
Under review as a conference paper at ICLR 2023

AN EMPIRICAL STUDY OF NEURAL CONTEXTUAL
BANDIT ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in representation learning have made significant influences on
solutions of contextual bandit problems. Neural bandit algorithms have been ac-
tively developed and reported to gain extraordinary performance improvement
against classical bandit algorithms in numerous papers. However, there lacks a
comprehensive comparison among the existing neural bandit algorithms, and it is
still not clear whether or when they can succeed in complex real-world problems.
In this work, we present an inclusive empirical study on three different categories
of existing neural bandit algorithms on several real-world datasets. The results
show that such algorithms are highly competitive against their classical counter-
parts in most cases, however the advantage is not consistent. The results also
reveal crucial challenges for future research in neural bandit algorithms.

1 INTRODUCTION

In recent decades, contextual bandit algorithms have been extensively studied (Langford & Zhang,
2007; Chu et al., 2011) for solving sequntial decision-making problems. In such problems, an agent
iteractively interacts with the environment to maximize its accumulated rewards over time based on
the given context. The essence of contextual bandits is to balance exploration and exploitation under
uncertainty. In practice, contextual bandit algorithms have wide applications in real-world scenarios,
including content recommendation (Li et al., 2010; Wu et al., 2016), online advertising (Schwartz
et al., 2017; Nuara et al., 2018), and mobile health (Lei et al., 2017; Tewari & Murphy, 2017).

Linear contextual bandits, which assume the expected reward is linearly related to the given context
features, have been extensively studied in literature (Auer et al., 2002; Rusmevichientong & Tsitsik-
lis, 2010; Dani et al., 2008; Abbasi-Yadkori et al., 2011; Chu et al., 2011). Though linear contextual
bandit algorithms are theoretically sound and succeed in a number of real-world applications, the
linear assumption fails in capturing non-linear relations between the context vector and the reward.
This motivates the study of generalized linear bandits (Li et al., 2017; Faury et al., 2020; Filippi
et al., 2010) and kernelized bandits (Krause & Ong, 2011; Chowdhury & Gopalan, 2017; Valko
et al., 2013). Recently, deep neural networks (DNN) (LeCun et al., 2015) have been introduced
to learn the underlying reward mapping directly. (Riquelme et al., 2018) developed NeuralLinear,
which applied a Bayesian linear regression on the feature mappings learned by the last layer of
a neural network and get the approximation of the reward via Thompson Sampling. (Zahavy &
Mannor, 2019) extended NeuralLinear by adding a likelihood matching mechanism to overcome the
catastrophic forgetting problem. (Xu et al., 2020) proposed Neural-LinUCB by performing explo-
ration over the last layer of the neural network. NeuralUCB (Zhou et al., 2020), NeuralTS (Zhang
et al., 2020) and NPR (Jia et al., 2021) explore the entire neural network parameter space to obtain
nearly optimal regret using the neural tangent kernel technique (Jacot et al., 2018).

All the proposed neural contextual bandit algorithms reported encouraging empirical improvement
compared to their classical counterparts or a selected subset of neural contextual bandit algorithms.
However, there still lacks a horizontal comparison among the neural contextual bandit solutions
on more comprehensive real-world datasets. We argue, for practical applications, it is important
to understand when and how a neural contextual algorithm better suits a specific task. In this
work, we provide an extensive empirical evaluation on a set of most referred neural contextual
bandit algorithms on nine real-world datasets: six K-class classification datasets from UCI ma-
chine learning datasets (Dua & Graff, 2017), one learning to rank dataset for web search , and two

1



Under review as a conference paper at ICLR 2023

logged bandit dataset for online recommendations . We choose LinUCB as a reference linear bandit
algorithm against six selected neural contextual bandit algorithms: NeuralLinear , NeuralLinear-
LikelihoodMatching , NeuralUCB , Neural-LinUCB , NeuralTS , and NPR . We evaluated all bandit
algorithms under the metric of regret/reward and running time, as long as the model sensitivity to
the choices of neural netowrk architectures and hyper-parameter settings. We conclude that in most
cases, neural contextual bandit algorithms provide significant performance improvement compared
to the linear model, while in some specific cases, the advantage of neural bandits is marginal. Be-
sides, the results demonstrate that across different datasets and problem settings, different neural
contextual bandit algorithms show various patterns. In other words, no single neural bandit algo-
rithm outperforms others in every bandit problem.

2 ALGORITHMS

In this section, we first introduce the general setting of contextual bandit problem, and then present
the existing bandit solutions, including both linear and neural models.

2.1 CONTEXTUAL BANDIT PROBLEM

We focus on the problem of contextual bandits, where the agent iteratively interacts with the envi-
ronment for T rounds. T is known beforehand. At each round, the agent will choose one arm from
K candidate arms, where each arm is associated with a d-dimensional context vector: xa ∈ Rd.
Once the arm at is selected, the agent will receive the corresponding reward rt,at that generated as
rt,at = h(xt,at) + ηt, where h is an unknown reward mapping and ηt is υ-sub-Gaussian noise. The
goal of a bandit algorithm is to minimize the pseudo regret:

RT = E
[∑T

t=1
(rt,a∗

t
− rt,at)

]
, (2.1)

where a∗t is the optimal arm at round t with the maximum expected reward.

2.2 LINEAR CONTEXTUAL BANDIT ALGORITHMS

In linear contextual bandits, the unknown reward function h(·) is assumed to be a linear function:
h(xt,at

) = x⊤
t,at

θ∗, where θ∗ ∈ Rd is the underlying unknown model weight. One of the most
popularl linear contextual bandit algorithms is LinUCB (Li et al., 2010; Abbasi-Yadkori et al., 2011).
At each round t, a ridge regression is applied to learn the current model θt based on the observations
collected so far,

θt = argmin
θ

∑t−1

τ=1
(rτ,aτ

− x⊤
τ,aτ

θ)2 +
λ

2
∥θ∥22, (2.2)

where λ is the coefficient of L2 regularization. Then, LinUCB pulls the arm with highest upper
confidence bound:

at = argmax
a∈[K]

{
x⊤
t,aθt + αt

√
x⊤
t,aA

−1
t xt,a

}
, At = λI+

∑t−1

τ=1
xτ,aτ

x⊤
τ,aτ

(2.3)

where αt > 0 is a scaling factor that controls the exploration rate. Once the reward of the pulled
arm is received, the model will be updated to θt+1. By leveraging the width of confidence interval
of reward estimation, LinUCB well balances the explore-exploit trade-off in bandit learning and
obtains a sublinear regret with respect to the time horizon T .

2.3 NEURAL BANDIT ALGORITHMS

Numerous attempts have been made to apply neural networks in contextual bandit problems, under
the fact that neural networks are remarkable approximators of any unknown functions (Cybenko,
1989). In the following sections, we categorize existing neural contextual bandit algorithms into
three main categories based on their exploration methods.

2



Under review as a conference paper at ICLR 2023

2.3.1 NEURAL NETWORK AS FEATURE MAPPING

The first category of algorithms treats neural networks as non-linear feature mappings and deploys
linear bandit models on top of the learned mappings. (Riquelme et al., 2018; Zahavy & Mannor,
2019) first introduced a linear exploration policy on the last layer of a neural network. Different from
linear bandit algorithms where the feature mapping is stationary, neural-linear algorithms consider
the feature mapping changes after the model update at each round.

NeuralLinear. The NeuralLinear algorithm (Riquelme et al., 2018) introduced a fully-connected
neural network to capture the non-linear relationship between input context vector and the reward.
It applies the Bayesian linear regression on the last layer of the neural network (Snoek et al., 2015),
and makes the decision via Thompson Sampling. The goal of the neural network is to find a good
representation for Bayesian linear regression to predict the reward.

At round t, the NeuralLinear algorithm learns the model by minimizing the mean squared error
(MSE),

L(w) = ∥f(xaτ ;θ)− rτ,aτ ∥22. (2.4)

The exploration is performed by using ϕt, the representation learned as the last layer of the neural
network. After observing the raw context vector xt, the agent applies the neural network to learn a
representation ϕt. Then ϕt is used to perform a Bayesian linear regression.

The agent computes the posterior reward of an action via a linear function mapping: rt = ϕ⊤
t µ̂.

After observing r, the prior at time t is updated by Pr(µ,ν2) = Pr(µ|ν2)Pr(ν2) based on the
assumption that ν2 ∼ InvGamma(ct, bt) and Pr(µ|ν2) ∝ N (µt,ν

2(A0 +At)
−1), where At is

defined over the history representations of input data.

Specifically, at each step, we sample the noise parameter ν2 from Pr(ν2) and then sample a weight
vector µ̂ from its posterior distribution N (µt,ν

2(A0 +At)
−1). With the sampled µ̂, we select the

arm by at = argmaxa∈[K] ϕ
⊤
t µ̂ and then observe the reward rt. The parameters in NeuralLinear

are calculated as follows:

At = (Φ⊤Φ+Λ0)
−1, µt = At(Λ0µ0 +Φ⊤R), (2.5)

ct = c0 + t/2, bt = b0 + (R⊤R+ θ⊤
0 A0θ0 − θ⊤

t A
−1
t θt)/2, (2.6)

where µ0 = 0, Λ0 = λId, and A is a matrix defined based on the history representation of input
data. In addition, Φ and R can be viewed as memory buffers storing the history representation data
and reward, respectively.

NeuralLinear with Likelihood Matching. This algorithm (Zahavy & Mannor, 2019) extends Neu-
ralLinear with a small memory buffer to handle the catastrophic forgetting problem, which refers
to the issue of drifting model estimation caused by the loss of information from previous experi-
ence (Kirkpatrick et al., 2017). At each round t, it stores the representation into a bounded memory
buffer, which is denoted as E. When E is full, it will remove a previous observation in a round robin
manner.

The likelihood matching mechanism is to deal with the change of representation by using the DNN
and the memory buffer. Based on the posterior distribution of θt ∼ N (θt,ν

2(A0 + At)
−1), the

marginal distribution of rt is N (ϕ⊤
t θt,ν

2s2t ), where st =
√
ϕ⊤

t A
−1
t ϕt (Agrawal & Goyal, 2013).

Thus the goal is to make the likelihood of rt given the new feature mappings consistent with it given
the old feature mappings.

After each training phase, new feature representation is denoted as Eϕ ∈ Rn×m, where n is the
length of the previous action sequence and m is the dimension of the feature representation. Use
Eϕold

to denote the old representation before training. The likelihood matching approach summa-
rizes the old representation into the priors of the correlation matrix A0 and the mean vector µ0 under
the new representation. The weights of the last layer of the neural network µ is a good approxima-
tion of the mean µ0 because the neural network is trained online by holding the information of the
entire observed data and therefore not limited to the memory buffer. For the approximation of the
correlation matrix A0, the goal is to find A0 such that

s2t = ϕ⊤
t (A

0)−1ϕt = Trace((A0)−1ϕ⊤
t ϕt),

3



Under review as a conference paper at ICLR 2023

where s2t = ϕ⊤
old(Aold)

−1ϕold and the equality is based on the cyclic property of the trace. With
the definition that Zt = ϕ⊤

t ϕt, the problem can be viewed as a regression problem:

minimize
(A0)−1

∑n

j=1
(Trace((Z⊤

j A0)−1)− s2j )
2, subject to (A0)−1 ≥ 0.

The exploration step is similar to the NeuralLinear algorithm:

At = At−1 + ϕ⊤
t ϕt, Ψt = Ψt−1 + ϕ⊤

t rt,

R2
t = R2

t−1 + r2t , θt = (A0 +At)
−1(A0µ0 +Ψt),

ct = c0 + t/2, bt = b0 + (R2
t + (µ0)⊤A0µ0 − θ⊤

t Atθt)/2,

where θt is a weight vector sampled from the posterior distribution, µ0 is the mean prior, and A0 is
the prior of the correlation matrix.

NeuralLinUCB. A neural network always have the number of parameters in the order of 100 thou-
sands, which makes the exploration on the entire parameter space inefficient. The NeuralLinUCB is
a combination of the NeuralLinear and the NeuralUCB algorithm. It introduces a neural network to
learn a deep representation and then performs UCB-based exploration on the last layer of the neural
network. In particular, the reward function is defined as the inner product between the weight of
the last layer of the neural network and the last hidden layer representation, namely, r = ϕ⊤µt−1.
Then a UCB-based exploration is performed as follows:

at = argmax
a∈[K]

{
ϕ⊤

t θt−1 + αt

√
ϕ⊤

t A
−1
t−1ϕt

}
, (2.7)

where θt−1 is a point estimator of the unknown weight in the last layer, ϕt is the representation
learned as the last layer of the neural network and At is a matrix defined based on the history
representation of input data.

2.3.2 NEURAL TANGENT KERNEL BASED ALGORITHMS

Most recently, under the neural tangent kernel space, neural bandit algorithms are able to perform
the exploration in the entire parameter space. In this category, a fully connected neural network f(·)
is introduced to approximate the reward h(x),

f(x;θ) =
√
mWLσ(WL−1σ(. . . σ(W1x))), (2.8)

where σ(x) = ReLU(x), θ = [vec(W1), . . . , vec(WL)] ∈ Rp, with p as the number of parameters
of all hidden layers of the neural network, and p = m +md +m2(L − 1) with m as the width of
the each hidden layer.

NeuralUCB. At round t, NeuralUCB learns the model by minimizing an l2-regularized square loss,

L(θ) =
∑t

τ=1

(
f(xaτ ;θ)− rτ,aτ

)2
/2 +mλ∥θ − θ0∥22/2. (2.9)

where the regularization centers at the randomly initialization θ0 with the trade-off parameter λ.
In NeuralUCB, with neural tangent kernel, it is proved that with a satisfied neural network width
m, with high probability, the underlying reward mapping function can be approximated by a linear
function over g(x;θ0), parameterized by θ∗ − θ0, where g(x;θ0) = ∇θf(x;θ0) ∈ Rd is the
gradient of the initial neural network. Therefore, at each round, NeuralUCB selects the arm as,

at = argmax
a∈[K]

{
f(xt,a;θt−1) + αt

√
g(xt,a;θt−1)⊤A

−1
t g(xt,a;θt−1)

}
, (2.10)

where αt is a positive scaling factor, θt−1 is the current parameter of neural network, and At is a
matrix defined based on history gradient of the neural network,

At =
∑t−1

τ=1
g(xτ,aτ ;θ0)g(xτ,aτ ;θ0)

⊤/m+ λI. (2.11)

NeuralTS. The NeuralTS algorithm is similar to the design of NeuralUCB based on the neural
tangent kernel technique (Jacot et al., 2018). Similar to NeuralUCB, NeuralTS learns the model

4



Under review as a conference paper at ICLR 2023

Table 1: Statistics of UCI dataset
DATASET Mushroom Covertype Magic Adult Shuttle

Number of attributes 22 54 11 14 9
Number of arms 2 7 2 2 7
Number of instances 8,124 581,012 19, 020 48,842 58,000

parameters by minimizing Eq equation 2.9. NeuralTS explores the neural network parameter space
via Thompson Sampling, where it maintains a posterior distribution of the reward estimation for each
arm. At each round t, for each arm, NeuralTS samples the reward from its posterior distribution,

rt,at
∼ N (f(xt,at

;θt−1), ν
2σ2), (2.12)

where ν is the exploration variance parameter, and σ2
t is computed as:

σ2
t = λg(xt,at ;θt−1)

⊤A−1
t g(xt,at ;θt−1),

with At defined in Eq 2.11.

2.3.3 PERTURBATION BASED ALGORITHMS

The third category of methods avoids explicit exploration by introducing controlled perturbations in
the neural network. (Jia et al., 2021) introduced pseudo noise generated from a zero-mean Gaussian
distribution to the observed reward history, which eliminated explicit exploration in neural bandit
algorithms.

NPR. At each round t, NPR updates the model by minimizing the loss function defined as,

L(θ) =
∑t

τ=1

(
f(xτ,aτ

;θ)− (rτ,aτ
+ γτ )

)2
/2 +mλ∥θ − θ0∥22/2. (2.13)

where {γt
s}ts=1 ∼ N (0, σ2) are Gaussian random variables that are independently sampled in each

round t, and σ is a hyper-parameter that controls the strength of perturbation and thus the explo-
ration. Because of the perturbation, the agent only need to select the arm with the largest estimated
reward:

at = argmax
a∈[K]

f(xa;θt−1) (2.14)

where f(x;θt−1) is the output of the neural network. NPR is proved to obtain the same level of
regret upper bound as other neural bandit algorithms.

3 EXPERIMENTS

In this section, we present the empirical evaluations of all the neural contextual bandit algorithms
introduced in Section2. In particular, we report the results on five K-class classification datasets
from UCI machine learning datasets (Dua & Graff, 2017), a learning to rank dataset for web search:
Web10K (Qin & Liu, 2013), and two logged bandit datasets for recommendations: Japanese Fashion
datasets (Saito et al., 2020), and Yahoo! Front Page Module dataset(Li et al., 2010).

3.1 DATASET AND EXPERIMENT SETTINGS

3.1.1 K-CLASS CLASSIFICATION DATASETS

We evaluate all neural bandit algorithms on five datasets from UCI machine learning repository.
Specifically, we use datasets mushroom, covertype, shuttle, adult, and magic. These
are K-class classification datasets, of which the statistics are presented in Table 1. We adopt the
disjoint model Li et al. (2010) to build the context feature vectors to generated a K-armed pool:
x1 = (x,0, . . . ,0), . . . ,xk = (0, . . . ,0,x) ∈ Rd×k. The agent receives reward 1 if the correct
class is selected, otherwise 0. Cumulative regret is defined as the total mistakes made by the agent
over T rounds. We report the averaged cumulative regret across 10 runs for 10,000 rounds, except
for the mushroom dataset which only contain 8,124 instances in Figure 1(a) to 1(e). For neural
bandit algorithms, we apply a 3-layer neural network with m = 16 units in each hidden layer and
the model is updated every round.

5



Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(a) Adult

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(b) Covertype

0 2000 4000 6000 8000 10000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(c) Magic

0 1000 2000 3000 4000 5000 6000 7000 8000

0

100

200

300

400

500

600

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(d) Mushroom

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

1400

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(e) Shuttle

Figure 1: Empirical results of regret and time consumption on UCI dataset.

3.1.2 LEARNING TO RANK DATASET

The MSLR-Web10K dataset is a public learning to rank dataset from Microsoft LETOR benchmark,
contains 10,000 unique queries, each containing a set of documents. Each document is associated
with 136 ranking features and labeled with a relevance degree range from not relevant(0) to perfectly
relevant(4). We treat the documents in each query as arms. At each round, we randomly select one
query and treat the corresponding documents as the arm pool. The regret is defined as the difference
between the best relevance score of the arm pool and the selected one. In our experiment, we applied
a 3-layer neural network with m = 64 units in each hidden layer. Figure 3 shows the averaged regret
across 5 runs for 150,000 rounds.

3.1.3 JAPANESE FASHION DATASETS

The Japanese Fashion datasets is a set of logged bandit datasets collected from a e-commerce plat-
form, ZOZOTOWN. The dataset was collected in a 7-day experiment by using two different policies:
random and bernoulli thompson sampling. It includes three “campaigns”, correspond-
ing to “ALL”, “Men’s” and “Women’s” items, respectively. In our simulation, we only use the
random collected dataset with “ALL” items, which contains 1,374,237 user-item interactions and
80 items. Each item has 4 features and each user is represented with a 26-dimension binary feature
vector. We generated the candidate pool as follows: we fixed the size of the candidate arm pool to
k = 25 for each round; for each user, we selected the item according to the complete observations
in the dataset, and randomly choose 24 items from the item list. We generated the context vectors
by computing the outer product of user feature and item feature. In our experiment, we adopted a
3-layer neural network with m = 32 units in each hidden layer. Cumulative CTR is used to compare
the performance of different algorithms, which is defined as the number of clicks it obtains and the
number of accesses it is received. To improve visibility, we normalized the cumulative CTR by a
random strategy’s cumulative CTR, which is the algorithm’s relative CTR (Li et al., 2010). We
ran through the dataset 5 times and reported the averaged relative CTR in Figure 4.

3.1.4 YAHOO! FRONT PAGE TODAY MODULE DATASET

The Yahoo! Front Page Module dataset is collected in May 2009. In each observation, users were
randomly selected to visit a small set of articles hand-picked from a large article pool, where old

6



Under review as a conference paper at ICLR 2023

0 1000 2000 3000 4000 5000 6000 7000 8000

0

100

200

300

400

500

600

700

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(a) arch:16,16 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

200

400

600

800

1000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(b) arch:16,16 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

200

400

600

800

1000

1200

1400

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(c) arch:16,16 freq:200

0 1000 2000 3000 4000 5000 6000 7000 8000

0

100

200

300

400

500

600

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(d) arch:32,32 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

200

400

600

800

1000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(e) arch:32,32 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

200

400

600

800

1000

1200

1400

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(f) arch:32,32 freq:200

0 1000 2000 3000 4000 5000 6000 7000 8000

0

100

200

300

400

500

600

700

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(g) arch:64,64 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

200

400

600

800

1000

1200

1400

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(h) arch:64,64 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

200

400

600

800

1000

1200

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(i) arch:64,64 freq:200

Figure 2: Sensitivity evaluation on the mushroom dataset.

0 20000 40000 60000 80000 100000 120000 140000
0

50000

100000

150000

200000

250000

Re
gr

et

LinUCB
NeuralUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS

(a) Web10K

0
20

00
40

00
60

00
80

00
10

00
0

LinUCB

NeuralUCB

NeuralLinear

NeuralLinear
Likelihood
Matching

NeuralLinUCB

NPR

NeuralTS

El
ap

se
d 

tim
e 

(s
ec

)

(b) Elapsed time
Figure 3: Cumulative regret and time consumption on Web10K dataset.

articles will be replaced by the new ones after a period of time. The size of the candidate pool is 20
on average.

We treat the clicked articles for each user as positive feedback. We constructed the context vector by
computing the outer product of user feature and article feature, the concatenating the outer product
with the user feature and article feature. In our experiment, we select May01 dataset, which contains
more than 4.7 million events. A 3-layer neural network with m = 16 units in each hidden layer
was applied. Following the evaluation metric in Japanese Fashion dataset, we report the averaged
Relative CTR across 5 runs in Figure 5.

7



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Re
la

tiv
e 

CT
R

LinUCB
NeuralUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS

(a) Japanese

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

LinUCB

NeuralUCB

NeuralLinear

NeuralLinear
Likelihood
Matching

NeuralLinUCB

NPR

NeuralTS

El
ap

se
d 

tim
e 

(s
ec

)

(b) Elapsed time

Figure 4: Comparisons of relative CTR and time consumption on Japanese Fashion dataset.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
1e6

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Cu
m

ul
at

iv
e 

CT
R

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(a) Yahoo

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

LinUCB

NeuralUCB

NeuralLinear

NeuralLinear
Likelihood
Matching

NeuralLinUCB

NPR

NeuralTS

El
ap

se
d 

tim
e 

(s
ec

)

(b) Elapsed time

Figure 5: Cumulative relative CTR and time consumption on Yahoo dataset.

3.2 EXPERIMENT RESULTS

3.2.1 RESULTS OF K-CLASS CLASSIFICATION

Figure 1 show the cumulative regret on K-class classification datasets. It can be observed that Lin-
UCB fails as it cannot capture the nonlinear relationship between the context vector and the reward.
In contrast, thanks to the power of representation learning of neural networks, the performance is
strongly boosted by neural models on mushroom and shuttle datasets. However, the improve-
ment on adult, covertype and magic is limited.

Although neural bandit algorithms show better or at least comparable performance to the linear
bandit algorithm, the variance of neural bandit models is much higher in Figure 1(d) and 1(e), which
might be harmful in real-world applications. To further investigate the sensitivity of the neural bandit
models, we evaluate three different neural architectures with m = 16, 32 and 64 units in each hidden
layer, and three model updating frequencies: {20, 100, 200}. Due to space limit, we report the result
on the mushroom dataset in Figure 2 and leave the other four covertype, shuttle, magic,
and adult in the appendix.

The performance of neural bandit models depends on their converge speed. Reducing updating
frequency slow down the convergence of neural bandit algorithms. The NeuralLinear algorithm
even fails to converge in most of the nine settings. Infrequently updating model parameters is not
helpful for experiments on small datasets like these K-class classification datasets. Based on the
results, we conclude that increasing the width of the neural network helps models to converge and
reduce the variance since larger neural networks can capture more information, and increasing the
update frequency in the initial steps will speed up the convergence.

8



Under review as a conference paper at ICLR 2023

3.2.2 RESULTS ON WEB10K DATASET

Figure 3 shows the averaged cumulative regret and time consumption of finishing 15,000 rounds on
the Web10K dataset. The neural bandit algorithms, except for NeuralLinear, consistently outper-
form the linear bandit algorithm. However, the advantage of applying neural bandit models is not
apparent, and the LinUCB algorithm uses almost half of the time less than most neural bandit algo-
rithms. Among the neural bandit algorithms, the NeuralLinear with LikelihoodMatching algorithm
shows promising results with the least running time. The limited memory buffer seems efficient
and can capture most of the valuable information of the historical data when running a large-scale
experiment.

3.2.3 RESULTS ON JAPANESE FASHION DATASET

Figure 4 shows the averaged cumulative relative CTR and time consumption on the Japanese Fash-
ion dataset. The performance is boosted by neural models. The neural bandit algorithms strongly
outperform the linear bandit algorithm. Compared with the Web10K dataset, the Japanese Fashion
dataset contains more information. It has two sides of features: the user feature and the item feature.
The interaction of the user and item feature provides informative knowledge to the neural network,
which helps it to capture more detailed information from the data. For time consumption, the Neu-
ralLinear with LikelihoodMatching uses the least time to finish the experiment. At the same time,
the LinUCB algorithm spends less time than all of the neural bandit algorithms. The NPR algorithm
achieves the highest cumulative relative CTR, and the NeuralLinUCB also performs well.

3.2.4 RESULTS ON YAHOO DATASET

Figure 5 provides the averaged cumulative relative CTR and time consumption on the Yahoo dataset.
The linear bandit algorithm outperforms most neural bandit algorithms except the NeuralLinUCB
algorithm. As the tiny document and user features, we conclude that simple features might fail to
provide helpful knowledge for training a neural model. The linear model is good enough to capture
low-level information from a simple feature. We surprisingly found that the NeuralLinear with
LikelihoodMatching algorithm used the least time among all of the algorithms, even faster than the
linear bandit algorithm, while the performance is not bad. It only used less than twenty percent
of the time other neural bandit algorithms used, which is a strong advantage in such a large-scale
dataset.

4 CONCLUSION

In this work, we provide an inclusive empirical study to investigate the impact on the performance
of applying neural networks in contextual bandit algorithms. We found that the neural bandit al-
gorithms can capture more nonlinear information and show promising results in most cases. The
neural bandit algorithms might fail if the number of data is insufficient, like the datasets from UCI
machine learning, or the context feature is too simple to provide enough knowledge to learn. The
NeuralLinUCB and the NPR algorithm always perform the best among all neural bandit algorithms.
In contrast, the NeuralLinear with LikelihoodMatching algorithm is the only one that can lever-
age the performance and time consumption. Some neural bandit algorithms would prefer frequent
model updating in the beginning of the experiment. It is worth investigating further and developing
the neural bandit algorithms.

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs.
In International conference on machine learning, pp. 127–135. PMLR, 2013.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

9



Under review as a conference paper at ICLR 2023

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pp. 844–853. PMLR, 2017.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-
tions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. 2008.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algo-
rithms for logistic bandits. In International Conference on Machine Learning, pp. 3052–3060.
PMLR, 2020.

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. Advances in Neural Information Processing Systems, 23, 2010.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Yiling Jia, Weitong Zhang, Dongruo Zhou, Quanquan Gu, and Hongning Wang. Learning neural
contextual bandits through perturbed rewards. In International Conference on Learning Repre-
sentations, 2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Andreas Krause and Cheng S Ong. Contextual Gaussian process bandit optimization. In Advances
in neural information processing systems, pp. 2447–2455, 2011.

John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-armed bandits.
Advances in neural information processing systems, 20(1):96–1, 2007.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Huitian Lei, Ambuj Tewari, and Susan A Murphy. An actor-critic contextual bandit algorithm for
personalized mobile health interventions. arXiv preprint arXiv:1706.09090, 2017.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pp. 661–670, 2010.

Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contex-
tual bandits. In International Conference on Machine Learning, pp. 2071–2080. PMLR, 2017.

Alessandro Nuara, Francesco Trovo, Nicola Gatti, and Marcello Restelli. A combinatorial-bandit
algorithm for the online joint bid/budget optimization of pay-per-click advertising campaigns. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Tao Qin and Tie-Yan Liu. Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Under review as a conference paper at ICLR 2023

Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. Open bandit dataset
and pipeline: Towards realistic and reproducible off-policy evaluation. arXiv preprint
arXiv:2008.07146, 2020.

Eric M Schwartz, Eric T Bradlow, and Peter S Fader. Customer acquisition via display advertising
using multi-armed bandit experiments. Marketing Science, 36(4):500–522, 2017.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International conference on machine learning, pp. 2171–2180. PMLR, 2015.

Ambuj Tewari and Susan A Murphy. From ads to interventions: Contextual bandits in mobile health.
In Mobile Health, pp. 495–517. Springer, 2017.

Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual bandits in a collabo-
rative environment. In Proceedings of the 39th International ACM SIGIR conference on Research
and Development in Information Retrieval, pp. 529–538, 2016.

Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
representation and shallow exploration. arXiv preprint arXiv:2012.01780, 2020.

Tom Zahavy and Shie Mannor. Deep neural linear bandits: Overcoming catastrophic forgetting
through likelihood matching. arXiv preprint arXiv:1901.08612, 2019.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. arXiv
preprint arXiv:2010.00827, 2020.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.

5 APPENDIX

11



Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

1400

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(a) arch:16,16 freq:20

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

1400

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(b) arch:32,32 freq:20

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

1400

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(c) arch:64,64 freq:20

0 2000 4000 6000 8000 10000

0

500

1000

1500

2000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(d) arch:16,16 freq:100

0 2000 4000 6000 8000 10000

0

500

1000

1500

2000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(e) arch:32,32 freq:100

0 2000 4000 6000 8000 10000

0

500

1000

1500

2000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(f) arch:64,64 freq:100

Figure 6: Sensitivity evaluation on the shuttle dataset.

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(a) arch:16,16 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(b) arch:32,32 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(c) arch:64,64 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(d) arch:16,16 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

3000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(e) arch:32,32 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

3000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(f) arch:64,64 freq:100

Figure 7: Sensitivity evaluation on the magic dataset.

12



Under review as a conference paper at ICLR 2023

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

3000

3500
Re

gr
et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(a) arch:16,16 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

3000

3500

4000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(b) arch:32,32 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(c) arch:16,16 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(d) arch:32,32 freq:100

Figure 8: Sensitivity evaluation on the covertype dataset.

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

3000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(a) arch:16,16 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(b) arch:32,32 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(c) arch:64,64 freq:20

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(d) arch:16,16 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

3000

3500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(e) arch:32,32 freq:100

0 1000 2000 3000 4000 5000 6000 7000 8000

0

500

1000

1500

2000

2500

Re
gr

et

LinUCB
NeuralLinear
NeuralLinearLikelihoodMatching
NeuralLinUCB
NPR
NeuralTS
NeuralUCB

(f) arch:64,64 freq:100

Figure 9: Sensitivity evaluation on the adult dataset.

13


	Introduction
	Algorithms
	Contextual Bandit Problem
	Linear contextual bandit algorithms
	Neural bandit algorithms
	Neural network as feature mapping
	Neural Tangent Kernel based algorithms
	Perturbation based algorithms


	Experiments
	Dataset and Experiment settings
	K-class classification datasets
	Learning to Rank dataset
	Japanese Fashion datasets
	Yahoo! Front Page Today Module dataset

	Experiment Results
	Results of K-class classification
	Results on Web10K dataset
	Results on Japanese Fashion Dataset
	Results on Yahoo dataset


	Conclusion
	Appendix

