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In this Appendix, we provide relevant preliminary knowledge, mathematical proofs, complete training
and inference algorithms, additional experimental results, more implementation details about our
Di?Pose and limitations and broader impacts.

A Preliminary: Continuous Diffusion Model

The continuous diffusion model consists of two primary processes: the forward process and the
reverse process. The forward process methodically corrupts the original data x( into a noisy latent
variable g, which converges to a stationary distribution (e.g., a Gaussian distribution). Conversely,
the reverse process aims to reconstruct the original data o from x g, utilizing learned parameters.

Forward Process Starting with xo drawn from the distribution g(x), the forward process incremen-
tally corrupts x through a sequence of latent variables 1.5 = (x1, 2, ..., xs), where each x4
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retains the same dimensionality as xy. This transformation is modeled as a fixed Markov chain:

S
q(@1.slmo) = ] a(mslmen). ¢))
s=1

where each transition q(xs|xs_1) is defined by a Gaussian distribution:

g(xs|lxs—1) = N(zs; /1 — nss_1,ns1) ()

Here, 7 is a small positive constant that follows a predefined schedule (71,72, ... ,ng), allowing
the data to progressively approach an isotropic Gaussian distribution, N'(0, I), as s increases. The
overall transition from x( to & can thus be expressed as:

g(@so) = N (w4; \/Co, (1 - T)I) 3)
where (s =1 —nsand ¢, = [[}_, ¢-

Reverse Process In the reverse process, the model aims to convert the latent variable x g, which
is assumed to follow the distribution N (0, I'), back into the original data . The joint probability
distribution is given by:
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The conditional distributions involved are inferred using Bayes rule as follows:
q(xs|@s—1,%0)q(Ts—1|T0)
Q(xs |.’130)

To optimize the generative model py(x) for fitting the data distribution g(xo), we minimize a
variational upper bound on the negative log-likelihood:
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However, continuous diffusion models are not applicable in discrete spaces, such as quantized token
indices k = (k1, ko, ..., k) where each k; assumes one of |C| discrete values. This limitation arises
because Gaussian noise cannot corrupt discrete elements in a meaningful way. Thus, modeling in
discrete spaces necessitates the development of discrete diffusion processes.

B Mathematical Proofs

In this section, we provide a detailed mathematical proofs for Eq. (6), which can quickly calculate
q(ks|ko) according to Eq. (2).

Concretely, we use mathematical induction to prove Eq. (6). At first, we have following conditional
information:
as, Bs € 10,1], 6 = 1 = [C|Bs — s,
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Now we want to prove that M e(ko) = @se(ko) + (7, — B,)e(|C| + 1) + B,. Firstly, when s = 1,
we have:

. gl + Bly k = ko
Mic(ko) =< 5y, k #kpandk # |C| + 1 (3)
Y1, k=|C|+1
which is clearly hold. Suppose the Eq. (6) holds at step s, then for s = s 4 1, we have:
M, 1¢(ko) = My 1 Mye(ko). ©))

Now we consider three conditions:
(1) when k = kg in step s + 1, we have:
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(2) when k = |C| + 1 in step s + 1, we have:
MS+1c(k0)(k) =795+ (1 - 75)73-&-1 =1- (1 - 73—&-1) = 73-&-1' (11)
(3) when k # ko and k # |C| + 1 in step s + 1, we have:
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The proof of Eq. (6) is completed. Notably, according to Eq. (6), the computation cost of ¢(k;|ko)
can be reduced from O(|C|2S) to O(|C|).

C Algorithms for Discrete Diffusion Process
In this section, we provide complete training and inference algorithms for discrete diffusion process.

C.1 Training Procedure

The discrete diffusion process aims to model quantized 3D pose tokens in a discrete space. This
involves utilizing a 2D image I and its corresponding 3D human pose P as inputs. The image [
serves as a contextual condition, while P is converted into discrete tokens for modeling.

Firstly, the 3D human pose P is encoded by fpg(-) and subsequently quantized using the FSQ
technique, resulting in multiple discrete tokens. Concurrently, a pre-trained Image Encoder extracts
contextual features from I, producing a conditional feature sequence y. During the forward process,
we sample s from a uniform distribution {1, 2, ...,.5 — 1, S} and compute ¢(k;|ko) based on Eq. (6).
In the reverse process, the pose denoiser fy(ks—_1|ks, y) is trained to estimate g(ks—1|ks, ko). Finally,
the overall loss is calculated according to Eq. (10), and the parameters of the pose denoiser 6 are
updated accordingly.

The complete training algorithm for the discrete diffusion process is presented in Algorithm 1.

C.2 Inference Procedure

In the inference process, our objective is to recover the 3D human pose P from an input 2D image
and discrete tokens.

Initially, all pose tokens are either masked or initialized randomly, which is achieved by sampling
from the stationary distribution p(kg). The 2D image I is encoded using the pre-trained Image
Encoder. Subsequently, we predict fy(ks—1|ks,y) step by step until the pose tokens are fully



Algorithm 1 Training Algorithm for the discrete diffusion process.

Require:
A transition matrix M, the number of steps .S, parameters of pose denoiser 6, training epoch
T, pose dataset D (including 2D image I and 3D human pose P), and the well-learned pose
encoder fpg(-).
fori =1to7T do
for (I,P)in D do
ko = FSQ(fpr(P)), y =ImageEncoder(]);
sample s from Uniform{1,2,...,S — 1, S};
calculate q(ks|ko) based on Eq. (6);
estimate fo (ksfl |k57 y);
calculate loss according to Eq. (10);
update 6;
end for
end for
return 6.
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Algorithm 2 Inference Algorithm for the discrete diffusion process.

Require:
The number of steps .S, input 2D image I, the pose decoder fpp(-), parameters of pose denoiser
0, stationary distribution p(kg);
s = S, y = ImageEncoder(I);
sample k, from p(kgs);
while s > 0 do
ks + sample from pg(ks_1|ks, y)
s (s—1)
end while
return fpp(ks).

A A S e

recovered. Finally, the reconstructed tokens are decoded using the pose decoder fpg(-), yielding the
recovered 3D pose P.

The complete inference algorithm for the discrete diffusion process is presented in Algorithm 2.

D Additional Implementation Details

All experiments are carried out on one NVIDIA A100 PCIe GPU. The proposed Di?Pose is completely
implemented in PyTorch [6]. In this section, we provide the detailed training settings for the pose
quantization step and the discrete diffusion process.

For the pose quantization step, we employ the AdamW [4] optimizer with 8; = 0.9 and 52 = 0.999,
adhering to a base learning rate of 1e-3 and a weight decay parameter of 0.15. The training process is
configured with a batch size of 256 across a total of 20 epochs.

For the discrete diffusion process, we still utilize the the AdamW optimizer with 8; = 0.9 and
B2 = 0.96, adhering to a base learning rate of 5.5e-4 and a weight decay parameter of 4.5e-2. The
training process is configured with a batch size of 64 across a total of 50 epochs.

E Additional Experimental Results
We exhibit more experimental results to verify the effectiveness of our Di’Pose.

E.1 Quantitative Results

As shown in Table 1, we benchmark Di*Pose against SOTA 3D HPE methods on the Human3.6M
under PA-MPJPE protocol. Our Di*Pose achieves 39.0mm in average PA-MPJPE, surpassing the



Table 1: Results on Human3.6M in millimeters under PA-MPJPE. The best results are in bold, and
the second-best ones are underlined.

Methods | Dir Disc Eat Greet Phone Photo Pose Pur Sit SitD Smoke Wait WalkD Walk WalkT|Avg

1 1ccvi7139.5 432 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 492 450 49.5 38.0 43.1 |47.7
cver17|34.7 39.8 41.8 38.6 425 47.5 38.0 36.6 50.7 56.8 42.6 39.6 439 321 36.5 |41.8

Martinez et al.
Pavlakos et al.

[
. 171
Liu et al. [3] gccvis|35.9 40.0 38.0 41.5 425 514 37.8 36.0 48.6 56.6 41.8 383 42.7 31.7 362 |41.2
Zhang et al. [Slrpamr2s| — — — — @ — - - - - - - —  — — — |391
Choi etal. [1] 1ros23|36.7 41.1 37.6 422 40.5 44.1 37.8 36.3 47.0 60.5 39.8 389 42.7 337 351 |409
Gong et al. [2] cvrr23|33.9 38.2 36.0 39.2 40.2 46.5 35.8 34.8 48.0 52.5 41.2 36.5 409 303 33.8 |39.2

Di2Pose (Ours) ‘34.5 38.4 35.1 40.8 39.8 47.0 349 34.7 47.1 52.3 404 36.1 429 30.0 334 ‘39.0

performance of the compared SOTA 3D HPE methods, which indicates that Di*Pose is able to
enhance monocular 3D HPE in indoor scenes.

E.2 Qualitative Results

In this part, we present additional qualitative results on the Human3.6M and 3DPW datasets. As
illustrated in Figure 1, our Di’Pose model demonstrates the ability to accurately recover 3D human
poses in both indoor and in-the-wild scenarios. Particularly noteworthy is its performance under
various occlusion conditions, including self-occlusion and object occlusion. Even in these challenging
situations, Di?Pose consistently produces reasonable 3D pose estimations, highlighting its robustness
to occlusions.

F Broader Impacts

This research focuses on estimating physically valid 3D human poses from monocular frames, espe-
cially under occlusion scenes. Such a method can be positively used for sports analysis, surveillance,
healthcare, autonomous driving, etc. where clear, unobstructed views of the subject may not always
be available. It can also lead to malicious use cases, such as illegal surveillance and video synthesis.
Thus, it is essential to deploy these algorithms with care and make sure that the extracted human
poses are with consent and not misused. Moreover, the diffusion-based model has a longer runtime
compared to other CNN or GCN-based methods, causing more computational resources and energy
consumption.

References

[1] J. Choi, D. Shim, and H. J. Kim. Diffupose: Monocular 3d human pose estimation via denoising diffusion
probabilistic model. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3773-3780. IEEE, 2023.

[2] J. Gong, L. G. Foo, Z. Fan, Q. Ke, H. Rahmani, and J. Liu. Diffpose: Toward more reliable 3d pose
estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13041-13051, 2023.

[3] K. Liu, R. Ding, Z. Zou, L. Wang, and W. Tang. A comprehensive study of weight sharing in graph networks
for 3d human pose estimation. In Proceedings of the European conference on computer vision (ECCV),
pages 318-334. Springer, 2020.

[4] I Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

[5] J. Martinez, R. Hossain, J. Romero, and J. J. Little. A simple yet effective baseline for 3d human pose
estimation. In Proceedings of the IEEE international conference on computer vision, pages 2640-2649,
2017.

[6] A.Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

[7] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis. Coarse-to-fine volumetric prediction for single-
image 3d human pose. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 7025-7034, 2017.



(a) Human36M (b) 3DPW
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