
S1 Main Contributions1

Generative Factor Chaining (GFC) is proposed with the motivation of zero-shot motion planning2

for long-horizon tasks. The goal is to use short-horizon skill transition distributions and efficiently3

compose them to structure a long-horizon task-level distribution at inference. The factorized state4

representation of GFC allows explicit reasoning of inter-object and skill-object interactions and5

satisfying spatial constraints for coordinate manipulation. The primary contributions of GFC are as6

follows:7

1. A generalized task representation to formulate complex long-horizon coordination tasks8

as a spatial-temporal factor graph of single-arm manipulation skill sequences connected via9

spatial dependencies.10

2. A compositional framework to compose short-horizon skill-level transition distributions11

learned via diffusion models to represent long-horizon task-level distributions.12

3. Easy plug-and-play via learning skill distributions with skill-level data only and add it13

to the skill library. Any skill from the library can be plugged as temporal factors in the14

spatial-temporal factor graph directly at inference for a given long-horizon task.15

S2 Additional Related Works16

Factor-graph representation for TAMP. The graphical abstraction of a system for understand-17

ing several inter-dependencies has been used in various domains [1]. Specifically in context to18

task and motion planning (TAMP), such a representation allows the decomposition of multiple19

modalities (discrete and continuous variables) in the state of a system [2]. Solving together for20

discrete (logical decision variables) and continuous (motion parameters) can be formulated as a Hy-21

brid Constraint Satisfaction Problem (H-CSP) problem, Logic-Geometric Program (LGP) [3], and22

more recently by advanced gradient descent methods [4]. By following the factor-graph represen-23

tation, the state space can be represented as a Cartesian product of all the subspaces and the action24

space can be compactly represented based on the modalities they affect. We particularly follow the25

dynamic factor graph representation used by Garrett et al. [2] to represent all the objects and action26

parameters as the variable nodes of the graph and all the kinematic inter-dependencies as the factors27

of the graph.28

Optimization for factor graphs. Factor graphs are graphical models where the directed and undi-29

rected factors, respectively represent the joint or conditional distribution of the variable nodes con-30

nected to them. Most directed factors graphs as used for localization [5, 6] are formulated into31

probabilistic graphical models of hidden-markov chains and solved for the maximum a posteri-32

ori (MAP) [5, 7] estimates of the unknown node variables. Particularly in motion planning, optimiz-33

ing for all the variable nodes is often formulated as a constraint satisfaction problem [2, 8].34

Additional related works on learning for TAMP. Recent works have shown that a number of35

components of a TAMP system benefit from powerful generative models. Wang et al [9, 10] use36

Gaussian Processes to learn continuous-space sampler for TAMP. Similarly, Kim et al. [11] use37

GANs to learn action samplers. Fang et al. [12] propose to use Diffusion Models to capture complex38

distributions such as Inverse Kinematics solutions, grasps, and contact dynamics. However, they39

still rely on an overarching TAMP system to consume the generated samples to perform planning.40

In contrast, our method directly forms a geometric plan sampler by chaining together factor-level41

diffusion models.42

S3 Additional mathematical details of Generative Factor Chaining (GFC)43

In this section, we provide additional detail on the mathematical formulation of the spatial-temporal44

probabilistic graphical model using spatial (scene) and temporal (skill) factors. First, we explain45

each of them individually and then discuss their composition to formulate GFC.46
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Spatial probabilistic graphical model. Consider an arbitrary state, s of the system based on our47

representation of an undirected factor graph, {V,F}. It consists of nodes (v ∈ V) as the objects and48

robots in the scene, and certain spatial factors (f ∈ F) signifying the inter-dependencies between49

the nodes. When we construct a probabilistic graphical model from this representation, an intuitive50

way of calculating the distribution of a state, p(s), is the composition of all the factor distributions.51

Mathematically:52

p(s) ∝
∏
f∈F

pf (Sf ) (S1)

where pf (Sf ) represents the joint factor potential of nodes v ∈ Sf ⊆ V , i.e. all nodes involved in a53

factor. This indicates that the joint distribution of all the nodes must satisfy each of the factors, also54

explored by Diffusion-CCSP [8].55

Temporal probabilistic graphical model. Let us consider an arbitrary transition of an arbitrary56

state s0 to s1 after executing a skill π0 with action parameter a0. Based on our definition of skill57

as a temporal factor, the factor distribution for π0 will be pπ0
(s0, a0, s1), which models the joint58

distribution of nodes s0, a0, s1 such that the transition dynamics is satisfied. We are particularly59

interested in the joint distribution of a trajectory factor graph made by a temporal composition of60

π0 with subsequent skills (factors) πk in a skill skeleton Φ = {π0, π1, . . . , πK}, executed on sk61

with action parameters ak and leads to transitioned state sk+1. The joint distribution of trajectory62

τ = {s0, a0, s1, . . . , sK , aK , sK+1} can be given similar to Equation S1 as:63

p(τ) ∝
∏

πk∈Φ

pπk
(sk, ak, sk+1) (S2)

However, there is a concern: While spatial factors can be composed in parallel with no conditional64

dependency, temporal factors have an inherent conditional dependency because we must know s165

to execute π1. Hence, unlike the undirected state factor graph, the factor graph in this case is a66

directed factor graph. Now we will explore this additional dependency with a fairly simple trajectory67

τ = {s0, a0, s1, a1, s2}.68

Understanding forward-backward temporal dependency. Our goal is to construct the joint dis-69

tribution of all the nodes by composing all the spatial-temporal factors in the plan. Since skill factors70

have a temporal dependency, we have to compensate accordingly. We follow GSC [13] and write the71

joint distribution of the nodes in the trajectory based on forward and backward analysis as follows:72

p(τ |s0) ∝ pπ0(s0, a0, s1)pπ1(a1, s2|s1) and p(τ |s2) ∝ pπ0(s0, a0|s1)pπ1(s1, a1, s2)

p(τ |s0) ∝
pπ0(s0, a0, s1)pπ1(s1, a1, s2)

pπ1
(s1)

and p(τ |s2) ∝
pπ0

(s0, a0, s1)pπ1
(s1, a1, s2)

pπ0
(s1)

This signifies that for every intermediate state connected by two temporal factors, the joint distribu-73

tion of the sequence has an additional term in the denominator calculated as:74

p(τ |s0, s2) ∝
pπ0

(s0, a0, s1)pπ1
(s1, a1, s2)√

pπ0
(s1)pπ1

(s1)
(S3)

Probabilistic model for spatial-temporal factor graphs. Now, we again consider the spatial graph75

for representing the state, where the probability of finding a state s is the joint distribution of all76

the nodes in the factor graph. We will now integrate the spatial factors with the temporal factors77

considering the compensation term introduced in Equation S3. Thus, we will not consider the state78

as one entity but a collection of nodes. Accordingly, Equation S3 applies for any intermediate node79

connected by two temporal factors. If we consider the set of intermediate nodes Vi connected by80

two skills πi− and πi+, we can rewrite Equation S2 as:81

p(τ) ∝
∏

πk∈Φ pπk
(vk ∈ Vπk

pre, ak, vk+1 ∈ Vπk

effect)
∏K

k=0

∏
f∈Fk

pf (Sf )√∏
vi∈Vi

pπi−(vi)pπi+(vi)
(S4)

This completes the joint distribution of all the nodes in the spatial-temporal factor graph plan consid-82

ering the temporal factors for all skills with their pre-condition and effect nodes, all spatial factors for83
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all states in the plan, and all intermediate nodes in the temporal chain. We show our implementation84

of this formulation in algorithm 1.85

Example of spatial factors. Previous work [8] considered a family of spatial factors like (left,86

right, top, bottom, near and far) to model collision-free object configurations. In this work,87

we are particularly interested in constructing a family of fixed transforms (FixedTransform) to88

model coordinated manipulation motion. For example, in order to satisfy the pre-condition of89

strike(A, B), the transform between nodes A and B must satisfy a family of transforms sig-90

nifying that B must be Aligned with A to strike it. Thus the factor for strike(A, B) with91

Aligned transforms HA will look like: f ≡ distance(transform(A,B),HA) ≤ permisible error92

for at least one transform. In that case, the distribution of the factor will be: p(f = True|A,B) ∝93

exp[−distance(transform(A,B),HA)]. The score of such a distribution can then be calculated as94

ϵf (A
(t), B(t), t) = −∇A(t),B(t)distance(transform(A(t), B(t)), hA)

where hA ∈ HA is the closest transform to the current transform. The distance between transforms95

is calculated as the summation of the Cartesian distance and the quaternion distance.96

Summary GFC is a new paradigm to solve complex manipulation problems using spatial-temporal97

factor graphs. GFC can be divided into the following segments: (1) train individual skill factor dis-98

tributions individually, without any prior knowledge or data from other skills in the library (2) create99

spatial-temporal factor graph from a plan skeleton, (3) compose individual spatial and temporal fac-100

tor distributions to construct a probabilistic graphical model, and (4) use the plan-level distribution101

to sample plan solutions. The proposed approach is modular as the individual skill factors and con-102

straints can be flexibly connected to form new graphs. GFC can connect parallel skill chains with103

added spatial factors to solve coordinated manipulation problems directly at inference. Additional104

detail in algorithm algorithm 1.105
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S4 Generative Factor Chaining in practice: An illustrative explanation106
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Figure S1: Detailed methodology. Above figure illustrates the complete pipeline to solve a long-
horizon coordinated manipulation problem with our proposed method. Task: The task objective is
to place the hammer inside the box. However, since the left arm cannot reach the box, the hammer
is handed over to the right arm such that the right arm can complete the task. (a) Inputs: The initial
scene and a symbolically feasible spatial-temporal factor graph plan to complete the goal objective.
(b) GFC: We formulate all factors as distributions of the nodes connected to them. GFC represents
spatial factors as classifiers and temporal factors as diffusion models. We leverage compositionality
of diffusion models to compose spatial-temporal distributions using Equation S4 to find the joint
distribution of the complete plan directly at inference. Finally, samples drawn from such a joint
distribution are symbolically and geometrically feasible solutions of the whole plan. (c) Output: A
sequence of skill choices and optimizer continuous parameters executed on robots with parameter-
ized skill controllers.
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Algorithm 1: Generative Factor Chaining (GFC) Algorithm
1 Hyperparameters:
2 Number of reverse diffusion steps T

3 Inputs:
4 Pre-defined skill library Π = {π1, π2, . . . , πM}
5 Individual skill diffusion score functions ϵπ
6 Task skeleton ΦK = {π0, π1, . . . , πK}: a sequence of skills of length K
7 Scene graph sequence ΦS = {s0, s1, . . . , sK}: a sequence of scene factors of length K +

1 where sk ≡ {Vk,Fk}
8 Goal condition g ≡ {Vg,Fg}
9 Noise schedule σ

10 Initialize t = T = 1
11 Initialize ∆t

12 Initial node sequence x(T ) =
[
v
(T )
k ∀ v ∈ Vk, a

(T )
πk , . . .∀ k ∈

[0,K]
]

sampled from N (0, σT I)

13 while t ≥ 0 do

14 // Score of the joint distribution of all the nodes
15 ϵΦ(v

(t)
k ∀ v ∈ Vk, a

(t)
πk , . . .∀ k ∈ [0,K], t) = 0

16 // Calculating the effective score of each node
17 ϵΦ(x

(t), t) =
∑K

k=0 ϵπk
(x(t), t) +

∑K
k=0

∑
f∈Fk

ϵf (x
(t), t) ∀x ∈

x (Computational assumption, Equation S4)

18 // Only for nodes connected with two temporal factors fx,1 and fx,2
19 ϵΦ(x

(t), t) =

ϵΦ(x
(t), t)− 1

2

[
ϵfx,1

(x(t), t) + ϵfx,2
(x(t), t)

]
(Denominator compensation, Equation S4)

20 // calculating updated noised samples for the next reverse diffusion timestep
21 x̃(t−1) = x(t) + σ̇tσtϵΦ(v

(t)
k ∀ v ∈ Vk, a

(t)
πk , . . .∀ k ∈ [0,K], t)∆t

22 t = t−∆t
23 end
24 Return x(0)

S5 Skill Data Collection and Skill Training107

We consider a finite set of parameterized skills in our skill library. While our framework supports108

flexible addition of new skills to the skill library, we choose skills appropriate for the considered109

tasks. The parameterization, data collection, and training method for each of the skills is described110

as follows:111

1. Pick: Gripper picks up an object from the table and the parameters contain 6-DoF pose in112

the object’s frame of reference. The skill diffusion models are trained on successful pick113

actions on all the available set of objects namely lid, cube, hammer, and nail/stake.114

2. Place: Gripper places an object at the target location and parameters contain 6-DoF pose in115

the place target’s frame of reference. This skill requires specifying two set of parameters,116

the target pose and the target object (e.g. box, table). The picked object is placed and117

successful placements are used to train the skill diffusion model.118
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3. Move: Gripper reaches a target location with an object in hand and parameters contain 6-119

DoF pose in the manipulator’s frame of reference within the workspace. This skill captures120

the distribution of the reachable workspace of the robot. When composed with the Move121

skill of the second manipulator, the combined distribution captures the common workspace.122

4. ReGrasp: Gripper grasps object mid-air and the parameters contain 6-DoF pose in the123

object’s frame of reference. While collecting data directly for this skill is non-trivial, we124

consider that if an object is picked up with parameters q1 and moved with parameters q2,125

then the object can be grasped at the workspace location defined by q2 with the ReGrasp126

parameters as q1. Thus, we reuse Pick and Move data to train the skill diffusion model for127

ReGrasp. While this is a design choice, with appropriate skill level data, we can train this128

skill separately too.129

5. Push: Gripper uses the grasped object to push away another object. The skill is motivated130

from prior work [13, 14] where a hook object is used to Push blocks. The parameters of131

this skill are (x, y, r, θ) such that the hook is placed at the (x, y) position on the table and132

pushed by a distance r in the radial direction θ w.r.t. the origin of the manipulator. The133

skill diffusion models is trained following GSC [13].134

6. Pull: Gripper uses the grasped object to pull another object inwards. The skill is also135

motivated from prior work [13, 14] where a hook object is used to Pull blocks. The136

parameters of this skill are (x, y, r, θ) such that the hook is placed at the (x, y) position137

on the table and pulled by a distance r in the radial direction θ w.r.t. the origin of the138

manipulator. The skill diffusion models is trained following GSC [13].139

7. Strike: Gripper strikes another object with one object in hand (e.g., a hammer). As a140

design choice, we do not train a skill diffusion model for this skill. Strike is primarily141

used as a terminal skill. We are only concerned about the pre-condition as their effects can142

be designed manually, which is similar to “subgoal skill” used in prior work. For example,143

in order to satisfy the pre-condition of Strike, the hammer and nail must be aligned.144

This can be satisfied in diverse configurations. However, the effect is achieved through a145

deterministic motion.146

8. Pour: Gripper rotates the object in hand in a pouring fashion. Similar to Strike, we use147

Pour as a terminal skill too. In order to satisfy the pre-condition of Pour, the transform148

between the source and target mug must belong to the family of admissible distributions.149

We achieve the actual trajectory by designing a deterministic motion. With appropriate150

skill level data, we can also train skill diffusion models, however, such improvement is out151

of scope of this work.152

S6 Model Training and Architecture153

Model architecture. Our transformer-based score-network architecture is derived from the Dif-154

fusion Models with Transformers (DiT) [15] implementation, also open-sourced at: https://155

github.com/facebookresearch/DiT. We follow a similar concept to that of patchifying an im-156

age into many smaller patches, encoding each one of them using a common encoder and passing157

it as a sequence to the transformer architecture with respective positional embeddings. In our case,158

we consider a sequence of nodes consisting of both the object and skill parameters nodes in the159

factor graph as the input sequence. Each node variable is encoded into a common dimension using160

a common object node encoder and skill parameter encoder for object and skill parameter nodes161

respectively. The output is decoded into their respective dimensions using similar decoder setup.162

Training. We train individual skill diffusion score-functions using the denoising score-163

matching (DSM) loss following algorithm 2. We collect datasets of transitions observed during164

the execution of a skill on an object and use them to train the score networks. The dataset size varies165

according to the difficulty and diversity of a skill’s execution on a particular object. For example, we166
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Time Embedding Positional Embedding

Temporal Skill Factor Score Function

Figure S2: Transformer-based skill diffusion model. We use the noisy pre-condition, action and
effect node value distribution at diffusion step t to obtain the corresponding ϵ during sampling.

need 100 successful Pick parameters for training the skill to pick the hammer and 300 successful167

Move parameters to cover the whole workspace of the robot. For ReGrasp, we use both the Pick168

and Move parameters.169

Effect of training data coverage. If we consider “ideal” score functions and a perfect representation170

of the factor distributions, a solution exists if there is an overlap between two connected factor171

distributions. If such an overlapping segment does not exist, GFC will not be able to complete the172

spatial-temporal plan. Hence, the training data for each factor (here temporal factors only) must be173

diverse enough to ensure that the overlap exists. For example, a successful handover in Hammer174

Place and Hammer Strike is not possible if the training data only consists of Pick parameters to175

pick the hammer from the center of the handle. Similarly, if the training data for Move does not176

cover the common workspace of both robots, our proposed algorithm will be unable to complete the177

coordinated plan.178

Algorithm 2: Training skill score functions for a particular skill π
1 Inputs:
2 Pre-condition, skill parameter and Effect nodes (Vπ

pre, aπ,Vπ
effect)

3 Dataset of transitions D
4 Parameterized skill score function ϵϕ
5 Noise schedule σ
6 DSM loss weight schedule λ

7 while not converged do
8 Sample batch from dataset x(0) ∼ D
9 Sample forward diffusion timestep t ∼ [0, 1]

10 Sample Gaussian noise ϵ ∼ N (0, I)
11 Calculate noise coefficient σt

12 Calculate noisy data x(t) = x(0) + σtϵ
13 end

14 Optimize parameters ϕ using:
15 ∇ϕEt,ϵ,x(0) [λ(t)∥ϵ− ϵϕ(x(t), t)∥2]

16 Return ϵπ ≡ (Optimized) ϵϕ

Hyperparameters and computation. We consider the hyperparameters as shown in Table S1 for179

building our score-network.180

For the reverse sampling steps while inference, we find the best performance using 50 steps and181

all results have been reported accordingly. Considering skill-object score functions with varying182

input nodes leads to a loss of parallel batched inference (advantage of vectorized states) and hence,183

an increase in computation time as compared to chaining with vectorized states. On an NVIDIA184
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Table S1: Hyperparameters for Score-Network with Transformer Backbone

Hyper-parameter Value
Hidden Dimension 128
Number of Blocks 2
Number of Heads 2

MLP Ratio 2
Dropout Probability 0.1

Number of Input Channels Varies (3-11)
Number of Output Channels Varies (3-11)

RTXTM A6000 GPU, it takes 2.6 secs for the smallest horizon task Pour Cup and 6 secs for the185

longest horizon task Hammer Nail to give 10 candidate node variable values. These candidates are186

sorted based on their extent of goal-condition satisfaction and the top 5 are selected to calculate the187

success performance.188
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S7 Real Robot Experiments189

Kinect Azure
Camera

X

Y
Z

Figure S3: Real-World Experimen-
tal Setup

Complete setup. We use two Franka Panda robot arms190

placed in parallel to demonstrate the coordinated tasks as il-191

lustrated in Figure S3. A pair of flexible Finray fingers [16] is192

attached to the parallel jaw grippers. For each of the arm, we193

set up a Kinect Azure camera calibrated to the origin of the194

arm. We use objects like mallet (hammer), stake (tent peg,195

nail), garden foam, a kitchen pot, two types of mugs and a196

rack for the considered tasks. We use segment-anything [17]197

and CLIP [18] to segment the objects from the RGBD image198

based on text descriptions and use the segmented masks to199

obtain the point clouds for the objects. Finally, we use ICP200

to align the obtained and model point clouds to calculate the201

transformation of the object. The procedure is done for both202

cameras to obtain transforms for all the detected objects in203

both robot’s frame of reference. For a particular object, we select the transform from the arm closest204

to the object to get precise pose estimation (due to better depth data). We finally use the obtained205

transforms to recreate the physical scene in simulation, employ GFC in simulation and rollout the206

results in the real-world. While planning, the Frankx controller [19] is used to generate smooth207

motion toward the desired pose.208

Qualitative analysis. We perform qualitative analysis for all four coordinated tasks using the hard-209

ware setup as shown in Figure S4,Figure S5, Figure S6 and Figure S7. We further provide detailed210

videos of execution in the supplementary video.211

(Pick Hammer) (ReGrasp Hammer)

(Move Hammer)

(Place Hammer)

Figure S4: Coordination task: Hammer Place The left arm must handover the hammer to the right
arm such that the hammer can be placed inside the box.

(Move Hammer)
(ReGrasp Hammer) (Pick Nail) (Move Nail)

(Move Hammer)

Figure S5: Coordination task: Hammer Nail The left arm must handover the hammer to the right
arm and pick up the nail. Both arms have to coordinate in order to move the hammer and nail to a
configuration in which the hammer can strike the nail.
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(Pick Pink Mug)
(Pick Green Mug) (Move Green Mug)

(Move Pink Mug) (Pour)

Figure S6: Coordination task: Pour Cup The left arm and right arm must pick up the pink mug and
green mug respectively. Both arms have to coordinate in order to move the mugs to a configuration
in which the left arm can pour the pink mug contents into the green mug.

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure S7: Coordination task: Bimanual Reorientation The left arm and right arm must pick up
the pot simultaneously. Both arms have to coordinate in order to rotate the pot to a specified target
reorientation angle. For the above illustration, the reorientation angle is 30deg.

Failure analysis. We try to analyze the reason for the failure of GFC in certain cases. A limit-212

ing factor of our planning framework is that the nodes denote waypoints required to be reached for213

completing the geometric execution and satisfying the goal condition without caring about the tra-214

jectory between them. Since we do not explicitly provide the intuition of inverse kinematics (IK) or215

collision, we assume that these properties are learned implicitly using the successful transitions in216

the training data. Hence, apart from sim-to-real gap (consisting of pose-estimation error, nature of217

surfaces in contact, and weight of the objects like hammer and pot), the primary reasons for failure218

are: (1) sampling a pose where IK cannot be computed, i.e. unreachable. (2) The sampled pose is219

not collision-free. We provide sim-to-real gap failures in the supplementary video.220
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S8 More Details on Evaluation Tasks221

S8.1 Hammer Nail222

Task Description: Given a scene with three boxes, a hammer in placed in one of the box covered223

by a lid as shown in Figure S8. There is a nail on the table. Only left arm can reach the lid, hammer224

and the nail. The task objective is to strike the nail by the hammer within a provided region. There225

is a cube in one of the boxes, picking and placing it are task-irrelevant distractions.226

Left: Pick Lid
Right: Pick Cube

Left: Place Lid 
Right: Place Cube

Left: Pick Hammer 
Right: Idle

Left: Move Hammer 
Right: ReGrasp Hammer

Left: Pick Nail 
Right: Idle

Left: Move Nail 
Right: Move Hammer

Left: Idle 
Right: Strike Hammer

Figure S8: Hammer Nail. The illustration shows the Hammer Nail task. A successful solution to
this task must complete a successful handover and coordinate to align the hammer and the nail to
conduct a successful strike.

What it takes to solve? From a superficial symbolic analysis, the task can be completed if the227

left arm can handover the hammer to the right arm, left arm can pick up the nail to take it to the228

admissible region and the right arm can strike the nail by the hammer. However, the following229

challenges exist:230

1. Hammer must be picked up and moved at a location such that the right arm can re-grasp it231

for a successful handover.232

2. The handover must allow the right arm to satisfy the pre-condition of strike i.e. the right233

arm must grasp the hammer away from the head, hence the left arm must reason and pick234

it up by grasping close to head.235

3. The re-grasp pose will affect the region where the hammer head can be reached. The236

left arm must reason about the hammer head’s reachability to move the nail such that the237

hammer and nail can be aligned.238

Why is this challenging? All the above reasonings are interdependent and the effect of the initial239

pick pose can be seen at multiple stages of the task. This makes the task challenging as the plans240

fails:241

1. if the initial pick pose fails to reason about handover requirements.242

2. if the nail move target pose fails to satisfy the reachability of the hammer-head, which243

actually depends on the handover.244

Failure cases: The failures in the proposed method occur in the following situations:245

1. Method failure: when it predicts in-feasible poses (where IK cannot be computed) or which246

does not satisfy the pre-condition of the next skill.247

2. Trajectory planning failure: If IK can be computed for current and target poses but no248

collision-free trajectory can be computed (via pybullet-planning cite). This is expected as249

GFC only solves for high-level skill transitions.250

3. Simulation failure: While executing Pick skill, sometimes the contact vectors are noisy251

and hence leads to pick-up failures.252

S8.2 Bimanual Pot Reorientation253

Task Description: Given a pot on a table, the task is to reorient the pot to some target orientation254

angle (along z-axis) using two manipulators as shown in Figure S10. It is worth noting that we have255
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Hammer
Place Hammer Nail

Hammer
Place Hammer Nail

Figure S9: Handover variations. The hammer handover can be done in multiple ways, four of
which are shown above. While placement of the hammer in the box for Hammer Place task can
be done by re-grasping the hammer anywhere, for hammer strike in Hammer Nail, the hammer is
encouraged to be regrasped near the tail of the handle.

Pick and Move skills for individual manipulators such that we know where the pot can be grasped256

and the reachable workspace of the manipulator.257

(Pick Pot)

(Pick Pot)

(Move Pot)

(Move Pot)

Figure S10: Bimanual Pot Reorientation. The task is to coordinate planning strategies to grasp a
pot using two manipulators and rotate it to a target reorientation angle. The task must be done with
only single-manipulator data.

What it takes to solve? This particular task can be completed if:258

1. we find pick poses for both the manipulators.259

2. we find feasible move poses in the workspace that satisfies the target orientation.260

3. we ensure that the relative transform between two gripper poses while picking and in the261

predicted move target poses is the same, because the grasp poses relative to the pot cannot262

change while moving.263

Why is this challenging? The task is challenging because the algorithm must decide the initial pick264

pose by considering sequential and parallel dependencies:265

1. the same pick pose relative to the pot must exist for the target reorientation angle266

2. the move pose for both manipulators must satisfy both the workspace reachability for indi-267

vidual manipulators and also have the same fixed transform as the pick poses.268

Failure cases: The failures in the proposed method occur in the following situations:269

1. Method failure: when it predicts in-feasible poses (where IK cannot be computed) or which270

does not satisfy the fixed transform condition.271

2. Trajectory planning failure: If IK can be computed for current and target poses but no272

collision-free trajectory can be computed (via pybullet-planning cite). This is expected as273

GFC only solves for high-level skill transitions.274

3. Simulation failure: While executing Pick skill, sometimes the contact vectors are noisy275

and hence lead to pick-up failures.276
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S9 Extending Hammer Nail task to longer horizons277

In order to evaluate the extensive long-horizon planning capabilities of our proposed algorithm,278

we have further extended the Hammer Nail task to longer horizons as shown in Figure S11. The279

extended tasks particularly emphasize adding a second handover such that the hammer is handed280

back to the left arm after a successful hammer strike.281

Figure S11: Extension of Hammer Nail task. We have added three new extensions to the Hammer
Nail task. All of the new tasks focus on handling a second handover. The nature of the first handover
adds further constraints into possible ways to perform the second handover. Further, we add task-
irrelevant skills in between the plan skeleton to evaluate the robustness of GFC and the spatial-
temporal factor graph plan representation.

We classify the failure cases as:282

• Type 1: Method failure i.e. when the proposed algorithm fails to find suitable target param-283

eters.284

• Type 2: Trajectory planning failure i.e. no collision-free trajectory can be computed be-285

tween two suitable poses.286

• Type 3: Simulation failure i.e. when simulator fails to detect suitable contacts.287
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Now, we show the failure breakdown and task success for all the considered Hammer Nail task and288

their extensions in Table S2. While we see a drop in success rates by adding a second handover to the289

vanilla Hammer Nail task, GFC proved to be robust for all other task-irrelevant skills in the chain.290

The task success of all “two handover” variants is similar even with an increasing task horizon.

Table S2: Failure breakdown and task success analysis of hammer nail task and its extensions with
two handovers (based on 100 trials)

Task Task Horizon Type 1
failure

Type 2
failure

Type 3
failure

Task
Success

Hammer Nail 11 42 14 10 34
Extended Hammer Nail v1 16 43 28 5 24
Extended Hammer Nail v2 18 44 21 10 25
Extended Hammer Nail v3 20 41 25 13 21291
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S10 Analyzing Inter-step dependencies292

Our work focuses on solving long-horizon tasks that have strong inter-step dependencies [20] and293

requirements for coordinated manipulation [21, 22, 23]. For example, hammering a nail not only294

requires extensive affordance planning to perform a handover but also requires allowing sufficient295

reachable workspace to align the hammer head with the nail. This also affects the success of the296

second handover, thus increasing the action-dependency horizon. Our framework is able to compose297

learned factors (diffusion models) to solve a wide variety of tasks, as long as their solutions fall in298

the combinatorial space.

Improper
ReGrasp

Reduced reachable
workspace of the

hammer

More collision prone
second handover

Pick
Lid

Place
Lid

Pick
Cube

Place
Cube

Pick
Hammer

Move
Hammer

ReGrasp
Hammer IdleIdle

Pick
Nail

Move
Hammer

Move
Nail

Strike
Hammer

Idle

Idle Idle Move
Hammer

ReGrasp
Hammer

Idle

Place
Hammer

Pick
Lid

Place
Lid

Pick
Cube

Place
Cube

Idle Idle

Idle Idle

Pick
Lid

Place
Lid

1

1 2 3 4

2 3 4

Improper
Pick

Reduced options for
collsion-free handover

Figure S12: Inter-step dependencies. We show the steps and reasoning required to solve the Ham-
mer Nail task. An improper initial pick can lead to a failed or unfavorable handover which might
lead to difficulty in performing Strike and the second handover. Thus the algorithm must reason
about inter-step action dependency over longer horizons to solve the task successfully.

299
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S11 Justifying success rates with breakdowns300

We elaborate on the failure and success breakdown for the vanilla Hammer Nail task in Table S3.301

Revisiting the failure categories, we classify the failure cases as:302

• Type 1: Method failure i.e. when the proposed algorithm fails to find suitable target param-303

eters.304

• Type 2: Trajectory planning failure i.e. no collision-free trajectory can be computed be-305

tween two suitable poses.306

• Type 3: Simulation failure i.e. when simulator fails to detect suitable contacts.307

Table S3: Failure breakdown and task success analysis per skill-step of hammer nail task (based on
100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 5 0 0 95
2 Place Lid 0 0 0 95
3 Pick Cube 0 0 0 95
4 Place Cube 6 0 0 89
5 Pick Hammer 3 0 2 84

6-7 Move Hammer - Regrasp Hammer 8 6 0 70
8 Pick Nail 4 0 8 58

9-10 Move Nail - Move Hammer 11 8 0 39
11 Hammer Strike 5 0 0 34

We also elaborate on the failure and success breakdown for the bimanual reorientation task in Ta-308

ble S4. It is worth to be noted that the skills are executed in parallel and the serialized representation309

of the skill sequence is shown only as a part of the analysis.310

Table S4: Failure breakdown and task success analysis per skill step of bimanual pot reorientation
(based on 100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Grasp Pot Left 13 0 4 83
2 Grasp Pot Right 12 0 3 68

3-4 Move Pot Left - Move Pot Right 13 12 0 53

We further continue the analysis for all the two handover extensions of the Hammer Nail task,311

namely for Extended Hammer Nail v1 in Table S5, for Extended Hammer Nail v2 in Table S6,312

and for Extended Hammer Nail v3 in Table S7. We primarily note the accumulative success at the313

first handover, coordination for the hammer Strike, and the second handover. With an increasing314

task horizon, the proposed approach is invariant to task-irrelevant distractions and maintains similar315

success.316
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Table S5: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v1 with two handovers (based on 100 trials)

Skill.No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 4 0 0 96
2 Place Lid 0 0 0 96
3 Pick Cube 0 0 0 96
4 Place Cube 5 0 0 91
5 Pick Hammer 4 0 2 85

6-7 Move Hammer - Regrasp Hammer 11 13 0 61
8 Pick Nail 3 0 3 55

9-10 Move Nail - Move Hammer 7 9 0 39
11 Hammer Strike 3 0 0 36

12-13 Move Hammer - Regrasp Hammer 4 6 0 26
14 Place Hammer 0 0 0 26
15 Pick Lid 2 0 0 24
16 Place Lid 0 0 0 24

Table S6: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v2 with two handovers and some task-irrelevant skills (based on 100 trials)

Skill No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 4 0 0 96
2 Place Lid 0 0 0 96
3 Pick cube 0 0 0 96
4 Place Cube 4 0 0 92
5 Pick Hammer 5 0 2 85

6-7 Move Hammer - Regrasp Hammer 12 14 0 59
8 Pick Nail 2 0 1 56

9-10 Move Nail - Move Hammer 4 0 7 45
11 Hammer Strike 1 0 0 44
12 Pick Lid 3 0 0 41
13 Place Lid 0 0 0 41

14-15 Move Hammer - Regrasp Hammer 6 7 0 28
16 Place Hammer 0 0 0 28
17 Pick Lid 3 0 0 25
18 Place Lid 0 0 0 25
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Table S7: Failure breakdown and task success analysis per skill-step of hammer nail task extension
v3 with two handovers and many task-irrelevant skills (based on 100 trials)

Skill No. Skills Type 1
failure

Type 2
failure

Type 3
failure

Accu.
Success

1 Pick Lid 5 0 0 95
2 Place Lid 0 0 0 95
3 Pick cube 0 0 2 93
4 Place Cube 4 0 0 89
5 Pick Hammer 3 0 2 84

6-7 Move Hammer - Regrasp Hammer 4 8 0 72
8 Pick Nail 3 0 6 63

9-10 Move Nail - Move Hammer 7 9 0 47
11 Hammer Strike 5 0 0 42
12 Pick Lid 1 0 2 39
13 Place Lid 0 0 0 39

14-15 Move Hammer - Regrasp Hammer 5 8 0 26
16 Pick cube 0 0 0 26
17 Place Cube 1 0 0 25
18 Place Hammer 3 0 0 22
19 Pick Lid 0 0 1 21
20 Place Lid 0 0 0 21
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