 4b, the novel-category supervision significantly
enhances the Cls Head and improves detection performance, while the benefit to localization-related
components (RPN and Reg Head) is much less pronounced. This observation indicates that within
the F-ViT framework, the localization-related components are robust to novel categories, while the
classification head suffers from limited training data.

Our experiments illustrate the respective advantages of CLIP and the detector, as the former pro-
vides strong open-vocabulary recognition while the latter contributes robust localization. These
observations inspire us to leverage their complementary strengths for better OVOD performance.

4.3 ABLATION STUDY

We conduct ablation studies on OV-COCO to verify the effectiveness of each proposed transfer
strategy and the unified head. In both experiments, we adopt ViT-B/16 (fine-tuned with CLIPSelf
using image patches) as the backbone, and follow the settings mentioned in Sec. 4.1.

To validate the effectiveness of each transfer strategy, we individually apply them on top of the F-
ViT baseline, and the results are shown in Tab. 1. For the F-ViT baseline, the built-in score-level
combination effectively utilizes CLIP’s zero-shot classification capability in detection and improves
APnovel

50 from 5.3 to 33.6. By incorporating feature-level interaction, CLIP’s global context in-
formation has effectively transferred to the detector, resulting in gains in overall precision on both
novel (+1.6) and base (+1.7) categories. Introducing embedding-level fusion significantly improves
APnovel

50 to 42.3, indicating that our approach effectively utilized CLIP’s image-text alignment ca-
pability for novel object classification in the detection task. Moreover, by integrating the proposed
Multi-level CLIP Transfer strategy with the unified head design, MCT-Det achieves 43.1 in APnovel

50 ,
outperforming the baseline by 9.7. The experiments clearly demonstrate the effectiveness of the pro-
posed multi-level transfer strategies and the benefit of coupling the classification and localization.

We additionally provide ablation experiments on the designs of the feature-level interaction module,
the weights of controlling score-level combination, and the impact of using different CLIP back-
bones, which can be found in the Appendix A.2.

4.4 BENCHMARK RESULTS

Comparison on OV-COCO benchmark. Tab. 2a shows the results of our approach with other
state-of-the-art approaches on the OV-COCO benchmark. Using ViT-B/16 as the backbone, MCT-
Det attains an APnovel

50 of 44.5, surpassing the F-ViT by 6.9 and even outperforming the baseline
with ViT-L/14. Scaling up the backbone further improves performance: with ViT-L/14, MCT-Det
achieves 52.8 APnovel

50 and outperforms F-ViT by 8.5, which significantly surpasses other methods.

Comparison on OV-LVIS benchmark. Tab. 2b shows the results of our approach with other state-
of-the-art approaches on the OV-LVIS benchmark. Using ViT-B/16 as the backbone, our approach

8
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Table 2: Comparison with state-of-the-art OVOD methods.

(a) Results on OV-COCO benchmark.

Method Backbone APnovel
50

OVR-CNN (Zareian et al., 2021) RN50 22.8
ViLD (Gu et al., 2021) RN50 27.6
F-VLM (Kuo et al., 2022) RN50 28.0
OV-DETR (Zang et al., 2022) RN50 29.4
VLDet (Lin et al., 2022) RN50 32.0
CFM-ViT (Kim et al., 2023) ViT-L/16 34.1
RegionCLIP (Zhong et al., 2022) RN50x4 39.3
BARON-Cap&KD (Wu et al., 2023a) RN50x4 42.7
CORA+ (Wu et al., 2023c) RN50x4 43.1
OV-DQUO (Wang et al., 2025a) RN50x4 45.6
CCKT-Det++ (Zhang et al., 2025) Swin-B 46.0
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-B/16 37.6
MCT-Det + CLIPSelf (Ours) ViT-B/16 44.4
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-L/14 44.3
DST-Det + CLIPSelf (Xu et al., 2023) ViT-L/14 46.7
F-ViT + R-SC-CLIPSelf (Qiu et al., 2025) ViT-L/14 48.1
F-ViT + VMCNet (Gao et al., 2025) VMCNet-L 48.5
MCT-Det + CLIPSelf (Ours) ViT-L/14 52.9

(b) Results on OV-LVIS benchmark.

Method Backbone mAPr

ViLD (Gu et al., 2021) RN50 16.6
OV-DETR (Zang et al., 2022) RN50 17.4
RegionCLIP (Zhong et al., 2022) RN50x4 22.0
BARON (Wu et al., 2023a) RN50 22.6
VLDet (Lin et al., 2022) Swin-B 26.3
CORA+ (Wu et al., 2023c) RN50x4 28.1
F-VLM (Kuo et al., 2022) RN50x64 32.8
Detic (Zhou et al., 2022) Swin-B 33.8
CFM-ViT (Kim et al., 2023) ViT-L/16 33.9
CoDet (Ma et al., 2023) ViT-L/14 37.0
OV-DQUO (Wang et al., 2025a) ViT-L/14 39.3
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-B/16 25.3
MCT-Det + CLIPSelf (Ours) ViT-B/16 27.6
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-L/14 34.9
DST-Det + CLIPSelf (Xu et al., 2023) RN50x64 34.5
F-ViT + R-SC-CLIPSelf (Qiu et al., 2025) ViT-L/14 37.2
F-ViT + VMCNet (Gao et al., 2025) VMCNet-L 38.4
MCT-Det + CLIPSelf (Ours) ViT-L/14 39.8

(a) Results of F-ViT.

(b) Results of MCT-Det.

Figure 5: Visualization of detection results on OV-COCO. We compare MCT-Det with the F-ViT
baseline, both of which adopt ViT-B/16 as the backbone. Red boxes indicate novel categories, while
blue boxes denote base categories.

brings 1.9 mAPr gain compared to F-ViT. Using ViT-L/16, MCT-Det achieves state-of-the-art per-
formance at 39.8 mAPr and outperformance the baseline by 4.9.

Visualization. In Fig. 5, we provide visualized detection results on OV-COCO. For clarity of
demonstration, we filter the predicted bounding boxes using a score threshold of 0.3. Compared
with the baseline, MCT-Det not only maintains strong detection performance on base objects but
also exhibits notably higher precision in recognizing novel objects.

We also provide the complete benchmark results, the cross-dataset evaluation, and more visualiza-
tion results in Appendix A.3, A.4, and A.5, respectively.

5 CONCLUSION

In this paper, we propose a Multi-level CLIP Transfer framework for the OVOD task, namely MCT-
Det. By incorporating feature-, embedding-, and score-level transfer strategies, our method effec-
tively leverages the complementary strengths of CLIP’s zero-shot classification and the detector’s
robust localization capabilities for the OVOD task. Extensive experiments demonstrate the effec-
tiveness and scalability of MCT-Det, which significantly improves the detection precision on novel
categories and outperforms the state-of-the-art methods.
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REPRODUCIBILITY STATEMENT

We provide the code in the supplementary material. We implement MCT-Det based on PyTorch
and MMDetection (Chen et al., 2019), and the details are described in the paper (Sec. 4.1, Ap-
pendix A.1). All the base models (CLIP (Radford et al., 2021), EVA-CLIP (Sun et al., 2023),
CLIPSelf and F-ViT (Wu et al., 2023b), Mask R-CNN (He et al., 2017)) and datasets (Lin et al.,
2014; Gupta et al., 2019; Shao et al., 2019) used in this work are publicly available.
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Table 3: Results of using different Feature Interaction Modules on OV-COCO.

Backbone Method APnovel
50 APbase

50 AP50 Latency (ms)

F-ViT
ViT-B/16

CLIPSelf using
Image Patches

- 33.6 54.2 48.8 60.1
Add 34.4 (+0.8) 54.7 (+0.5) 49.4 (+0.6) 62.4

Concat 33.6 (+0.0) 55.4 (+1.2) 49.7 (+0.9) 66.1
iAFF 32.5 (-1.1) 54.9 (+0.7) 49.0 (+0.2) 67.0

CA-FFN 33.3 (-0.3) 55.5 (+1.3) 49.7 (+0.9) 71.2
SA-FFN 32.4 (-1.2) 55.3 (+1.1) 49.3 (+0.5) 70.3

SA-CA-FFN 35.2 (+1.6) 55.9 (+1.7) 50.5 (+1.7) 76.6

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

We build our detector upon F-ViT and follow the settings in (Wu et al., 2023b). On OV-COCO,
we set the input image size to 640 × 640 for ViT-B/16 and 896 × 896 for ViT-L/14. On OV-LVIS,
we set the input image size to 1024 × 1024 for ViT-B/16 and 896 × 896 for ViT-L/14. For data
preprocessing, we use large-scale jittering of range [0.1, 2.0] and random horizontal flip with a ratio
of 0.5 to augment input images during training, and apply zero-padding at the bottom and right of
the images for non-square inputs during testing. For models employing embedding-level fusion, we
set α = 0.0 and β = 0.5. For other models, we follow F-ViT to set α = 0.1 and β = 0.8. We
initialize the learnable temperature τ of the detector with 50.0, and set the fixed temperature T of
CLIP to 75.0 on OV-COCO and 50.0 on OV-LVIS. We apply a linear warm-up strategy during the
first 250 iterations, and decay the learning rate at the target epoch by a factor of 0.1. Specifically,
on OV-COCO, the decay is applied after the 2nd epoch, while on OV-LVIS, it is applied at the 32nd
and 40th epochs.

We adopt ViT-based EVA-CLIP models (Sun et al., 2023) fine-tuned with CLIPSelf (Wu et al.,
2023b) as the backbone, which are self-distilled to align dense feature maps’ regional features with
the corresponding cropped images’ global features. CLIPSelf provides two cropping strategies: 1)
crop on fixed image patches (i.e., using image patches), and 2) crop on the proposals generated by
class-agnostic RPN (i.e., using region proposals). For ablation experiments on OV-COCO and for
benchmarking on OV-LVIS, we adopt the models fine-tuned using image patches as the backbone.
As for benchmarking OV-COCO, we adopt the models fine-tuned using region proposals. All models
are fine-tuned on their corresponding datasets.

A.2 MORE ABLATION

Ablation on feature-level interaction module. We evaluate several designs for the feature-level
interaction module that integrate f iCLIP and f iDet, including the Add block, the Concat block, the
iterative Attentional Feature Fusion (iAFF) block (Dai et al., 2021), the CA-FFN block, and our
adopted SA-CA-FFN block. In the Add block, f iCLIP is linearly transformed and then added to
f iDet. In the Concat block, f iCLIP and f iDet are directly concatenated along the channel dimension.
The iAFF block is built upon channel-wise attention and iteratively fuses f iCLIP and f iDet:

iAFF(f iCLIP, f
i
Det) = M(L(f iCLIP) + f iDet)⊗ L(f iCLIP) + (1−M(L(f iCLIP), f

i
Det))⊗ f iDet

(7)

where M(·) denotes the attentional weights generated by the multi-scale channel attention module,
and L(·) denotes a linear transformation applied on f iCLIP to align the channel dimensions. The
CA-FFN block is based on our adopted SA-CA-FFN block by removing the self-attention layer.
The SA-FFN block only computed self-attention of f iDet and without integrating f iCLIP. We conduct
evaluations of each module upon F-ViT with ViT-B/16 CLIPSelf (fine-tuned using image patches)
as the backbone on OV-COCO, and additionally report their inference latency under fp32.
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Table 4: Results of using different weights for score-level combination on OV-COCO.

(a) Combination weights of novel categories. We
fix α = 0.0.

β APnovel
50 APbase

50 AP50

0.0 38.7 55.1 50.8
0.1 40.2 55.1 51.2
0.2 41.5 55.1 51.5
0.4 42.8 55.1 51.9
0.5 43.1 55.1 52.0
0.6 43.1 55.0 51.9
0.8 41.3 54.9 51.4
0.9 38.8 54.9 50.7
1.0 5.9 54.5 41.8

(b) Combination weights of base categories. We
fix β = 0.5.

α APnovel
50 APbase

50 AP50

0.0 43.1 55.1 52.0
0.1 43.1 54.8 51.7
0.2 43.0 54.4 51.4
0.4 43.0 53.1 70.5
0.5 43.0 52.2 49.8
0.6 42.9 51.1 49.0
0.8 42.0 47.3 45.9
0.9 40.7 43.2 42.6
1.0 37.5 6.7 14.8

Table 5: Results of MCT-Det using different backbones on OV-COCO.

Method Backbone APnovel
50 APbase

50 AP50

F-ViT EVA-CLIP 17.5 41.0 34.9
MCT-Det ViT-B/16 26.9 (+9.4) 43.8 39.4
F-ViT EVA-CLIPSelf (Image Patch) 33.6 54.2 48.8
MCT-Det ViT-B/16 43.1 (+9.7) 55.1 52.0
F-ViT EVA-CLIPSelf (Region Proposal) 37.6 54.9 50.4
MCT-Det ViT-B/16 44.4 (+6.8) 57.0 53.7
F-ViT EVA-CLIPSelf (Image Patch) 38.4 60.6 54.8
MCT-Det ViT-L/14 50.5 (+12.1) 63.2 59.9
F-ViT EVA-CLIPSelf (Region Proposal) 44.3 64.1 59.0
MCT-Det ViT-L/14 (Ours) 52.9 (+8.6) 65.7 62.4

As shown in Tab. 3, the Add block improves the overall detection performance, suggesting that
f iCLIP provides beneficial global context to the detector. However, other interaction modules only
enhance the performance of base categories, leaving novel categories nearly unchanged or even
degraded. This limitation indicates the necessity of a more effective design to exploit this con-
text without overfitting to base categories. The SA-CA-FFN block effectively addresses this issue,
achieving notable improvements on both novel (+1.6) and base (+1.7) categories without introduc-
ing significant computation costs.

Ablation on score-level combination weights. We further explore how the combination weights
α and β between CLIP and detector scores influences the detection performance. α affects base
categories, and a larger α increases the contribution of detector scores. β affects novel categories,
and a larger β increases the contribution of CLIP scores. We evaluate the different values of each
weight individually by fixing the other at its optimal value (0.0 for alpha and 0.5 for beta).

Based on the results in Tab. 4, the best detection performance is obtained with α = 0.0 and β =
0.5, reflecting the fact that the detector is sufficient to produce reliable scores for base categories,
whereas CLIP provides valuable support in identifying novel objects. We also observe that MCD-
Det is relatively robust to β, as the embedding-level fusion has already injected the image-text
alignment priors into the detector, and thus the detector scores themselves possess strong capability
in classifying novel objects.

Ablation on CLIP Backbones. We evaluate the impact of using different ViT-based CLIP back-
bones on MCT-Det. We employ various ViT-based CLIP backbones, including original EVA-
CLIP models and CLIPSelf fine-tuned models with different methods and scales. As shown in
Fig. 5, MCT-Det consistently yields significant improvements (with an average of more than 9.0 on
APnovel

50 ) across backbones, demonstrating the robustness and scalability of our method.
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Table 6: Complete results of OV-COCO.

Method Backbone AP50novel AP50base AP50

OVR-CNN (Zareian et al., 2021) RN50 22.8 46.0 39.9
ViLD (Gu et al., 2021) RN50 27.6 59.5 51.2
F-VLM (Kuo et al., 2022) RN50 28.0 43.7 39.6
OV-DETR (Zang et al., 2022) RN50 29.4 61.0 52.7
VLDet (Lin et al., 2022) RN50 32.0 50.6 45.8
DK-DETR (Li et al., 2023) RN50 32.3 - 61.1
CFM-ViT (Kim et al., 2023) ViT-L/16 34.1 - 46.0
OADP (Wang et al., 2023) RN50 35.6 55.8 50.5
RegionCLIP (Zhong et al., 2022) RN50x4 39.3 61.6 55.7
LP-OVOD (Pham et al., 2024) RN50 40.5 60.5 55.2
DITO (Kim et al., 2024) ViT-L/16 40.8 - 50.3
BARON-Cap&KD (Wu et al., 2023a) RN50x4 42.7 54.9 51.7
CORA+ (Wu et al., 2023c) RN50x4 43.1 60.9 56.2
OV-DQUO (Wang et al., 2025a) RN50x4 45.6 - -
CCKT-Det++ (Zhang et al., 2025) Swin-B 46.0 - 46.2
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-B/16 37.6 54.9 50.4
MCT-Det + CLIPSelf (Ours) ViT-B/16 44.4 57.0 53.7
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-L/14 44.3 64.1 59.0
F-ViT + DeCLIP (Wang et al., 2025b) ViT-L/14 46.2 - -
DST-Det + CLIPSelf (Xu et al., 2023) ViT-L/14 46.7 61.9 58.0
F-ViT + R-SC-CLIPSelf (Qiu et al., 2025) ViT-L/14 48.1 65.4 60.8
F-ViT + VMCNet (Gao et al., 2025) VMCNet-L 48.5 - -
MCT-Det + CLIPSelf (Ours) ViT-L/14 52.9 65.7 62.4

A.3 COMPLETE BENCHMARK RESULTS

We present the complete benchmark results of MCD-Det, including detection performance on both
novel and base categories. Results on OV-COCO are shown in Tab. 6, where we additionally report
APbase

50 and overall AP50 of boxes. Results of OV-LVIS are shown in Tab. 7, where we additionally
report mAPc, mAPf , and overall mAP or masks. MCD-Det not only achieves state-of-the-art perfor-
mance on novel categories, but also maintains competitive precision on base categories. The results
demonstrate the effectiveness of the proposed transfer strategies and validate the overall robustness
and generalization capability of MCD-Det.

A.4 CROSS-DATASET EVALUATION

To evaluate the generalization ability of MCT-Det, we conduct cross-dataset evaluation to assess
whether the detector trained on one dataset can generalize to another dataset with disjoint categories
and different data distributions. Specifically, we train MCT-Det (using ViT-L/14 as backbone) on
OV-LVIS, and directly evaluate on the validation set of COCO (Lin et al., 2014) and Objects365v1
(Shao et al., 2019) by replacing the vocabulary without any further fine-tuning. Following F-VLM
and F-ViT, we treat all categories as novel and use β alone to combine the detector and CLIP scores.
The vocabulary overlaps between OV-LVIS base categories and COCO/Objects365 are 91% and
63%, respectively (Kuo et al., 2022). Hence, we set β = 0.1 on COCO and β = 0.3 on Objects365.
The results are shown in Tab. 8.

On COCO, MCT-Det shows slight improvements over F-ViT in terms of AP and AP50. This can be
attributed to the high vocabulary overlap (91%), where most categories were already encountered
during training. In this case, the model relies more on the supervised-trained detector, rather than on
the zero-shot CLIP. While on Objects365, MCT-Det achieves an AP of 21.4 and notably outperforms
F-ViT across all metrics. The relatively low vocabulary overlap (63%) poses greater challenges for
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Table 7: Complete results of OV-LVIS.

Method Backbone mAPr mAPc mAPf mAP
ViLD (Gu et al., 2021) RN50 16.6 24.6 30.3 25.5
OV-DETR (Zang et al., 2022) RN50 17.4 25.0 32.5 26.6
LP-OVOD (Pham et al., 2024) RN50 19.3 26.1 29.4 26.2
DK-DETR (Li et al., 2023) RN50 20.5 28.9 35.4 30.0
OADP (Wang et al., 2023) RN50 21.7 26.3 29.0 26.6
RegionCLIP (Zhong et al., 2022) RN50x4 22.0 32.1 36.9 32.3
BARON (Wu et al., 2023a) RN50 22.6 - - -
VLDet (Lin et al., 2022) Swin-B 26.3 39.4 41.9 38.1
CORA+ (Wu et al., 2023c) RN50x4 28.1 - - -
F-VLM (Kuo et al., 2022) RN50x64 32.8 - - 34.9
Detic (Zhou et al., 2022) Swin-B 33.8 - - 40.7
CFM-ViT (Kim et al., 2023) ViT-L/16 33.9 - - 36.6
DST-Det (Xu et al., 2023) RN50x64 34.5 33.7 33.5 34.6
CoDet (Ma et al., 2023) ViT-L/14 37.0 46.3 46.3 44.7
OV-DQUO (Wang et al., 2025a) ViT-L/14 39.3 - - -
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-B/16 25.3 21.8 29.1 25.2
MCT-Det + CLIPSelf (Ours) ViT-B/16 27.6 26.6 29.1 27.8
F-ViT + CLIPSelf (Wu et al., 2023b) ViT-L/14 34.9 34.6 35.6 35.1
F-ViT + DeCLIP (Wang et al., 2025b) ViT-L/14 37.2 - - -
F-ViT + R-SC-CLIPSelf (Qiu et al., 2025) ViT-L/14 37.2 37.2 37.1 37.2
F-ViT + VMCNet (Gao et al., 2025) VMCNet-L 38.4 - - -
MCT-Det + CLIPSelf (Ours) ViT-L/14 39.8 35.7 35.0 36.2

Table 8: Cross-dataset evaluation of the model trained with OV-LVIS on COCO and Objects365.

Method
COCO Objects365

AP AP50 AP75 AP AP50 AP75
ViLD (Gu et al., 2021) 36.6 55.6 39.8 11.8 18.2 12.6
DetPro (Du et al., 2022) 34.9 53.8 37.4 12.1 18.8 12.9
BARON-KD (Wu et al., 2023a) 36.2 55.7 39.1 13.6 21.0 14.5
F-VLM (Kuo et al., 2022) 39.8 61.6 43.8 17.7 27.4 19.1
OV-DQUO (Wang et al., 2025a) 39.2 - 42.5 18.4 - 19.6
F-ViT + CLIPSelf (Wu et al., 2023b) 40.5 63.8 44.3 19.5 31.3 20.7
MCT-Det + CLIPSelf (Ours) 40.6 64.3 43.5 21.4 33.9 22.9

the detector, yet our proposed multi-level transfer strategy effectively leverages CLIP’s capabilities
to support the recognition of unseen objects. These results demonstrate the robustness of our MCT-
Det for open-vocabulary detection across diverse datasets.

A.5 MORE VISUALIZATION

We provide more visualization results of MCT-Det on OV-LVIS using ViT-B/16 (fine-tuned with
CLIPSelf using image patches) as the backbone. As illustrated in Fig. 6, our MCT-Det produces
accurate bounding boxes and segmentation masks across both base and novel objects, demonstrating
its robust generalization and effectiveness in the OVOD task.
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Figure 6: Visualization of MCT-Det’s detection results on OV-LVIS. Red boxes and masks indicate
novel categories, and blue boxes and masks represent base categories.

A.6 USAGE OF LARGE LANGUAGE MODELS

We use Large Language Models (LLMs) to help improve readability, polish writing, and refine
grammar to enhance the overall presentation, while preserving the original meaning. Importantly,
LLMs are not involved in the design of methods, experiments, or analysis. All scientific insights,
including core ideas, module designs, experiments, analysis, and conclusions, remain entirely the
work of the authors. We have ensured that the text generated with the assistance of LLMs adheres
to the ICLR Code of Ethics and does not involve plagiarism or scientific misconduct.
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