
Under review as a conference paper at ICLR 2024

APPENDIX

A PROOFS

A.1 PROOF OF LEMMA 4.1 – BOUND ON THE POLICY GRADIENT VARIANCE

For any parametric policy ⇡✓ and function Q : S ⇥A ! R,

Var (r✓ log ⇡✓(a|s)Q(s, a))  max
s,a

[Q(s, a)]2 max
s

kr✓ log ⇡✓(·|s)k
2
F ,

where r✓ log ⇡✓(·|s) 2 RA⇥dim(✓) is a matrix whose a-th row is r✓ log ⇡✓(a|s)>.

Proof. The variance for a parametric policy ⇡✓ is given as follows:

Var (r✓ log ⇡✓(a|s)Q(a, s)) =Es⇠d⇡✓
,a⇠⇡✓(·|s)

⇥
r✓ log ⇡✓(a|s)

>
r✓ log ⇡✓(a|s)Q(s, a)2

⇤
�

Es⇠d⇡✓
,a⇠⇡✓(·|s) [r✓ log ⇡✓(a|s)Q(s, a)]> Es⇠d⇡✓

,a⇠⇡✓(·|s) [r✓ log ⇡✓(a|s)Q(s, a)] ,

where Q(s, a) is the currently estimated Q-function and d⇡✓ is the discounted state visitation frequency
induced by the policy ⇡✓. Since the second term we subtract is always positive (it is of quadratic form
v
>
v) we can bound the variance by the first term:

Var (r✓ log ⇡✓(a|s)Q(a, s)) Es⇠d⇡✓
,a⇠⇡✓(·|s)

⇥
r✓ log ⇡✓(a|s)

>
r✓ log ⇡✓(a|s)Q(s, a)2

⇤

=
X

s

d⇡✓ (s)
X

a

⇡✓(a|s)r✓ log ⇡✓(a|s)
>
r✓ log ⇡✓(a|s)Q(s, a)2

max
s,a

h
[Q(s, a)]2 ⇡✓(a|s)

iX

s

d⇡✓ (s)
X

a

r✓ log ⇡✓(a|s)
>
r✓ log ⇡✓(a|s)

max
s,a

[Q(s, a)]2 max
s

X

a

r✓ log ⇡✓(a|s)
>
r✓ log ⇡✓(a|s)

=max
s,a

[Q(s, a)]2 max
s

kr✓ log ⇡✓(·|s)k
2
F .

A.2 PROOF OF LEMMA 4.2 – VECTOR FORM OF C-SOFTTREEMAX

In vector form, (3) is given by

⇡
C
d,✓(·|s) =

exp
h
�

⇣
Cs,d + �

d
Ps (P⇡b)d�1 ⇥

⌘i

1
>
A exp

h
�

⇣
Cs,d + �dPs (P⇡b)d�1 ⇥

⌘i , (8)

where

Cs,d = Rs + Ps

"
d�1X

h=1

�
h (P⇡b)h�1

#
R⇡b . (9)

Proof. Consider the vector `s,· 2 R|A|
. Its expectation satisfies

E⇡b`s,·(d; ✓) = E⇡b

"
d�1X

t=0

�
t
rt + �

d
✓(sd)

#

= Rs +
d�1X

t=1

�
t
Ps(P

⇡b)t�1
R⇡b + �

d
Ps(P

⇡b)d�1⇥.

As required.

13

Under review as a conference paper at ICLR 2024

A.3 PROOF OF LEMMA 4.3 – GRADIENT OF C-SOFTTREEMAX

The C-SoftTreeMax gradient of dimension A⇥ S is given by

r✓ log ⇡
C
d,✓ = ��

d
⇥
IA � 1A(⇡

C
d,✓)

>⇤
Ps (P

⇡b)d�1
,

where for brevity, we drop the s index in the policy above, i.e., ⇡C
d,✓ ⌘ ⇡

C
d,✓(·|s).

Proof. The (j, k)-th entry of r✓ log ⇡C
d,✓ satisifes

[r✓ log ⇡
C
d,✓]j,k =

@ log(⇡C
d,✓(a

j
|s))

@✓(sk)

= ��
d[Ps(P

⇡b)d�1]j,k �

P
a

h
exp

h
�

⇣
Cs,d + �

d
Ps (P⇡b)d�1 ⇥

⌘ii

a
��

d
⇥
Ps(P⇡b)d�1

⇤
a,k

1
>
A exp

h
�

⇣
Cs,d + �dPs (P⇡b)d�1 ⇥

⌘i

= ��
d[Ps(P

⇡b)d�1]j,k � ��
d
X

a

⇡
C
d,✓(a|s)

⇥
Ps(P

⇡b)d�1
⇤
a,k

= ��
d[Ps(P

⇡b)d�1]j,k � ��
d
⇥
(⇡C

d,✓)
>
Ps(P

⇡b)d�1
⇤
k

= ��
d[Ps(P

⇡b)d�1]j,k � ��
d
⇥
1A(⇡

C
d,✓)

>
Ps(P

⇡b)d�1
⇤
j,k

.

Moving back to matrix form, we obtain the stated result.

A.4 PROOF OF THEOREM 4.4 – EXPONENTIAL VARIANCE DECAY OF C-SOFTTREEMAX

The C-SoftTreeMax policy gradient is bounded by

Var
�
r✓ log ⇡

C
d,✓(a|s)Q(s, a)

�
 2

A
2
S
2
�
2

(1� �)2
�
2d
|�2(P

⇡b)|2(d�1)
.

Proof. We use Lemma 4.1 directly. First of all, it is know that when the reward is bounded in [0, 1],
the maximal value of the Q-function is 1

1�� as the sum as infinite discounted rewards. Next, we
bound the Frobenius norm of the term achieved in Lemma 4.3, by applying the eigen-decomposition
on P

⇡b :

P
⇡b = 1Sµ

> +
SX

i=2

�iuiv
>
i , (10)

where µ is the stationary distribution of P⇡b , and ui and vi are left and right eigenvectors correspond-
ingly.

k��
d
�
IA,A � 1A⇡

>�
Ps(P

⇡b)d�1
kF = ��

d
k
�
IA,A � 1A⇡

>�
Ps

1Sµ

> +
SX

i=2

�
d�1
i uiv

>
i

!
kF

(Ps is stochastic) = ��
d
k
�
IA,A � 1A⇡

>�

1Aµ
> +

SX

i=2

�
d�1
i Psuiv

>
i

!
kF

(projection nullifies 1Aµ
>

) = ��
d
k
�
IA,A � 1A⇡

>�

SX

i=2

�
d�1
i Psuiv

>
i

!
kF

(triangle inequality)  ��
d

SX

i=2

k
�
IA,A � 1A⇡

>� �
�
d�1
i Psuiv

>
i

�
kF

(matrix norm sub-multiplicativity)  ��
d
|�

d�1
2 |

SX

i=2

kIA,A � 1A⇡
>
kF kPskF kuiv

>
i kF

= ��
d
|�

d�1
2 |(S � 1)kIA,A � 1A⇡

>
kF kPskF .

14

Under review as a conference paper at ICLR 2024

Now, we can bound the norm kIA,A � 1A⇡
>
kF by direct calculation:

kIA,A � 1A⇡
>
k
2
F = Tr

h�
IA,A � 1A⇡

>� �
IA,A � 1A⇡

>�>
i

(11)

= Tr
h
IA,A � 1A⇡

>
� ⇡1

>
A + ⇡

>
⇡1A1

>
A

i
(12)

= A� 1� 1 +A⇡
>
⇡ (13)

 2A. (14)

From the Cauchy-Schwartz inequality,

kPsk
2
F =

X

a

X

s

[[Ps]a,s]
2 =

X

a

k[Ps]a,·k
2
2 

X

a

k[Ps]a,·k1k[Ps]a,·k1  A.

So,

Var
�
r✓ log ⇡

C
d,✓(a|s)Q(s, a)

�
 max

s,a
[Q(s, a)]2 max

s
kr✓ log ⇡

C
d,✓(·|s)k

2
F


1

(1� �)2
k��

d
�
IA,A � 1A⇡

>�
Ps(P

⇡b)d�1
k
2
F


1

(1� �)2
�
2
�
2d
|�2(P

⇡b)|2(d�1)
S
2(2A2),

which obtains the desired bound.

A.5 A LOWER BOUND ON C-SOFTTREEMAX GRADIENT (RESULT NOT IN THE PAPER)

For completeness we also supply a lower bound on the Frobenius norm of the gradient. Note that
this result does not translate to the a lower bound on the variance since we have no lower bound
equivalence of Lemma 4.1.
Lemma A.1. The Frobenius norm on the gradient of the policy is lower-bounded by:

kr✓ log ⇡
C

d,✓(·|s)kF � C · ��
d
|�2(P

⇡b)|(d�1)
. (15)

Proof. We begin by moving to the induced l2 norm by norm-equivalence:

k��
d
�
IA,A � 1A⇡

>�
Ps(P

⇡b)d�1
kF � k��

d
�
IA,A � 1A⇡

>�
Ps(P

⇡b)d�1
k2.

Now, taking the vector u to be the eigenvector of the second eigenvalue of P⇡b :

k��
d
�
IA,A � 1A⇡

>�
Ps(P

⇡b)d�1
k2 � k��

d
�
IA,A � 1A⇡

>�
Ps(P

⇡b)d�1
uk2

= ��
d
k
�
IA,A � 1A⇡

>�
Psuk2

= ��
d
|�2(P

⇡b)|(d�1)
k
�
IA,A � 1A⇡

>�
Psuk2.

Note that even though Psu can be 0, that is not the common case since we can freely change ⇡b (and
therefore the eigenvectors of P⇡b).

A.6 PROOF OF LEMMA 4.5 – VECTOR FORM OF E-SOFTTREEMAX

For d � 1, (4) is given by

⇡
E
d,✓(·|s) =

Es,d exp(��d⇥)

1>AEs,d exp(��d⇥)
, (16)

where

Es,d = Ps

d�1Y

h=1

�
D
�
exp[��h

R]
�
P

⇡b
�

(17)

with R being the |S|-dimensional vector whose s-th coordinate is r(s).

15

Under review as a conference paper at ICLR 2024

Proof. Recall that

`s,a(d; ✓) = r(s) +
d�1X

t=1

�
t
r(st) + �

d
✓(sd). (18)

and, hence,

exp[�`s,a(d; ✓)] = exp

"
�

r(s) +

d�1X

t=1

�
t
r(st) + �

d
✓(sd)

!#
. (19)

Therefore,

E[exp�`s,a(d; ✓)] = E
"
exp

"
�

r(s) +

d�1X

t=1

�
t
r(st)

!#
E
⇥
exp

⇥
�
�
�
d
✓(sd)

�⇤��s1, . . . , sd�1

⇤
#

(20)

= E
"
exp

"
�

r(s) +

d�1X

t=1

�
t
r(st)

!#
P

⇡b(·|sd�1)

#
exp(��d⇥) (21)

= E
"
exp

"
�

r(s) +

d�2X

t=1

�
t
r(st)

!#
exp[��d�1

r(sd�1)]P
⇡b(·|sd�1)

#
exp(��d⇥).

(22)

By repeatedly using iterative conditioning as above, the desired result follows. Note that exp(�r(s))
does not depend on the action and is therefore cancelled out with the denominator.

A.7 PROOF OF LEMMA 4.6 – GRADIENT OF E-SOFTTREEMAX

The E-SoftTreeMax gradient of dimension A⇥ S is given by

r✓ log ⇡
E
d,✓ = ��

d
⇥
IA � 1A(⇡

E
d,✓)

>⇤ D
⇣
⇡

E
d,✓

⌘�1
Es,dD(exp(��d⇥))

1>
AEs,d exp(��d⇥)

,

where for brevity, we drop the s index in the policy above, i.e., ⇡E
d,✓ ⌘ ⇡

E
d,✓(·|s).

Proof. The (j, k)-th entry of r✓ log ⇡E
d,✓ satisfies

[r✓ log ⇡
E
d,✓]j,k =

@ log(⇡E
d,✓(a

j
|s))

@✓(sk)

=
@

@✓(sk)

⇣
log[(Es,d)

>
j exp(��d⇥)]� log[1>AEs,d exp(��

d⇥)]
⌘

=
��

d(Es,d)j,k exp(��d
✓(sk))

(Es,d)>j exp(��d⇥)
�

��
d
1
>
AEs,dek exp(��d

✓(sk))

1
>
AEs,d exp(��d⇥)

=
��

d(Es,dek exp(��d
✓(sk)))j

(Es,d)>j exp(��d⇥)
�

��
d
1
>
AEs,dek exp(��d

✓(sk))

1
>
AEs,d exp(��d⇥)

= ��
d

"
e
>
j

e>j Es,d exp(��d⇥)
�

1
>
A

1
>
AEs,d exp(��d⇥)

#
Es,dek exp(��

d
✓(sk)).

Hence,

[r✓ log ⇡
E
d,✓]·,k = ��

d
h
D(Es,d exp(��

d⇥))�1
� (1>AEs,d exp(��

d⇥))�1
1A1

>
A

i
Es,dek exp(��

d
✓(sk))

From this, it follows that

r✓ log ⇡
E
d,✓ = ��

d
h
D
�
⇡

E
d,✓

��1
� 1A1

>
A

i
Es,dD(exp(��d⇥))

1
>
AEs,d exp(��d⇥)

. (23)

The desired result is now easy to see.

16

Under review as a conference paper at ICLR 2024

A.8 PROOF OF THEOREM 4.7 — EXPONENTIAL VARIANCE DECAY OF E-SOFTTREEMAX

There exists ↵ 2 (0, 1) such that, for any function Q : S ⇥A ! R,

Var
�
r✓ log ⇡

E
d,✓(a|s)Q(s, a)

�
2 O

�
�
2
�
2d
↵
2d
�
.

If all rewards are equal (r ⌘ const), then ↵ = |�2(P⇡b)|.

Proof outline. Recall that thanks to Lemma 4.1, we can bound the PG variance using a direct bound
on the gradient norm. The definition of the induced norm is

kr✓ log ⇡
E
d,✓k = max

z:kzk=1
kr✓ log ⇡

E
d,✓zk,

with r✓ log ⇡E
d,✓ given in Lemma 4.6. Let z 2 RS be an arbitrary vector such that kzk = 1. Then,

z =
PS

i=1 cizi, where ci are scalar coefficients and zi are vectors spanning the S-dimensional space.
In the full proof, we show our specific choice of zi and prove they are linearly independent given that
choice. We do note that z1 = 1S .

The first part of the proof relies on the fact that (r✓ log ⇡E
d,✓)z1 = 0. This is easy to verify using

Lemma 4.6 together with (6), and because
h
IA � 1A(⇡E

d,✓)
>
i

is a projection matrix whose null-space
is spanned by 1S . Thus,

r✓ log ⇡
E
d,✓z = r✓ log ⇡

E
d,✓

SX

i=2

cizi.

In the second part of the proof, we focus on Es,d from (6), which appears within r✓ log ⇡E
d,✓. Notice

that Es,d consists of the product
Qd�1

h=1

�
D
�
exp(��h

R
�
P

⇡b
�
. Even though the elements in this

product are not stochastic matrices, in the full proof we show how to normalize each of them to a
stochastic matrix Bh. We thus obtain that

Es,d = PsD(M1)
d�1Y

h=1

Bh,

where M1 2 RS is some strictly positive vector. Then, we can apply a result by Mathkar and Borkar
(2016), which itself builds on (Chatterjee and Seneta, 1977). The result states that the product of
stochastic matrices

Qd�1
h=1 Bh of our particular form converges exponentially fast to a matrix of the

form 1Sµ
> s.t. k1Sµ

>
�
Qd�1

h=1 Bhk  C↵
d for some constant C.

Lastly, 1Sµ
>
⇡b

gets canceled due to our choice of zi, i = 2, . . . , S. This observation along with the
above fact that the remainder decays then shows that r✓ log ⇡E

d,✓

PS
i=2 zi = O(↵d), which gives the

desired result.

Full technical proof. Let d � 2. Recall that

Es,d = Ps

d�1Y

h=1

�
D
�
exp[��h

R]
�
P

⇡b
�
, (24)

and that R refers to the S-dimensional vector whose s-th coordinate is r(s). Define

Bi =

⇢
P

⇡b if i = d� 1,
D

�1(P⇡bMi+1)P⇡bD(Mi+1) if i = 1, . . . , d� 2,
(25)

and the vector

Mi =

⇢
exp(��d�1

R) if i = d,

exp(��i
R) � P⇡bMi+1 if i = 1, . . . , d� 2,

(26)

where � denotes the element-wise product. Then,

Es,d = PsD(M1)
d�1Y

i=1

Bi. (27)

17

Under review as a conference paper at ICLR 2024

It is easy to see that each Bi is a row-stochastic matrix, i.e., all entries are non-negative and
Bi1S = 1S .

Next, we prove that all non-zeros entries of Bi are bounded away from 0 by a constant. This is
necessary to apply the next result from Chatterjee and Seneta (1977). The j-th coordinate of Mi

satisfies

(Mi)j = exp[��i
Rj]

X

k

[P⇡b]j,k(Mi+1)k  k exp[��i
R]k1kMi+1k1. (28)

Separately, observe that kMd�1k1  k exp(��d�1
R)k1. Plugging these relations in (26) gives

kM1k1 

d�1Y

h=1

k exp[��h
R]k1 =

d�1Y

h=1

k exp[�R]k�
h

1 = k exp[�R]k
Pd�1

h=1 �h

1  k exp[�R]k
1

1��
1 .

(29)

Similarly, for every 1  i  d� 1, we have that

kMik1 

d�1Y

h=i

k exp[�R]k�
h

1  k exp[�R]k
1

1��
1 . (30)

The jk-th entry of Bi = D
�1(P⇡bMi+1)P⇡bD(Mi+1) is

(Bi)jk =
P

⇡b
jk [Mi+1]k

P|S|
`=1 P

⇡b
j` [Mi+1]`

�
P

⇡b
jk

P|S|
`=1 P

⇡b
j` [Mi+1]`

�
P

⇡b
jk

k exp[�R]k
1

1��
1

. (31)

Hence, for non-zero P
⇡b
jk , the entries are bounded away from zero by the same. We can now proceed

with applying the following result.

Now, by (Chatterjee and Seneta, 1977, Theorem 5) (see also (14) in (Mathkar and Borkar, 2016)),
limd!1

Qd�1
i=1 Bi exists and is of the form 1Sµ

> for some probability vector µ. Furthermore, there
is some ↵ 2 (0, 1) such that "(d) :=

⇣Qd�1
i=1 Bi

⌘
� 1S µ

> satisfies

k"(d)k = O(↵d). (32)

Pick linearly independent vectors w2, . . . , wS such that

µ
>
wi = 0 for i = 2, . . . , d. (33)

Since
PS

i=2 ↵iwi is perpendicular to µ for any ↵2, . . .↵S and because µ
> exp(��d⇥) > 0, there

exists no choice of ↵2, . . . ,↵S such that
PS

i=2 ↵iwi = exp(��d⇥). Hence, if we let z1 = 1S and
zi = D(exp(��d⇥))�1

wi for i = 2, . . . , S, then it follows that {z1, . . . , zS} is linearly independent.
In particular, it implies that {z1, . . . , zS} spans RS

.

18

Under review as a conference paper at ICLR 2024

Now consider an arbitrary unit norm vector z :=
PS

i=1 cizi 2 RS s.t. kzk2 = 1. Then,

r✓ log ⇡
E
d,✓z = r✓ log ⇡

E
d,✓

SX

i=2

cizi (34)

= ��
d
⇥
IA � 1A(⇡

E
d,✓)

>⇤ D
⇣
⇡

E
d,✓

⌘�1
Es,dD(exp(��d⇥))

1
>
AEs,d exp(��d⇥)

SX

i=2

cizi (35)

= ��
d
⇥
IA � 1A(⇡

E
d,✓)

>⇤ D

⇣
⇡

E
d,✓

⌘�1
Es,d

1
>
AEs,d exp(��d⇥)

SX

i=2

ciwi (36)

= ��
d
⇥
IA � 1A(⇡

E
d,✓)

>⇤ D
⇣
⇡

E
d,✓

⌘�1 ⇥
1Sµ

> + "(d)
⇤

1
>
AEs,d exp(��d⇥)

SX

i=2

ciwi (37)

= ��
d
⇥
IA � 1A(⇡

E
d,✓)

>⇤ D

⇣
⇡

E
d,✓

⌘�1
"(d)

1
>
AEs,d exp(��d⇥)

SX

i=2

ciwi (38)

= ��
d
⇥
IA � 1A(⇡

E
d,✓)

>⇤ D
⇣
⇡

E
d,✓

⌘�1
"(d)D(exp(��d⇥))

1
>
AEs,d exp(��d⇥)

(z � c11S), (39)

where (34) follows from the fact that r✓ log ⇡E
d,✓z1 = r✓ log ⇡E

d,✓1S = 0, (35) follows from
Lemma 4.6, (36) holds since zi = D(exp(��d⇥))�1

wi, (38) because µ is perpendicular wi for each
i, while (39) follows by reusing zi = D(exp(��d⇥))�1

wi relation along with the fact that z1 = 1S .

From (39), it follows that

kr✓ log ⇡
E
d,✓zk  ��

d
k"(d)k

�������

⇥
IA � 1A(⇡

E
d,✓)

>⇤ D

⇣
⇡

E
d,✓

⌘�1

1
>
AEs,d exp(��d⇥)

�������
kD(exp(��d⇥))k kz � c11Sk

(40)

 ��
d
↵
d(kIAk+ k1A(⇡

E
d,✓)

>
k)

�������

D

⇣
⇡

E
d,✓

⌘�1

1
>
AEs,d exp(��d⇥)

�������
exp(��d max

s
✓(s))kz � c11Sk

(41)

 ��
d
↵
d(1 +

p

A)

�������

D

⇣
⇡

E
d,✓

⌘�1

1
>
AEs,d exp(��d⇥)

�������
exp(��d max

s
✓(s))kz � c11Sk (42)

 ��
d
↵
d(1 +

p

A)
��D�1(Es,d exp(��

d⇥))
�� exp(��d max

s
✓(s))kz � c11Sk

(43)

 ��
d
↵
d(1 +

p

A)
1

mins[Es,d exp(��d⇥]s
exp(��d max

s
✓(s))kz � c11Sk (44)

 ��
d
↵
d(1 +

p

A)
exp(��d maxs ✓(s))

exp(��d mins ✓(s))mins |M1|
kz � c11Sk (45)

 ��
d
↵
d(1 +

p

A)
exp(��d maxs ✓(s))

exp(��d mins ✓(s)) exp(�mins r(s))
kz � c11Sk (46)

 ��
d
↵
d(1 +

p

A) exp(�[max
s

✓(s)�min
s

✓(s)�min
s

r(s)])kz � c11Sk. (47)

19

Under review as a conference paper at ICLR 2024

Lastly, we prove that kz � c11Sk is bounded independently of d. First, denote by c = (c1, . . . , cS)>

and c̃ = (0, c2, . . . , cS)>. Also, denote by Z the matrix with zi as its i-th column. Now,

kz � c11Sk = k

SX

i=2

cizik (48)

= kZc̃k (49)
 kZkkc̃k (50)
 kZkkck (51)

= kZkkZ
�1

zk (52)

 kZkkZ
�1

k, (53)

where the last relation is due to z being a unit vector. All matrix norms here are l2-induced norms.

Next, denote by W the matrix with wi in its i-th column. Recall that in (33) we only defined
w2, . . . , wS . We now set w1 = exp(��d⇥). Note that w1 is linearly independent of {w2, . . . , wS}

because of (33) together with the fact that µ>
w1 > 0. We can now express the relation between Z

and W by Z = D
�1(exp(��d⇥))W. Substituting this in (53), we have

kz � c11Sk  kD
�1(exp(��d⇥))WkkW

�1
D(exp(��d⇥))k (54)

 kWkkW
�1

kkD(exp(��d⇥))kkD�1(exp(��d⇥))k. (55)

It further holds that

kD(exp(��d⇥))k  max
s

exp
�
��

d
✓(s)

�
 max{1, exp[�max

s
✓(s)])}, (56)

where the last relation equals 1 if ✓(s) < 0 for all s. Similarly,

kD
�1(exp(��d⇥))k 

1

mins exp (��d✓(s))


1

min{1, exp[�mins ✓(s)])}
. (57)

Furthermore, by the properties of the l2-induced norm,

kWk2 

p

SkWk1 (58)

=
p

S max
1iS

kwik1 (59)

=
p

Smax{exp(��d⇥), max
2iS

kwik1} (60)



p

Smax{1, exp[�max
s

✓(s)], max
2iS

kwik1)}. (61)

Lastly,

kW
�1

k =
1

�min(W)
(62)



S�1Y

i=1

�max(W)

�i(W)

!
1

�min(W)
(63)

=
(�max(W))S�1

QS
i=1 �i(W)

(64)

=
kWk

S�1

| det(W)|
. (65)

The determinant of W is a sum of products involving its entries. To upper bound (65) independently
of d, we lower bound its denominator by upper and lower bounds on the entries [W]i,1 that are
independent of d, depending on their sign:

min{1, exp[�min
s

✓(s)])}  [W]i,1  max{1, exp[�max
s

✓(s)])}. (66)

Using this, together with (53), (55), (56), (57), and (61), we showed that kz� c11Sk is upper bounded
by a constant independent of d. This concludes the proof.

20

Under review as a conference paper at ICLR 2024

A.9 BIAS ESTIMATES

Lemma A.2. For any matrix A and Â,

Â
k
�A

k =
kX

h=1

Â
h�1(Â�A)Ak�h

.

Proof. The proof follows from first principles:

kX

h=1

Â
h�1(Â�A)Ak�h =

kX

h=1

Â
h�1

ÂA
k�h

�

kX

h=1

Â
h�1

AA
k�h (67)

=
kX

h=1

Â
h
A

k�h
�

kX

h=1

Â
h�1

A
k�h+1 (68)

= Â
k
�A

k +
k�1X

h=1

Â
h
A

k�h
�

kX

h=2

Â
h�1

A
k�h+1 (69)

= Â
k
�A

k
. (70)

Henceforth, k · k will refer to k · k1, i.e. the induced infinity norm. Also, for brevity, we denote ⇡C
d,✓

and ⇡̂
C
d,✓ by ⇡✓ and ⇡̂✓, respectively. Similarly, we use d⇡✓ and d⇡̂✓ to denote d⇡C

d,✓
and d⇡̂C

d,✓
. As for

the induced norm of the matrix P and its perturbed counterpart P̂ , which are of size S ⇥ A ⇥ S,

we slightly abuse notation and denote kP � P̂k = maxs{kPs � P̂sk}, where Ps is as defined in
Section 2.
Definition A.3. Let ✏ be the maximal model mis-specification, i.e., max{kP � P̂k, kr � r̂k} = ✏.

Lemma A.4. Recall the definitions of Rs, Ps, R⇡b and P
⇡b from Section 2, and respectively denote

their perturbed counterparts by R̂s, P̂s, R̂⇡b and P̂
⇡b . Then, for ✏ defined in Definition A.3,

max{kRs � R̂sk, kPs � P̂sk, kR⇡b � R̂⇡bk, kP
⇡b � P̂

⇡bk} = O(✏). (71)

Proof. The proof follows easily from the fact that the differences above are convex combinations of
P � P̂ and r � r̂.

Lemma A.5. Let ⇡✓ be as in (5), and let ⇡̂✓ also be defined as in (5), but with Rs, Ps, P
⇡b replaced

by their perturbed counterparts R̂s, P̂s, P̂
⇡b throughout. Then,

k⇡
C

d,✓ � ⇡̂
C

d,✓k = O(�d✏). (72)

Proof. To prove the desired result, we work with (5) to bound the error between Rs, Ps, P
⇡b , R⇡b

and their perturbed versions.

First, we apply Lemma A.2 together with Lemma A.4 to obtain that k(P⇡b)k � (P̂⇡b)kk = O(k✏).
Next, denote by M the argument in the exponent in (5), i.e.

M := �[Cs,d + �
d
Ps(P

⇡b)d�1⇥].

Similarly, let M̂ be the corresponding perturbed sum that relies on P̂ and r̂. Combining the bounds
from Lemma A.4, and using the triangle inequality, we have that kM̂ �Mk = O(�d✏).

Eq. (5) states that the C-SoftTreeMax policy in the true environment is ⇡✓ = exp(M)/(1> exp(M)).
Similarly define ⇡̂✓ using M̂ for the approximate model. Then,

⇡̂✓ = (⇡✓ � exp(M � M̂))1> exp(M)/(1> exp(M̂)),

21

Under review as a conference paper at ICLR 2024

where � denotes element-wise multiplication. Using the above relation, we have that k⇡̂✓ � ⇡✓k =

k⇡✓kk
exp(M�M̂)1> exp(M)

1> exp(M̂)
� 1k. Using the relation |e

x
� 1| = O(x) as x ! 0, the desired result

follows.

Theorem A.6. Let ✏ be as in Definition A.3. Further let ⇡̂
C

d,✓ being the corresponding approximate

policy as given in Lemma 4.2. Then, the policy gradient bias is bounded by

����
@

@✓

�
⌫
>
V

⇡✓
�
�

@

@✓

�
⌫
>
V

⇡̂✓
����� = O

✓
�
d

(1� �)2
S�

2
d✏

◆
. (73)

Proof. We have

@

@✓

�
⌫
>
V

⇡✓
�
�

@

@✓

⇣
⌫
>
V

⇡0
✓

⌘
(74)

= Es⇠d⇡✓
,a⇠⇡✓(·|s) [r✓ log ⇡✓(a|s)Q

⇡✓ (s, a)]� Es⇠d⇡̂✓
,a⇠⇡̂✓(·|s)

⇥
r✓ log ⇡̂✓(a|s)Q

⇡̂✓ (s, a)
⇤

(75)

=
X

s,a

�
d⇡✓ (s)⇡✓(a|s)r✓ log ⇡✓(a|s)Q

⇡✓ (s, a)� d⇡̂✓ (s)⇡̂✓(a|s)r✓ log ⇡̂✓(a|s)Q
⇡̂✓ (s, a)

�
(76)

=
X

s

⇣
d⇡✓ (s)(r✓ log ⇡✓(·|s))

>
D(⇡✓(·|s))Q

⇡✓ (s, ·) (77)

� d⇡̂✓ (s)(r✓ log ⇡̂✓(·|s))
>
D(⇡̂✓(·|s))Q

⇡̂✓ (s, ·)
⌘

(78)

=
X

s

4Y

i=1

Xi(s)�
4Y

i=1

X̂i(s)

!
(79)

=
X

s

4X

i=1

X̂1(s) · · · X̂i�1(s)
⇣
Xi(s)� X̂i(s)

⌘
Xi+1(s) · · ·X4(s), (80)

where X1(s) = d⇡✓ (s) 2 R, X2(s) = (r✓ log ⇡✓(·|s))> 2 RS⇥A
, X3(s) = D(⇡✓(·|s)) 2 RA⇥A

,

X4(s) = Q
⇡✓ (s, ·) 2 RA⇥A

, and X̂1(s), . . . , X̂4(s) are similarly defined with ⇡✓ replaced by ⇡̂✓.

Therefore, ����
@

@✓

�
⌫
>
V

⇡✓
�
�

@

@✓

⇣
⌫
>
V

⇡0
✓

⌘���� 

⇣
max

s
�(s)

⌘
S, (81)

where

�(s) = k

X

s

4X

i=1

X̂1(s) · · · X̂i�1(s)
⇣
Xi(s)� X̂i(s)

⌘
Xi+1(s) · · ·X4(s)k. (82)

Next, since d⇡✓ , d⇡̂✓ ,⇡✓, and ⇡̂✓ are all distributions, we have

max{|X1(s)|, |X̂1(s)|, |X3(s, a)|, |X̂3(s, a)|}  1. (83)

Separately, using Lemma 4.3, we have

kX2k = kr✓ log ⇡✓(a|s)k  ��
d(kIAk+ k1A⇡

>
✓ k)kPskk(P

⇡b)d�1
k. (84)

Since all rows of the above matrices have non-negative entries that add up to 1, we get

kY k  2��d
. (85)

In the rest of the proof, we bound each of kX1 � X̂1k, . . . , kX4 � X̂4k.

Finally,

kX4k 
1

1� �
. (86)

Similarly, the same bounds hold for X̂1, X̂2, X̂3 and X̂4.

22

Under review as a conference paper at ICLR 2024

From, we have

kX1 � X̂1k  (1� �)
1X

t=0

�
t
k⌫

>(P⇡✓)t � ⌫
>(P ⇡̂✓)tk (87)

 (1� �)k⌫k
X

t=0

�
t
td✏ (88)

 (1� �)d✏
1X

t=0

�
t
t (89)

=
�d✏

1� �
. (90)

The last relation follows from the fact that (1� �)�1 =
P1

t=0 �
t
, which in turn implies

�
@

@�

✓
1

1� �

◆
=

1X

t=0

t�
t
. (91)

From Lemma A.5, it follows that

kX3 � X̂3k = O(�d✏). (92)

Next, recall that from Lemma 4.3 that

X2(s, ·) = ��
d
⇥
IA � 1A(⇡✓)

>⇤
Ps (P

⇡b)d�1
.

Then,

kX2(s, ·)� X̂2(s, ·)k k��
d
⇥
IA � 1A(⇡✓)

>⇤
Pskk (P

⇡b)d�1
�

⇣
P̂

⇡b

⌘d�1
k (93)

+ k��
d
⇥
IA � 1A(⇡✓)

>⇤
kkPs � P̂skk

⇣
P̂

⇡b

⌘d�1
k (94)

+ ��
d
k1A(⇡✓)

>
� 1A(⇡̂✓)

>
kkP̂s

⇣
P̂

⇡b

⌘d�1
k. (95)

Following the same argument as in (85) and applying Lemma A.2, we have that (93) is O(��d
d✏).

Similarly, from the argument of (85), Eq. (94) is O(��d
✏). Lastly, (95) is O(��d

d✏) due to
Lemma A.5. Putting the above three terms together, we have that

kX2(s, ·)� X̂2(s, ·)k = O(��d
d✏). (96)

Since the state-action value function satisfies the Bellman equation, we have

Q
⇡✓ = r + �PQ

⇡✓ (97)

and
Q

⇡̂✓ = r̂ + �P̂Q
⇡̂✓ . (98)

Consequently,

kQ
⇡✓ �Q

⇡̂✓k  kr � r̂k+ �kPQ
⇡✓ � PQ

⇡̂✓k+ �kPQ
⇡̂✓ � P̂Q

⇡̂✓k (99)

 ✏+ �kPkkQ
⇡✓ �Q

⇡̂✓k+ �kP � P̂kkQ
⇡̂✓k (100)

 ✏+ �kQ
⇡✓ �Q

⇡̂✓k+
�

1� �
✏, (101)

which finally shows that

kX4 � X̂4k = kQ
⇡✓ �Q

⇡̂✓k 
✏

(1� �)2
. (102)

23

Under review as a conference paper at ICLR 2024

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

The environment engine is the highly efficient Atari-CuLE (Dalton et al., 2020), a CUDA-based
version of Atari that runs on GPU. Similarly, we use Atari-CuLE for the GPU-based breadth-first TS
as done in Dalal et al. (2021): In every tree expansion, the state St is duplicated and concatenated
with all possible actions. The resulting tensor is fed into the GPU forward model to generate the
tensor of next states (S0

t+1, . . . , S
A�1
t+1). The next-state tensor is then duplicated and concatenated

again with all possible actions, fed into the forward model, etc. This procedure is repeated until the
final depth is reached, for which W✓(s) is applied per state.

We train SoftTreeMax for depths d = 1 . . . 8, with a single worker. We use five seeds for each
experiment.

For the implementation, we extend Stable-Baselines3 (Raffin et al., 2019) with all parameters taken
as default from the original PPO paper (Schulman et al., 2017). For depths d � 3, we limited the
tree to a maximum width of 1024 nodes and pruned non-promising trajectories in terms of estimated
weights. Since the distributed PPO baseline advances significantly faster in terms of environment
steps, for a fair comparison, we ran all experiments for one week on the same machine and use the
wall-clock time as the x-axis. We use Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz equipped with
one NVIDIA Tesla V100 32GB.

B.2 TIME-BASED TRAINING CURVES

We provide the training curves in Figure 4. For brevity, we exclude a few of the depths from the plots.
As seen, there is a clear benefit for SoftTreeMax over distributed PPO with the standard softmax
policy. In most games, PPO with the SoftTreeMax policy shows very high sample efficiency: it
achieves higher episodic reward although it observes much less episodes, for the same running time.

Figure 4: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the wall-clock time.
The runs ended after one week with varying number of time-steps. The training curves correspond to
the evaluation runs in Figure 3.

B.3 STEP-BASED TRAINING CURVES

In Figure 5 we also provide the same convergence plots where the x-axis is now the number of online
interactions with the environment, thus excluding the tree expansion complexity. As seen, due to the
complexity of the tree expansion, less steps are conducted during training (limited to one week) as
the depth increases. In this plot, the monotone improvement of the reward with increasing tree depth
is noticeable in most games.

24

Under review as a conference paper at ICLR 2024

Figure 5: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the number of online
interactions with the environment. The runs ended after one week with varying number of time-steps.
The training curves correspond to the evaluation runs in Figure 3.

We note that not for all games we see monotonicity. Our explanation for this phenomenon relates to
how immediate reward contributes to performance compared to the value. Different games benefit
differently from long-term as opposed to short-term planning. Games that require longer-term
planning need a better value estimate. A good value estimate takes longer to obtain with larger depths,
in which we apply the network to states that are very different from the ones observed so far in the
buffer (recall that as in any deep RL algorithm, we train the model only on states in the buffer). If
the model hasn’t learned a good enough value function yet, and there is no guiding dense reward
along the trajectory, the policy becomes noisier, and can take more steps to converge – even more
than those we run in our week-long experiment.

For a concrete example, let us compare Breakout to Gopher. Inspecting Fig. 5, we observe that
Breakout quickly (and monotonically) gains from large depths since it relies on the short term goal
of simply keeping the paddle below the moving ball. In Gopher, however, for large depths (>=5),
learning barely started even by the end of the training run. Presumably, this is because the task in
Gopher involves multiple considerations and steps: the agent needs to move to the right spot and
then hit the mallet the right amount of times, while balancing different locations. This task requires
long-term planning and thus depends more strongly on the accuracy of the value function estimate.
In that case, for depth 5 or more, we would require more train steps for the value to “kick in” and
become beneficial beyond the gain from the reward in the tree.

The figures above convey two key observations that occur for at least some non-zero depth: (1) The
final performance with the tree is better than PPO (Fig. 3); and (2) the intermediate step-based results
with the tree are better than PPO (Fig. 5). This leads to our main takeaway from this work — there
is no reason to believe that the vanilla policy gradient algorithm should be better than a multi-step
variant. Indeed, we show that this is not the case.

C FURTHER DISCUSSION

C.1 THE CASE OF �2(P⇡b) = 0

When P
⇡b is rank one, it is not only its variance that becomes 0, but also the norm of the gradient

itself (similarly to the case of d ! 1). Note that such a situation will happen rarely, in degenerate
MDPs. This is a local minimum for SoftTreeMax and it would cause the PG iteration to get stuck,
and to the optimum in the (desired but impractical) case where ⇡b is the optimal policy. However,
a similar phenomenon was also discovered in the standard softmax with deterministic policies:

25

Under review as a conference paper at ICLR 2024

✓(s, a) ! 1 for one a per s. PG with softmax would suffer very slow convergence near these
local equilibria, as observed in Mei et al. (2020a). To see this, note that the softmax gradient is
r✓ log ⇡✓(a|s) = ea � ⇡✓(·|s), where ea 2 [0, 1]A is the vector with 0 everywhere except for the
a-th coordinate. I.e., it will be zero for a deterministic policy. SoftTreeMax avoids these local optima
by integrating the reward into the policy itself (but may get stuck in another, as discussed above).

26

	Introduction
	Preliminaries
	Policy Gradient

	SoftTreeMax: Exponent of trajectories
	Theoretical Analysis
	Variance of C-SoftTreeMax
	Variance of E-SoftTreeMax
	Bias with an Approximate Forward Model

	SoftTreeMax: Deep Parallel Implementation
	Experiments
	Related Work
	Discussion
	Reproducibility
	Proofs
	Proof of Lemma 4.1 – Bound on the policy gradient variance
	Proof of Lemma 4.2 – Vector form of C-SoftTreeMax
	Proof of Lemma 4.3 – Gradient of C-SoftTreeMax
	Proof of Theorem 4.4 – Exponential variance decay of C-SoftTreeMax
	A lower bound on C-SoftTreeMax gradient (result not in the paper)
	Proof of Lemma 4.5 – Vector form of E-SoftTreeMax
	Proof of Lemma 4.6 – Gradient of E-SoftTreeMax
	Proof of Theorem 4.7 — Exponential variance decay of E-SoftTreeMax
	Bias Estimates

	Experiments
	Implementation Details
	Time-Based Training Curves
	Step-Based Training Curves

	Further discussion
	The case of 2(Pb)=0

