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A The EnD2 Algorithm15

The original paper features an excellent description of the mathematical formulation of the EnD2 model, but we did not16

find it immediately obvious how to translate this into an implementation in a modern deep learning framework. For this17

reason, we will now briefly describe it from an algorithmic-centred perspective using pseudocode and plain English.18

The process of training an EnD2 model is described in Algorithm 1. In practice, the optimization in line 7 can easily be19

achieved using the standard "fit" method of frameworks such as Keras and PyTorch, by constructing an intermediate20

dataset and using a custom loss function with a callback for annealing the temperature.21

The intermediate dataset is constructed by first adding any auxiliary images to the training images, and then passing the22

extended image set as input to the ensemble. The ensemble should output an array of logits as described in line 5 of23

Algorithm 1. The new dataset is then formed by matching each image to its corresponding ensemble logits, using the24

latter as the target.25

The custom loss function is described in Algorithm 2. This formulation includes temperature annealing. This loss26

function is the only modification necessary to adapt a general classification model into an EnD2 model, providing it is27

then trained on an intermediate dataset as described in the previous paragraph. Note that this formulation assumes that28

the model outputs logits. This output can be converted into Dirichlet probabilities by applying the standard softmax29

operation.30

Algorithm 1: Training algorithm for EnD2 given an ensemble
Input :Ensemble En outputting logits, training data X (same as the ensemble is trained on), (optional) Out of

distribution data XOOD

Output :Trained EnD2 model
1 if XOOD not None then
2 X = [X,XOOD] // append OOD data to training set
3 end
4 φ = En.predict(X) // exp(φ) are the labels for EnD2

5 // φ is a tensor of logits corresponding to the true distribution, each row corresponds to a model and each column a
class. Each matrix corresponds to one image

6 modelθ ← classifier //create a new classifier model with weights θ, with logits as output
7 EnD2 = argminθ{LossEnD2(φ,modelθ(X))} //train model backpropagation
8 return EnD2

Algorithm 2: loss for EnD2

Input :Ensemble logits: φ, predicted logits: z, temperature: T = T (t), annealing
Output :cost: C

1 ε = 10−8 // Smoothing factor
2 δ = 1− 10−3 // Central smoothing factor
3 α = ez/T (t) // elementwise exponential
4 M = #models
5 N = #classes
6 for i← 1 to M do
7 α0i =

∑
j αi,j // sum over the classes to produce the precision factor

8 end
9 PEn = softmax(φ/T (t)) // softmax over classes

10 PEn = δ(PEn − 1
N ) + 1

N

11 TIT =
∑N
i (log(Γ(αi + ε)))− log(Γ(α0 + ε)) // target independent term, where log(Γ(x)) = log((x− 1)!)

12 A = 1
M

∑M
i (log(PEni + ε) // mean over ensemble

13 TDT = −
∑N
i ((αi − 1)Ai) // target dependent term, sum over classes

14 return (TDT + TIT )T (t)2
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Figure 1: The synthetic, spiral dataset.

B Experiments on Synthetic Data31

B.1 Methodology32

The goal with these experiments is to provide qualitative justification for Claim 5 and illustrate the inner workings33

of EnD2. We also provide some new experiments on temperature annealing and the size of the auxiliary dataset, to34

visualize their effect.35

B.1.1 Dataset36

To illustrate the model, Malinin et. al. use a synthetic dataset in R2. Our rendering of this dataset can be seen in Figure37

1. This is advantageous since it enables plotting both knowledge and data uncertainty over the entire data manifold,38

giving a qualitative understanding of whether the algorithm works or not, in contrast to higher dimensional data (images,39

etc.) that cannot be plotted. The dataset itself looks like a spiral, divided into three classes shaped as spiralling arms of40

increasing radius. The spirals are centred and almost symmetric around the origin. Furthermore, they have increased41

noise and overlap with radius, which leads us to believe that uncertainty should vary as well. In addition to the spiral42

data an OOD data-set, referred to as the AUX data-set is also used, which takes the form of a ring slightly outside the43

spiral.44

For the experiments, 1000 samples per ID class are used, both for training and test. The number of AUX samples was45

also 1000. This is the same setting as the original paper. The generation of the data uses the original paper’s code, but46

the hyperparameters were not specified. Our hyperparameters can be found in our code. We manually searched for47

hyperparameters, so that our plot would look as close to theirs, but the exact correspondence is probably not achieved.48

B.1.2 Model description and hyperparameters49

The original paper does not specify what type of neural network was used for classification. We were also unable to50

find it in the (unofficial) code. Instead, we chose to use a simple DNN with four hidden layers, each of width 64 with51

ReLu-activation functions, trained by minimizing the categorical cross-entropy using the Adam-optimizer, all with52

standard tf.keras settings, for 85 epochs. EnD and EnD2 used the same base model but was instead trained for 50053

epochs.54

B.1.3 Experimental setup and code55

On the output of an ensemble of 100 models, all differently randomly initialized, we train EnD and EnD2 both with56

and without auxiliary data, using an initial temperature of 1, as in the paper. Doing this, we observed that the training57

diverges for many initialisations, mainly for EnD2
+AUX. Thus, we also used an initial temperature of T = 2.5, both with58

and without annealing. The annealing schedule was T = 2.5 between epoch 0 and 200, linearly decreasing to 1 between59
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Table 1: Classification error on Spiral Dataset, compared with [1]. Error bars are 95%-confidence intervals assuming
normal distribution. Note that our results likely use a different base model and training procedure than the original
paper, since it was not specified there.

ERR↓ IND ENSM EnD EnD2 EnD EnD2 EnD2 EnD2 EnD2

+AUX +AUX +AUX,ANN +AUX,T=2.5 +AUX20

Our results 8.20±0.67 2.3±NA 3.90±0.65 3.86±0.70 2.61±0.11 4.67±3.26 3.30±0.59 3.45±0.96 5.0±1.54

Paper [1] 13.21 12.37 12.39 12.47 12.41 12.40 - - -

epoch 200 and 400 and 1 between epoch 400 and 500. Additionally, we also trained a model EnD2
+AUX20, with only 2060

samples from the auxiliary dataset.61

All 7 models were trained 20 times, with different random initialisations. To make sure they converged, the test error62

was calculated. In cases test error was above 10%, it was deemed as non-convergence, and not taken into account.63

Among the converged ones, the mean error and the 95%-confidence interval around the mean is calculated, assuming a64

normal distribution. This means that for cases with fewer samples, the confidence interval is larger.65

The main goal of this experiment is to visually show the total uncertainty, the data uncertainty and the knowledge66

uncertainty. They were calculated as specified in [1] and [2], for the grid [−2000, 2000] × [−2000, 2000] at all67

coordinates divisible by four, for a total of 106 points.68

The full code is available at https://anonymous.4open.science/r/4ee2c9ef-295f-44e2-8214-f0818b932817/.69

B.1.4 Computational requirements70

The experiments were run on the CPU of a normal laptop (2.7 GHz Dual-Core i5). The total time to reproduce the71

ensemble of 100 models and all 20 repetitions of all 7 tested distillation methods, is around 5 to 6 hours.72

B.2 Results73

B.2.1 Classification accuracy74

In Table 1, the classification accuracy from our experiment and the original paper is reported. We see that75

• the ensemble outperforms the individual models, and that all distillation methods perform closer to the76

ensemble, than an individual model.77

• the best performance is achieved by EnD with auxiliary data.78

• using annealing or not when starting at T = 2.5 does not affect the final classification accuracy.79

B.2.2 Visualization of uncertainty80

The total, data and knowledge uncertainty is plotted in Figure 2 for a grid of 106 points. In contrast to the original paper,81

we fix the scale of the colour bar for better comparability between plots.82

We observe that83

• EnD2 is not able to emulate the uncertainty landscape of the ensemble, but EnD2
+AUX can approximate it fairly84

well.85

• Starting at a higher temperature (T = 2.5) and using annealing produces similar results as starting at86

temperature 1, but starting at temperature 2.5 and keeping it there for the entire training duration does not87

capture the true uncertainty.88

• Using a smaller auxiliary dataset gives a worse approximation of the ensemble’s uncertainty landscape.89

C Computational requirements for reproduction90

In this section, we report the computational resources used for this reproduction. The running time of the major91

experiments on CIFAR-10 is expressed in time on an RTX 2070. For easier comparison, we also report the equivalent92

cost when running on a V100 GPU on Google Cloud for $2.48 per hour, given a relative performance of 2.89 versus an93
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(a) Ensm. Tot. Unct. (b) Ensm. Data Unct. (c) Ensm. Know. Unct.

(d) EnD2 Tot Unct. (e) EnD2 Data Unct. (f) EnD2 Know. Unct.

(g) EnD2
+AUX Tot Unct. (h) EnD2

+AUX Data Unct. (i) EnD2
+AUX Know. Unct.

(j) EnD2
+AUX,ANN Total Unct. (k) EnD2

+AUX,ANN Data Unct. (l) EnD2
+AUX,ANN Know. Unct.

(m) EnD2
+AUX,T=2.5 Tot. Unct.(n) EnD2

+AUX,T=2.5 Data Unct.(o) EnD2
+AUX,T=2.5 Know.

Unct.

(p) EnD2
+AUX20 Tot. Unct. (q) EnD2

+AUX20 Data Unct. (r) EnD2
+AUX20 Know. Unct.

Figure 2: Recreation of Figure 3 in [1], showing uncertainties over entire data manifold.
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Table 2: Computation requirements for major experiments, and which claims they test. GPU time refers to time on an
NVIDIA GeForce RTX 2070. Equivalent cost represents the cost if run on a V100 on Google cloud, for $2.48 per hour.

Experiment Models GPU minutes per model GPU days Equivalent cost in $
Ensemble, training 400 16 4.44 91.53
Ensemble, labeling 400 0.45 0.13 2.57
Ensemble, inference 400 0.23 0.06 1.32
Evaluation, claim 1 and 2 15 51 0.53 10.94
Size ablation, training, claim 3 112 51 3.97 81.69
Temperature ablation, training, claim 4 27 51 0.96 19.69
3-class ensemble, training, claim 5 100 5.25 0.36 7.51
Total 11.413 235.06

Table 3: OOD ROC-AUC↑ on CIFAR-10 (in) and LSUN (out), normalized to ensemble results. Error bounds signify
two standard deviations, taken over three models.

Unc. IND ENSM EnD EnD2 EnD+AUX EnD2
+AUX PN +AUX

Tot. our 0.96±0.00 1.00±NA 1.00±0.01 0.98±0.00 1.01±0.00 1.00±0.00 1.02±0.01

Tot. paper 0.97±0.01 1.00±NA 0.94±0.01 0.97±0.01 0.94±0.01 1.00±0.01 1.01±0.01

Know., our - 1.00±NA - 0.95±0.01 - 0.99±0.01 1.02±0.00

Know., paper - 1.00±NA - 0.98±0.01 - 0.99±0.01 1.01±0.01

RTX 20701. Note that these figures represent the time to reproduce only the final experiments. We estimate that the94

total GPU time used for this reproduction, including experimentation and bug-hunting, to be 3 to 5 times as long. The95

full data can be seen in Table 2.96

D Histograms97

To compare ensembles, EnD2 and EnD2
+AUX on the CIFAR-10 and 3-class CIFAR-10 datasets, we provide histograms of98

data and knowledge uncertainty for in- and out-of-domain-distribution, in Figure 3 and 4.99

E Relative performance of EnD2 compared to ensemble and original article100

In Tables 3 and 4 of the main report we report several measures for the 7 different models tested. For better comparability,101

we here also provide the values normalized to the ensembles’ performance, both for our experiments, and for the102

original paper, in Table 4 and 3.103

1Benchmark taken from https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/

Table 4: Classification metrics on CIFAR-10, normalized to ensemble results. Error bounds signify two standard
deviations, taken over three models.

Crit. IND ENSM EnD EnD2 EnD+AUX EnD2
+AUX PN+AUX

ERR↓, our 1.12±0.08 1.00±NA 0.99±0.06 1.13±0.02 1.13±0.02 1.16±0.01 1.14±0.04

ERR↓, paper 1.29±0.06 1.00±NA 1.08±0.05 1.18±0.03 1.08±0.03 1.11±0.06 1.21±0.10

PRR↑, our 0.87±0.02 1.00±NA 0.98±0.00 0.96±0.01 0.98±0.02 0.96±0.01 0.70±0.12

PRR↑, paper 0.97±0.01 1.00±NA 0.98±0.01 0.98±0.01 0.98±0.00 0.99±0.00 0.94±0.02

ECE↓, our 41.37±0.35 1.00±NA 0.94±0.05 1.45±0.13 1.08±0.19 1.85±0.29 5.69±0.37

ECE↓, paper 1.69±0.31 1.00±NA 2.00±0.15 0.77±0.15 2.00±0.46 1.69±0.31 9.23±0.54

NLL↓, our 6.38±0.04 1.00±NA 1.06±0.04 1.35±0.02 1.19±0.01 1.38±0.01 1.86±0.04

NLL↓, paper 1.32±0.05 1.00±NA 1.16±0.05 1.32±0.05 1.16±0.05 1.26±0.00 2.00±0.05
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Figure 3: Data/knowledge uncertainty-distributions for ensemble, EnD2 and EnD2
+AUX.

Figure 4: Data/knowledge uncertainty-distributions for ensemble and EnD2
+AUX on the 3-class CIFAR10 dataset
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