Appendix to TreeMoCo: Contrastive Neuron
Morphology Representation Learning

Hanbo Chen*: Jiawei Yang*:f
Tencent Al Lab University of California, Los Angeles
hanbochen@tencent.com jilaweill8Qucla.edu
Daniel Maxim Iascone Lijuan Liu
University of Pennsylvania, Philadelphia Southeast University, Nanjing
daniel.iascone@pennmedicine.upenn.edu juan-liu@seu.edu.cn
Lei He Hanchuan Peng
University of California, Los Angeles Southeast University, Nanjing
lhe@ee.ucla.edu h@braintell.org

Jianhua Yao?
Tencent Al Lab
jianhuayao@tencent.com

A Additional information of neuron data and features

A.1 Limitations of handcrafted features

In this section, we will show some examples of neuron branches and neuron dendrites that cannot be
differentiated by handcrafted features. |

Limitations of branch features. We take a sequence of vertices between two bifurcations or a
bifurcation (fork node) and a tip node (leaf) as a branch. A branch can be viewed as a sequence of
vectors E = [E)7 El, ey Entl], where E; = V; — Vi1 is the vector pointing from a child node to
its parent node. Two commonly used measurements measuring the shape of a branch are length and
contraction. The formulas of these two metrics are detailed in Sec. [3.1]and Figure [AT](a). Here, we
elaborate on the limitations of both metrics. Based on the definition of length and contraction, it is
evident that both metrics are invariant to rotation and shifting of the branch — two desired properties.

What is less obvious is that both metrics are invariant to the order of branch vectors E_; As shown in
Figure (a), by only re-ordering of edge vectors, a branch’s shape can be significantly changed
from a bow shape to a zig-zag shape while its length and contraction remain the same.

Limitations of neuron features. Most classic neuron morphology analysis works adopt the mean
and the standard deviation of handcrafted features related to branches or bifurcations to measure
the shape of a neuron. Such measurement is taken in a bag-of-word (BOW) fashion. The context
and spatial relationship between arbors are ignored under this measurement. Figure[AT](b) shows
that the neurons of significantly different shapes could share similar features based on this kind of
measurement. In this paper, our proposed neuron encoder can capture information from both the
branch features as well as the context and spatial relation via the interaction between the embedding
layer and the tree-LSTM-based path processor.

*: Equal contribution. T: Work done when authors were at Tencent AI Lab. *: Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Vét;m =
E: Vend =)
E:

O E

Es average contraction: 0.92 ;
Es number of bifurcations: 51 number of bifurtations: 68
Branch A total length: 6178.04 um total length: 6074.32 um
max distance: 304.23 um max distance: 321.79 pum

I
: EZ?)D E. Vend
@]

Branch B
length = E E;
i average contraction: 0.92 avérage contraction: 0.93
number of bifurcations: 50 number of bifurcations: 59
total length: 6108.81 um total length: 6108.13 um
. Zi Ei max distance: 345.36 um max distance: 325.32 um
contraction = +—mm— \
”Vend - Vstart”
(iii) (iv)

(a) (b)

Figure Al: Tllustration of limitation of handcrafted features. (a) Length and contraction are invariant
to the order of edge vectors. Branch A and B are composed of the same set of edge vectors. They are
of different shapes but share the same length and contraction value. (b) Neurons of different shapes
may have similar features. Each neuron is viewed from three different angles. Feature values are
listed in the subplot.

A.2 Dataset details

Three public datasets are used in this study. All of them contain 3D neuron reconstructions from
mouse brains. Reconstructions are registered to Allen mouse brain Common Coordinate Framework
(CCFv3 [L1]) in their original release. The cell type of a neuron is assigned based on its brain
anatomical region. This information comes together with each dataset. Note that the labels of
samples from the JML dataset are purely determined by the registration results without manual
inspection. In contrast, in ACT and BIL datasets, such information has been visually inspected and
corrected by neuroscientists and thus is more accurate. For JML and BIL datasets, whole neuron
reconstructions are generated, including the long-range projection of axons. Due to the limitation of
imaging techniques, the ACT dataset’s neuron reconstructions are limited to a thin 3D slice of brain
tissue and thus not complete. This type of data with incomplete morphology is typical in neuroscience
studies due to the technical limitations and cost efficiency concerns. Thus, to show if and to which
degree our proposed method could work on incomplete reconstruction, we keep the ACT dataset for
analysis even if it is incomplete. To summarize, the BIL dataset has the best quality — complete 3D
reconstructions and reliable cell type labels. More details of the datasets can be found in Table[AT]

To facilitate analysis, we merge the isocortex cell types by layers and only keep 10 cell types with
relatively broad coverage. The abbreviations and full names of these brain regions are listed in Table
[A2] Examples of neuron reconstructions of different types from different datasets can be found in
Figures and[A3] It is visually evident that ACT’s reconstructions are incomplete compared to
BIL’s and JML’s. Also, with a visual impression, the dendritic morphology of some cell types, such
as VPM, VPL and CP, are similar and thus challenging to be differentiated.

Isocortex layer 2/3 Isocortex layer 4 Isocortex layer 5 Isocortex layer 6 VPM

Vi > L - N2 '
'*;, i et g
(!
ML ¥ ¥ Zis b i ¢ ‘}Y %
= %%R(s X Hes
)
f
ACT ! A 1 ¥ A % A {

1t

/ incomplete
imaged slice

Figure A2: Example reconstructions of 5 neuron cell types that are common between datasets. Each
column corresponds to a cell type. Each row corresponds to a dataset. Each subplot shows 3 different
views (three-view) of the same neuron — top-left: front view, top-right: side view, bottom-left: top
view. Thumbnails are taken on the same scale for all neurons. As evident from the side view,
ACT’s reconstructions are all flat compared to compared to BIL’s and JML’s. It is because ACT
reconstructions are from a thin tissue slice and thus incomplete.

B Implementation details

Here we elaborate on the implementation details. Our code and pre-trained models will be made
public once the paper is accepted.

B.1 Implementation details of TreeMoCo training.

Model architectures. For implementation, we set the layer sizes of embedding MLP to 256 and
128, and the cell state size of LSTM-processor to 128. Our detailed model architectures in PyTorch
style are:

¢ Embedding layer ¢:
embedding = Sequential(
Linear(29,128), BatchNorm(128), ReLU(),
Linear(128,256), BatchNorm(256), ReLU(),
Linear (256,128))

* LSTM-based tree path processor 7:
Wi_iouf, Ul_iouf = Linear(128,512), Linear(128,512) # first cell
W2_iouf, U2_iouf = Linear(128,512), Linear(128,512) # second cell

cell type: MG
dataset: BIL

cell type: SUB
dataset: IML

cell type: PRE
dataset: IML

cell type: CP
dataset: BIL

cell type: VPL
dataset: BIL

Figure A3: Example reconstructions of 5 neuron cell types that are only present in one dataset. Each
subplot shows 3 different views (three-view) of the same neuron — top-left: front view, top-right: side
view, bottom-left: top view. Thumbnails are taken on the same scale for all neurons.

Table Al: Details of datasets used in this paper.

Dataset BIL JML ACT
Full Name Bchfgn%Oas:&%ti‘rf;om Janelia Mouse Light Allen Cell Types
Reference 18] [12] (1
Total reconstructions 1741 1107 510
Reconstructions used 1413 505 495
Complete reconstruction Yes Yes No
Cell type label Manual Auto Manual

Tissue labeling

TIGRE2.0 transgenic
reporter lines coupled
with Cre espression

A mixture of low-titer AAV
Syn-iCre and a high-titer
Cre-dependent reporter

Biocytin-filled

Image modality

fMOST

MouseLight

flourescent and brightfield

Reconstruction method

Automatic reconstruction
followed by manual correction
and automatic refinement

Automatic reconstruction
followed by manual
correction

Automated 3D
reconstruction manually
curated using the Mozak

extension of Vaa3D.

Registration method

mBrainAligner

LandMark

Manual

Links for datasets:

BIL: https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/
JML: http://mouselight. janelia.org/
ACT: https://celltypes.brain-map.org/

* Projection head h:

projector

= Sequential(

non-linear projection head

Linear(128,128), BatchNorm(128), ReLU(),
Linear(128,128))

LSTM processor forward. We provide a pseudo-code for LSTM forward in Algorithm[I] Our
implementation is based on Deep Graph Library (DGL) [10], an efficient library for graph propagation
in deep learning.

Pre-training details. We provide a pseudo-code for TreeMoCo training in Algorithm[2] We train
TreeMoCo with a batch size of 128 in one V100 GPU. We use an SGD optimizer with a weight decay
of 5e-4 and a constant learning rate of 0.06. The temperature parameter 7 is 0.1, the momentum
parameter to update the momentum encoder is 0.99, and the queue length to store negative keys is
1024. We use a smaller queue than MoCo [4] (1024 v.s. 65536) since the total number of neurons
is significantly less than the number of images in visual representation learning [4, 3] (2.3k v.s.

https://download.brainimagelibrary.org/biccn/zeng/luo/fMOST/
http://mouselight.janelia.org/
https://celltypes.brain-map.org/

Table A2: Abbreviation of brain region and cell types. All brain regions are defined following Allen
Reference Atlas. Refer to the website for more details: http://atlas.brain-map.org/atlas?a
tlas=602630314

Abbreviation Full name

12/3 isocortex layer 2/3
14 isocortex layer 4
15 isocortex layer 5
16 isocortex layer 6
VPM Ventral posteromedial nucleus of the thalamus
VPL Ventral posterolateral nucleus of the thalamus
CP Caudoputamen
SUB Subiculum
PRE Presubiculum
MG Medial geniculate complex

Algorithm 1 LSTM-based tree path processor (7)(+)) forward: PyTorch-like Pseudocode

W_iouf, U_iouf: weights for input features and hidden states for a LSTM cell.
nodes: data structure to store graph and data, used in DGL.

embedding layer

feats = embedding(feats)

initial states

nodes.datal[’iouf’] = Wi_iouf (feats)

nodes.data[’h1’], nodes.data[’c1’] = zeros((N,128)), zeros((N,128))
nodes.data[’h2’], nodes.data[’z’] = zeros((N,128)), zeros((N,128))

def propagate(nodes):
nodes: [N, j, Cl], currently processing N nodes, each of which has j subtrees that own C-dim
representations.
hil, cl = nodes.mailbox[’h1’], nodes.mailbox[’c1’]
h2, z = nodes.mailbox[’h2’], nodes.mailbox[’z’]
sum over child nodes
hil, c1, h2, z = hl.sum(-2), cl.sum(-2), h2.sum(-2), z.sum(-2)
first LSTM cell
xi, xo, xu, xf = chunk(nodes.data[’iouf’], 4, 1)
hil, hol, hul, hfil = chunk(Ul_iouf (hl), 4, 1)
i, f, g, o = sigmoid(xi + hil), sigmoid(xf + hfl), tanh(xu + hul), sigmoid(xo + hol)
cl=1% g+ £ *cl
hl = o * tanh(cl)

second LSTM cell
xi, xo0, xu, xf = chunk(W2_iouf(cl), 4, 1)
hi2, ho2, hu2, hf2 = chunk(U2_iouf(h2), 4, 1)
i, f, g, o = sigmoid(xi + hi2), sigmoid(xf + hf2), tanh(xu + hu2), sigmoid(xo + ho2)
z=1i*xg+f xz
h2 = o * tanh(z)
return {°h1’: hil, ’c1’: ci1,
‘h2’: h2, ’z’: z}

1.28M). For data augmentations, we have not searched their combinations and hyper-parameters
extensively. Therefore, our default setting of data augmentations may not be optimal for pre-training.
We emphasize that even under our current naive combination of data augmentations, TreeMoCo
has shown promising performance, showing its potential for gaining improved representations with
better combined and parameterized data augmentations used during pre-training. The default data
augmentations we use for pre-training are:

RandomScaleCoordsBranches (p=0.2, scales=[0.8, 1.2]),

RandomRotate (p=0.5),

RandomJitter(p=0.2, sigma=1, clip=5),

RandomShift (p=0.2, shift=[0.2, 0.2, 0.2]),

RandomFlip (p=1),

RandomMaskFeats (p=0.2),

RandomJitterBranches(p=0.2, sigma=0.1, clip=1),

RandomDeformation(p=0.2, scales=[0.8, 1.2]),

RandomDropSubTrees (p=0.05, max_cnt=10),

http://atlas.brain-map.org/atlas?atlas=602630314
http://atlas.brain-map.org/atlas?atlas=602630314

RandomSkipParentNode (p=0.05, max_cnt=10),
RandomSwapSiblingSubTrees (p=0.05, max_cnt=10)

Evaluation details. During pre-training, we extract features from the backbone and the projection
head and evaluate them individually with the KNN protocol. We report the best KNN accuracy
between them. Note that, in visual representation learning, the features extracted from the backbone
are usually better than those from the projection head in terms of clustering performance [2 [14].
However, here we find the best KNN accuracy comes from the backbone for the BIL-6 dataset
and the projection head for JML and ACT datasets. We leave the discussion and analysis for such
an observation to future work. For fine-tuning evaluation, we initialize the neuron encoder with
pre-trained weights and train it for 100 epochs using the Adam optimizer [5] with a learning rate of
2e-3 and a weight decay of 0.02. The projection head is removed and unused when fine-tuning.

Algorithm 2 TreeMoCo training: PyTorch-like Pseudocode

f_q, h_q: encoder: backbone, projection head

f_k, h_k: momentum encoder: momentum copies of backbone and projection head
m: momentum coefficient

tau: temperature

for batch_neuron in loader: # load a minibatch x with N samples
x_q, x_k = aug(batch_neuron), aug(batch_neuron) # augmentation
z_q, z_k = f_q(x_q), f_k(x_k) # positive pairs (query, key): [N, C] each
q, k = h_q(z_q), h_k(k) # projection: [N, 128] each
q, k = normalize(q), normalize(k) # 12 normalization

logits_pos = dot(q, k) # similarity between positive pairs: [N, 1]
logits_neg = mm(q, queue.t()) # similarity bewteen negative pairs: [N, K]
logits = cat([logits_pos, logits_neg], dim=1) # Nx(1+K)

labels = range(N)

loss = CrossEntropyLoss(logits/tau, labels)

queue.dequeue_and_enqueue (k) # update queue

loss.backward ()

update([f, h]) # optimizer update: f, h

[f_k, h_k] = mx[f_k, h_k] + (1-m)*[f_q, h_ql # momentum update: f_k, h_k

Notes: dot is vector dot-product. mm is matrix multiplication. k.t () is k’s transpose. £_q, f_k, h_qandh_k
corresponds to f, f’, h and h’ in the main text respectively.

B.2 Implementation details of compared methods

MorphVAE. For MorphVAE [6], we adopt the officially released code E] and use its default settings
to obtain results. Instead of only using the x/y/z coordinate of nodes, we use the same set of processed
neurons and 29-d features. MorphVAE is based on the variational auto-encoder (VAE) that aims to
reconstruct from noisy inputs and further combines a classification head to utilize label information.
Since MorphVAE is a path-based method that requires the “random walk” to sample paths from leaf
nodes to the root node, we follow the original work to sample 256 paths with a maximum length of
32 from leaf nodes to the root node for each processed neuron tree reconstruction. The best testing set
accuracy during 100-epoch training (evaluated every 5 epochs as other methods) is reported for a fair
comparison. TRNN [[15] and our neuron encoder encode the whole tree structure, while MorphVAE
encodes the sampled paths inside the trees, which could ignore the tree topology information. And
thus, it is not surprising that the performance of TRNN and our TreeMoCo is superior to MorphVAE
(Table [3).

TRNN. For TRNN [15], we follow the officially released code E] and use its default settings to
obtain results. We change the input layer of the TRNN to take our processed tree graph with 29-d
node features as inputs. Similar to evaluations of other methods, we monitor the test set performance
every 5 epochs for 100 epochs during training and report the best test accuracy.

GraphCL For GraphCL [13]], we use the officially released codeE] to obtain the results. We first
convert our dataset to the TU dataset format [[7]] and directly use their default settings for unsupervised

'https://github.com/berenslab/morphvae
"https://github.com/thomasaimondy/treestoolbox/tree/master/casia
*https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU

https://github.com/berenslab/morphvae
https://github.com/thomasaimondy/ treestoolbox/tree/master/casia
https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU

TU training. The input features are the same as other methods, i.e., 29-d features. We train GraphCL
for 100 epochs on the joint training sets, evaluate the KNN test accuracy every 5 epochs, and report
the best one. In fact, the original setting of GraphCL code is to evaluate models every 10 epochs
by training a linear SVM classifier on the training set and testing on the test set. Then, the best
performance on the test set is reported. Here, we change it to the KNN evaluation protocol and the
evaluation interval from every 10 epochs to every 5 epochs. The official code suggests choosing from
three sets of augmentations (refer to the link for more details). We provide the results obtained from
them in Table[BT] We report the results under the “Random2” augmentation set in the main paper
(Tab. [3) since it achieves the best results on two datasets.

Table B1: Frozen KNN evaluation results of GraphCL under different compositions of data augmen-
tations. We report the sample-wise accuracy (%).

Augmentation Set Detailed Augmentations BIL-6 JML-4 ACT
Unsupervised pre-training on joint training sets.

Random?2 NodeDrop, Subgraph 69.14 5429 58.95
Random3 NodeDrop, Subgraph, EdgePert 67.58 57.14 57.89
Random4 NodeDrop, Subgraph, EdgePert, AttrMask 67.58 61.43 55.79

B.3 Implementation details of data augmentation

Data augmentations in pre-training. A detailed overview of data augmentations is pro-
vided in Table [B2] Most of the implementations can be inferred by names. Particularly, for
(1) RandomScaleCoordsBranches(p=0.2, scales=[0.8, 1.2]), we sample a scale factor from
[scales[0], scales[1]] uniformly, and multiply [z,y, z; L, Fg] (refer to the last line in Sec.
with the scale factor; for (2) rotation, we uniformly sample three angles from [0, 27] for , y, and z,
respectively and do a rotation with those angles; for (3) and (4), shifting means the translations are
isotropic — three shifting scalars are sampled for x, y, and z and added to all the point coordinates,
while jittering means the translations are anisotropic — each point has its own shifting scalars. The (4)
jittering process is: jitters = np.clip(sigma * np.random.randn(coords.shape[0], 3), clip,
clip); coords += jitters; this process applies similarly to (6) but its targets are branches F'. For
flipping (6), the input will be flipped alongside the = and the y axes with 4 possibilities. For (7)
deformation, a scale vector of the same shape as 'z will be uniformly sampled between the given
range and be applied to Fi. For (8) random masking, a percentage of (p * 100)% features from Fg
will be set to zero. For (9) to (11), please cross-reference to the descriptions in Section @] (Data
augmentation for neuron morphology representation learning), the illustrations in Figure [2[(d) and
the python-style pseudo-codes in Algorithm 3]

Table B2: Overview of data augmentations for neuron morphology representation learning.

Category Target Augmentations

1) RandomScaleCoordsBranches(p=0.2, scales=[0.8, 1.2]),
2) RandomRotate (p=0.2),
(i) Point Transformation = Coordinates 3) RandomShift(p=0.2, shift=[0.2, 0.2, 0.2]),
4) RandomJitter(p=0.2, sigma=1, clip=5),
5) RandomFlip(p=1)

6) RandomJitterBranches(p=0.2, sigma=0.1, clip=1),

(ii) Morphology Branch feats 7) RandomDeformation(p=0.2, scales=[0.8, 1.2])

(iii) Attribute Masking Branch feats 8) RandomMaskFeats (p=0.2)

9) RandomDropSubTrees (p=0.05, max_cnt=10),
(iv) Topology Edges 10) RandomSkipParentNode (p=0.05, max_cnt=10),
11) RandomSwapSiblingSubTrees(p=0.05, max_cnt=10)

Data augmentations in ablation study. In the ablation study on data augmentations (Sec. {.3),
we use the data augmentations in different categories individually or in pairs. Since the number of
augmentations is reduced, we increase the applying probabilities of (6, 7, 8) in Table|B2|from 0.2 to
0.5 to better inspect their influence. Point transformations’ applying probabilities are not changed
since they are a combination of five augmentations.

C Learning curves

Under our evaluation protocol, all methods’ best test set performance is reported. However, the
performance evaluated in small datasets like ours usually fluctuates. To get a complete view and the
stability of different methods, we provide their performance curves here. Figure[CI]shows the KNN
test set accuracy during training (recorded every 5 epochs). The dashed lines of the same color denote
the linear trend lines of different curves. Please refer to Appendix [B.2}GraphCL and Table [BT|for the
meaning of "random?2/3/4" in Figure[CI} The sub-figures’ y axes are aligned so that the curves can be
directly compared.

Despite suffering variance, the overall performance in the BIL-6 dataset is improved over training
in all four sub-figures (TreeMoCo and GraphCL). The performance fluctuation of JML-4 and ACT
datasets is larger than that of BIL-6. The dataset size matters here since the number of test set samples
would affect the granularity of accuracy intervals, exhibiting different degrees of variance. JML-4
and ACT datasets are much smaller than the BIL-6 dataset (about 1.2k/0.3k/0.3k samples for BIL-6,
JML-4, and ACT datasets, respectively) and therefore suffer more performance variance. Collecting
more data could alleviate this issue. Regarding stability, TreeMoCo and GraphCL perform less stable
in the JML-4 and ACT datasets. However, TreeMoCo can still improve the accuracy in the JML-4
dataset over training. In contrast, GraphCL fails to improve that with longer training.

With observations from Figure [CI] we emphasize the particularity of the neuron tree morphology
learning problem and the datasets. Existing large-scale benchmarks in visual or lingual domains
usually have abundant training/testing samples and thus can evaluate models precisely with minor
variance. However, neuron morphology learning is a new ground to explore. Current insufficient
testing samples might make the evaluation noisy and less accurate. We hope this early work could
contribute to future exploring in designing a more reliable evaluation protocol.

ccuracy (%)

zzzzzzzzzzz

(a) TreeMoCo (ours) (b) GraphCL-random2 (<) GraphCL-random3 (d) GraphCL-random4

Figure C1: KNN test set accuracy during training. The dashed lines denote the linear trend lines.

D t-SNE plot of different self-supervised methods

We train models on the full dataset without “others” for 100 epochs to analyze and compare the
embeddings learned by different self-supervised methods. The distribution of the same set of neurons
in the embedding space is then visualized by projecting the encoded representations into a 2D space
with t-SNE [9]]. The visualization results are shown in Figures [T]and [and below (Figs[DT|and [D2).

D.1 t-SNE plot of MorphVAE

When training MorphVAE in a self-supervised fashion, the classification loss is set to zero, and only
the reconstruction loss is computed. The resulted t-SNE plot is shown in Figure[D1] It is obvious
that MorphVAE largely fails to generate meaningful embedding to differentiate neuron morphology.
This is in consensus with the observation in the original MorphVAE paper [6] that without a classifi-
cation loss to train the encoder, MorphVAE’s performance on downstream classification tasks will
significantly degenerate.

Figure D1: Distribution of neurons in the embedding space of MorphVAE visualized by t-SNE [9]].
The thumbnails of dendrites are randomly colored. (b-e) Zoom-in view of regions in (a) showing the
mixture of neurons with different morphologies.

D.2 t-SNE plot of GraphCL

For GraphCL, we can have similar observations as TreeMoCo in Figure [T — neurons with different
morphology can be largely separated in the embedding space. However, as shown in Figure [D2[c-e),
GraphCL’s separation is not as clear as TreeMoCo’s. Certain levels of the mixture of neurons with or
without apical dendrite can be observed. Since GraphCL relies on local aggregation to generate graph
representation, the unique global morphology patterns of apical dendrite could be ignored by it.

D.3 t-SNE plot of TreeMoCo

Figures [D3]to[DI0|show the high-resolution version figures in Figure 4]

3

*

% i % @
‘ = >
1 e’ !
* . * ,:
" L
y
o TR 3 0
= x Y
) *
-
Wil ¥ 4 -
o § L ¥
*
e i i %
¢ ¥
2 -
- -
¥
5 ok
F. & ¥, TR
1 ¥
& p
t
% As g
¢ 4 ¥
o}
¢ ¢
& ¥
¥
¥
< . ¥
7 R SE73E 7 R b 8 R, Lo R B
f § B
In >k 7 ‘
¥ 'S 3 e
W I
@t x
& e L
. .4 w ¥

'y
!

Figure D2: Distribution of neurons in the embedding space of GraphCL visualized by t-SNE [9]. The
thumbnails of dendrites are randomly colored. (b-e) Zoom-in view of regions in (a). (c-¢) shows the

mixture of neurons with and without apical dendrite.

10

Algorithm 3 Topology augmentations: Python-like Pseudocodes

p: applying probability
max_cnt = 10: the truncation constraint.

cnt = 0 # cnt will be set to O at the first call.
def RandomDropSubTrees(self, root):
reduced_root = Tree(root) # initialize a tree
if len(root) ==
return reduced_root
P = np.random.uniform(o, 1, len(root))
for child_idx in range(len(root)):
if cnt > max_cnt: # no longger dropping
reduced_root.append(root [child_idx])
continue
else:
if plchild_idx] > p:
reduced_root .append (RandomDropSubTrees (root [child_idx])) # recursively traverse
else:
cnt += 1 # not appending this child = dropping this child
return reduced_root

cnt = 0 # cnt will be set to O at the first call.
def RandomSwapSiblingSubTrees(root):
if len(root) < 2:
return root
p = np.random.uniform(0, 1, len(root))
for child_idx in range(len(root)):
if cnt >= max_cnt:
break
if plchild_idx] < p:
if len(root[child_idx]) < 2:
continue
else:
my_subtree_idx = random.randint(0, len(root[child_idx])-1)
sibling_idx = random.randint(0, len(root)-1)
if len(root[sibling_idx]) ==
continue
sibling_subtree_idx = random.randint(0, len(root[sibling_idx])-1)
my_subtree = root[child_idx] [my_subtree_idx].copy()
sibling_subtree = root[sibling_idx] [sibling_subtree_idx] .copy ()
root[child_idx] [my_subtree_idx] = sibling_subtree
root[sibling_idx] [sibling_subtree_idx] = my_subtree
cnt += 1
else:
root[child_idx] = RandomSwapSiblingSubTrees(root[child_idx])
return root

cnt = 0 # cnt will be set to 0 at the first call.
def RandomSkipParentNode (root):
if len(root) == 0 or len(root)==1:
return root
P = np.random.uniform(o, 1, len(root))
for child_idx in range(len(root)):
if cnt >= max_cnt:
break
if plchild_idx] < p:
if len(root[child_idx]) == 0 or len(root[child_idx])==1:
continue
else:
idx = random.randint (0, len(root[child_idx])-1) # picking a child node
root[child_idx] = root[child_idx][idx] # replacing the parent node with the child node
cnt += 1
else:
root[child_idx] = RandomSkipParentNode(root[child_idx]) # recursively traverse
return root

11

Class Name
L2/3
L4
L5
L6
VPM
cP
VPL
SuB
PRE
MG

Figure D3: The t-SNE plot of neuron representations colored by class labels. A high-resolution figure
for Figure @}(a).

Dataset
e BIL
® ML
® ACT

Figure D4: The t-SNE plot of neuron representations colored by dataset sources. A high-resolution
figure for Figure }(b).

12

Figure D5: The t-SNE plot of neuron representations colored by the average length of each individual
neuron. A high-resolution figure for Figure @}(c).

5000 10000 15000 20000 25000 30000

Figure D6: The t-SNE plot of neuron representations colored by the total length of each individual
neuron. A high-resolution figure for Figure @}(d).

13

Figure D7: The t-SNE plot of neuron representations colored by the average contraction. A high-
resolution figure for Figure @} (e).

Figure D8: The t-SNE plot of neuron representations colored by the standard deviation of contraction.
A high-resolution figure for Figure [@(f).

14

Figure D9: The t-SNE plot of neuron representations colored by the number of nodes inside each
individual neuron. A high-resolution figure for Figure @}(g).

Figure D10: The t-SNE plot of neuron representations colored by the height of each individual neuron
tree. A high-resolution figure for Figure @ (h).

15

References

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Allen cell types database. allen institute for brain science. http://celltypes.brain-map.org/data.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912-9924, 2020.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729-9738, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sophie C. Laturnus and Philipp Berens. Morphvae: Generating neural morphologies from
3d-walks using a variational autoencoder with spherical latent space. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 6021-6031. PMLR, 18-24 Jul 2021.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

Hanchuan Peng, Peng Xie, Lijuan Liu, Xiuli Kuang, Yimin Wang, Lei Qu, Hui Gong, Shengdian
Jiang, Anan Li, Zongcai Ruan, et al. Morphological diversity of single neurons in molecularly
defined cell types. Nature, 598(7879):174—-181, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

Quanxin Wang, Song-Lin Ding, Yang Li, Josh Royall, David Feng, Phil Lesnar, Nile Graddis,
Maitham Naeemi, Benjamin Facer, Anh Ho, et al. The allen mouse brain common coordinate
framework: a 3d reference atlas. Cell, 181(4):936-953, 2020.

Johan Winnubst, Erhan Bas, Tiago A Ferreira, Zhuhao Wu, Michael N Economo, Patrick Edson,
Ben J Arthur, Christopher Bruns, Konrad Rokicki, David Schauder, et al. Reconstruction of
1,000 projection neurons reveals new cell types and organization of long-range connectivity in
the mouse brain. Cell, 179(1):268-281, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in Neural Information Processing
Systems, 33:5812-5823, 2020.

Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Online deep
clustering for unsupervised representation learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 6688—6697, 2020.

Tielin Zhang, Yi Zeng, Yue Zhang, Xinhe Zhang, Mengting Shi, Likai Tang, Duzhen Zhang, and
Bo Xu. Neuron type classification in rat brain based on integrative convolutional and tree-based
recurrent neural networks. Scientific reports, 11(1):1-14, 2021.

16

	Additional information of neuron data and features
	Limitations of handcrafted features
	Dataset details

	Implementation details
	Implementation details of TreeMoCo training.
	Implementation details of compared methods
	Implementation details of data augmentation

	Learning curves
	t-SNE plot of different self-supervised methods
	t-SNE plot of MorphVAE
	t-SNE plot of GraphCL
	t-SNE plot of TreeMoCo

